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Abstract—Transdisciplinary research is a rapidly expanding
part of science and engineering, demanding new methods for
connecting results across fields. In biomedicine for example,
modeling complex biological systems requires linking knowl-
edge across multiple levels of science, from genes to disease. The
move to multilevel research requires new strategies; in this pa-
per we present path knowledge discovery, a novel methodology
for linking published research findings. Path knowledge discov-
ery consists of two integral tasks: 1) association path mining
among concepts in a multipart lexicon that crosses disciplines,
and 2) fine-granularity knowledge-based content retrieval along
the path(s) to permit deeper analysis. Implementing this
methodology has required development of innovative measures
of association strength for pairwise associations, as well as the
strength for sequences of associations, in addition to powerful
lexicon-based association expansion to increase the scope of
matching. In our discussions, we describe the validation of
the methodology using a published heritability study from
cognition research, and we obtain comparable results. We show
how path knowledge discovery can greatly reduce a domain
expert’s time (by several orders of magnitude) when searching
and gathering knowledge from the published literature, and
can facilitate derivation of interpretable results.

Keywords-path data mining; text mining; path knowledge
discovery; content-based retrieval

I. INTRODUCTION

Increasingly, scientific discovery requires the connection
of concepts across disciplines, as well as systematizing
their interrelationships. Doing this can require linking vast
amounts of knowledge from very different domains. Experts
in different fields still publish their discoveries in special-
ized journals, and even with the increasing availability of
scientific literature in electronic media, it remains difficult
to connect these discoveries. For example, an expert in neu-
ropsychiatric syndromes such as schizophrenia and attention
deficit hyperactivity disorder (ADHD) may know little about
genetics, while an expert in genetics may lack knowledge
of the cognitive phenotypes of syndromes such as ADHD.
Although informatics tools such as search engines are very
successful when it comes to helping people search for and
retrieve information, these systems unfortunately lack the
capability to connect that knowledge. Furthermore, using
these systems to manually search a large corpus is not only
time consuming, it can be infeasible and can lead researchers
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to be overly reductionist in a biased or arbitrary manner.
To overcome this basic problem, new methodologies are
needed for scalable and effective knowledge discovery and
integration.

This work was motivated specifically by research on
complex neuropsychiatric syndromes such as ADHD. Even
with a large corpus of relevant work, it can be difficult for
researchers studying such syndromes to find experimental
results that examine direct relations between the syndromes
and concepts from other scientific disciplines, such as ge-
netics. Instead, they must investigate chains of associations
that span multiple disciplines. For example, their research
may be examining a hypothesized causal relation between
mutations in the gene dopamine receptor D2 (DRD2) and
the syndrome ADHD. However, the actual support for this
is only formed by a chain of relations across multiple
disciplines represented by a series of questions such as:
What symptoms are related to ADHD? Which parts of the
brain would be affected? How is DRD2 related to the
functioning of these parts of the brain? While a search
of the corpus for documents containing the terms “DRD2
AND ADHD” may fail to discover experimental results
presenting this direct relation, a more elaborate query that
connects the results of multiple experiments, such as “DRD2
→ prefrontal cortex→ working memory→ attention deficit
→ ADHD,” would allow the researchers to retrieve all the
experimental results along this chain, so that they could
rapidly examine the existing support for such a multilevel
hypotheses, see Figure 1.

We can conceptualize and visualize this knowledge in-
tegration process as drawing a path from one concept to
the other, connecting related concepts from one domain
to concepts in other domains. When considering multiple
domains, such connections form a path which represents
the knowledge structure across the domains. We refer to the
process of forming this path as path knowledge discovery.

Path knowledge discovery is challenging for the following
reasons. First, a path describes a sequence of interrelated as-
sociations across multiple domains of knowledge. Although
existing data mining methods such as Apriori [1] perform
well when identifying high-confidence pairwise associa-
tions, mining interrelated associations still remains an open
problem. Second, identifying possible associations alone
does not provide sufficient information for path knowledge
discovery. It is important to understand how the concepts
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Figure 1. Knowledge paths. Each node represents a concept term found in
a corpus made up of publications from the field of neuropsychiatry. Edges
between terms represent the existence of published research results linking
two concepts. In this example, the lack of an edge between ADHD and
Gene: DRD2 A1 would indicate no publications in the corpus directly link
these concepts; however, by tranversing several intermediate relations along
the path “ADHD → attention deficit → working memory dysfunction →
underactive prefrontal cortex → Gene: DRD2 A1” a multilevel hypothesis
spanning the relations between concepts along the path could be examined.

are interrelated, and therefore it is necessary to retrieve
information that can support the associations. Based on this
description, the path knowledge discovery problem can be
decomposed into two integral parts: 1) identifying paths
describing relations among concepts at multiple concept
levels, and 2) retrieving content corresponding to the paths
from the corpus to explain the interrelations.

In this paper we propose a framework for path knowledge
discovery. This framework uses a multilevel lexicon to index
and query a corpus of scientific knowledge. Paths of inter-
related concepts that span multiple domains are identified
based on a user-supplied query, and these paths are evaluated
to determine which paths show the strongest associations
across the entire path. The strongest of these paths are then
used to retrieve relevant content to allow the user to quickly
evaluate this content and determine which paths best support
their query, see Figure 2.

II. INFRASTRUCTURE FOR PATH KNOWLEDGE
DISCOVERY

Path knowledge discovery is the exploration of the associ-
ations between concepts across different domains of knowl-
edge, with the associations connected to form a path across
the domains. These domains of knowledge are represented
by a corpus of scientific research. Constructing paths across
this corpus requires a knowledge of the hierarchy between
the concepts in the domains. In this paper we build this
hierarchy using a multilevel lexicon which gives a controlled
vocabulary of the concepts belonging to different domains.

Along with the corpus and lexicon, we build two indexes,
an association index and a document index, which link the
concepts in the lexicon to content in the corpus to facilitate
search and retrieval.

A. Multilevel Lexicon

The multilevel lexicon is a controlled vocabulary of
concepts at different levels that provide a knowledge of
synonyms and a concept hierarchy. It is not fixed and can
evolve with time and changing evidence base. The lexicon
used in this research was constructed by domain experts
according to a multilevel schema that groups concepts into
levels corresponding to different domains [2]. Within a do-
main the concepts are further organized in a tree structure so
that more specific concepts can be defined as sub-concepts
of more general ones (see Figure 9 for an example lexicon).
This hierarchical structure is useful for query preprocessing,
such as query expansion (Section III-A). Beyond providing
this hierarchical structure, the lexicon also includes lists of
synonyms for common terms.

B. Corpus of Scientific Research

The corpus used for this research consists of a large
number of full-text peer-reviewed publications retrieved
from PubMed Central [3]. PubMed Central distributes these
publications in XML format, which provides the text with
tags marking the structural information of the document,
allowing the content to be accessed at different granularities,
i.e., paper, section, paragraph, or sentence. This is useful
when conducting path mining as it allows one to search
for associations at different granularities. Another added
benefit of this structural information is the ability to identify
document components such as captions and tables, allowing
concepts to be associated with specific graphical elements
within a document.

C. Indexes for Path Knowledge Discovery

Indexing is an essential infrastructure component for
efficient retrieval of content and query answering. This
research uses two types of indexes to facilitate path knowl-
edge discovery. The first of these indexes is a document
element index, which facilitates content retrieval. This index
includes three fields: a document element id, a concept id,
and the occurrence frequency for the concept appearing
in the document element. Using this index, content at
different granularities can be retrieved by either a document
element id or a concept id. The corpus can then quickly
be searched for the occurrence frequency of concepts, and
relevant content can be retrieved at different granularities.
The second of these indexes is an association index. If we
envision a graph of concepts, where concepts are vertices
and an edge exists between two vertices if and only if the
corresponding concepts co-occur in some document element,
then the association index is equivalent to the edge list of
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Figure 2. Process flow of path knowledge discovery

this graph. The association index describes relations between
concepts, allowing us to combine such relations to answer
path queries for interrelations across multiple concepts in
different domains. This index also stores associations at mul-
tiple granularities, allowing for searches to be first conducted
at a coarser granularity, e.g., paper or section, and then
repeated recursively at finer granularities, e.g., paragraph or
sentence, on the results obtained.

III. PATH MINING

Path mining is the process of discovering path knowledge
from a large corpus of text data. The objective is to search
for the paths that satisfy a query pattern, and from those
results identify the paths with the strongest associations.

A. Path Mining Queries

Path knowledge indicates a pattern of associations among
concepts across different domains of knowledge, forming
a path across those domains. These patterns can be rep-
resented by search queries in which one specifies k do-
mains D1, D2, . . . , Dk, with each domain having an associ-
ated concept c1, c2, . . . , ck, with these concepts connected
across the domains using the set of all possible patterns
c1 → c2 → . . . → ck such that concept ci ∈ Di and
i = 1, 2, . . . , k. Unlike a simple keyword-based search of
the corpus, these queries are not merely a list of concepts
that should be searched for in all documents, but instead
identify which pairings of concepts from which domains
should be considered, increasing the likelihood that the paths
discovered will be relevant to the research problem being
queried.

Posing a path mining query requires some prior knowl-
edge of each of the domains involved in the query, i.e.,
which concepts should be specified in which domains. More
importantly, since the query defines the specific pairings of

concepts (i.e., co-occurrences in a document element) to be
found, the results are limited by which domains are included
in the query. If a query does not include a specific domain,
then any paths that are connected using that domain will
not be discovered. To address this problem, we introduce
the idea of “wildcard queries” in path mining, where queries
can leave multiple intermediate domains as unspecified. If a
wildcard is used for a domain, then all concept terms from
that domain are considered, greatly increasing the number
of paths considered between the explicitly queried domains.
Viewing the associations among concepts as a graph, then
we can think of this as a multipartite graph where each
domain represents a separate partition and concepts repre-
sent the vertices within those partitions. Without wildcard
queries, only paths with edges extending directly between
the partitions specified in the query would be discovered.
However, with wildcards, we can allow paths to traverse one
or more unspecified intermediate partitions between those
that were specified, see Figure 3.

B. Measures for Path Strength

A path reveals knowledge about the relationships between
concepts in different domains. If there are multiple paths that
satisfy a query, then we seek those that are most relevant. In
order to evaluate the potential relevance of paths, we evaluate
the strength of pairwise associations in paths using their co-
occurrence frequencies.

1) Measuring the Strengths of Pairwise Associations:
An association between two concepts is the simplest path.
Measuring the strength of pairwise associations is the first
step towards measuring the strength of a more complex
path. In the context of text mining, the co-occurrence of
concepts is an indicator of association. If two concepts
tend to appear in the same paper, the probability is higher
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Figure 3. Use of wildcards in path queries. (a) and (b) show the results
of two example queries without wildcards, with A-H representing concept
terms and α, β, and γ representing domains. (c) and (d) show the results
of those example queries with wildcards (represented by *) added. The
discovered paths are represented in bold.

that these two concepts are related to each other. Such co-
occurrence frequencies can be derived from the association
index (Section II-C). The data mining community uses sup-
port and confidence to measure the strength of an association
A → B between concepts A and B [1]:

support(A→ B) = σ(A ∩B) (1)

confidence(A→ B) =
σ(A ∩B)

σ(A)
(2)

where σ(A) stands for the proportion of the documents in
the corpus containing the concept A, and σ(A ∩ B) stands
for the proportion of the documents in the corpus containing
both concepts A and B.

Support measures the proportion of documents in which
two concepts co-occur, and represents the probability of co-
occurrence across the whole corpus. Confidence estimates
the conditional probability of occurrence of B given A’s
occurrence. If we consider the occurrence of A and B as
random events, we can also measure the strength of the
association using the Pearson correlation ρA,B between the
two events

ρA,B =
E(A,B)− E(A)E(B)√

E(A)(1− E(A))
√
E(B)(1− E(B))

(3)

where E(A) is the expectation of the probability of occur-
rence for the concept A (i.e., σ(A)). Tan et al. [4] pointed
out that ρ(A,B) can be approximated by IS(A,B)

ρA,B ≈ IS(A,B) =
√
I(A,B)× σ(A,B) (4)

where I(A,B) = p(A,B)
p(A)p(B) is the interest factor [5]. The

interest factor computes the ratio of the probability of co-
occurrence and the expected probability of co-occurrence
given that X and Y are independent of one another. The
above approximation holds when I(A,B) is high, and both

p(A) and p(B) are very small, which in general fits the case
of occurrences of concepts in a large text corpus. We can
regard IS as an alternative interpretation of the association
rule that does not indicate an inference from antecedents to
consequents, but rather a measure of closeness between two
concepts.

The conventional association rule mining problem is to
find all associations whose strength indicators, such as
support, confidence, and IS measure, are above given
thresholds. Algorithms such as Apriori [1] solve the problem
by generating the frequent item sets and then counting the
support for the candidates in a bottom-up fashion. The FP-
growth algorithm [6] solves the problem with the efficient
data structure, the frequent pattern tree (FP-Tree). Path
mining on the other hand goes beyond the individual associ-
ations, measuring the strength of a sequence of associations
across all the concepts included in a path across multiple
domains.

2) Measuring Strength of Associations in the Path Con-
text: A path consists of a sequence of associations. In order
to find paths with high association strength, we can impose a
strength threshold on all the associations in the path. As with
pairwise associations, each association in the path connects
two concepts. However, since there are multiple associations
in the path, measuring the strength of associations is more
complicated. We use two approaches to measure the strength
of associations: local strength and global strength.

The local strength measure considers the strength of indi-
vidual associations as a “local” property. Each association in
the path is independent of other associations and thus is only
related to its direct antecedents and consequents. Therefore,
the computation of association strength as a local strength
measure is identical to the computation for pairwise relations
(Equations (1), (2), and (4)).

The global strength measure considers the strength of
individual associations as a “global” property of the entire
path. In this setting, each association is related to the
preceding associations. To compute association strength, we
group all the concepts involved in previous associations in a
path as the antecedent. For example, the second link of A→
B → C → D would be regarded as AB → C. In this case,
the measurement of support and confidence differs from
simple pairwise association mining. Specifically, support of
the second link of A → B → C → D is σ(A ∩ B ∩ C),
and the confidence can be computed as

Confidence(AB → C) =
σ(A ∩B ∩ C)
σ(A ∩B)

(5)

With this definition, the confidence is the conditional proba-
bility that C is part of the path given that A → B is part of
the path. The correlation measure of the link can be derived
by computing the correlation between two random events:
the co-occurrence of all previous antecedents as one random
event and the occurrence of the consequent as the other.
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Figure 4. Two different approaches for measuring the strength of
associations for the path “schizophrenia→ working memory→ prefrontal
cortex (PFC) → dopamine”: (a) the local strength measure, (b) the global
strength measure. The thickness of the links in the path is proportional to
the IS score of the corresponding associations. The support, confidence,
and IS are derived from a sample of the PubMed Central corpus.

According to this definition, the correlation score of the
second link of A → B → C → D can be computed as
IS(AB,C).

Figure 4 presents an example path measured by the two
different approaches. The support, confidence and IS mea-
sure are computed using local strength measure and global
strength measure in Figure 4(a) and Figure 4(b), respectively.
For the global strength measure, since the association takes
all preceding concepts as an antecedent, the support value
of the association decreases when the path length increases,
and confidence and IS scores change correspondingly. This
property makes it more difficult to find a high-support path
when more concepts are included in the path.

The major difference between the two approaches lies in
the different requirements for co-occurrence of concepts in
the paths. In the global approach, all the concepts are re-
quired to appear at least once in the same document element
in order to ensure a non-zero confidence. On the other hand,
the local approach only requires adjacent concepts in the
path to appear in the same document elements. Therefore,
the local approach can be applied to scenarios focusing on
discovery of new paths and generating new hypotheses.

C. Path Mining Algorithms

Based on the choice of the association strength measure-
ment, the path mining problem can be transformed into two
different problems and solved by corresponding algorithms.
When using the local strength measure, the path mining
problem is equivalent to a graph search problem. For the
global approach, the path mining problem can be viewed as
an extension of traditional association rule mining.

1) Path Mining as a Graph Search Problem: For the
local strength measure, the path discovery process is that

of finding strongly connected pairwise associations across
the domains specified in the path query. We can construct a
graph of concepts whose edges are these associations. Then
the path mining problem is equivalent to a graph search
problem which finds paths in the graph that satisfy the path
query, and for which the strengths of associations meet the
desired threshold.

We can use graph traversal algorithms such as breadth-first
search to examine the candidate associations. For example,
assume concepts a1, a2, . . . , am are in level 1, concepts
b1, b2, . . . , bn are in level 2, and concepts c1, c2, . . . , cl are
in level 3, with each level representing a different domain
of concepts from the lexicon. We can first draw an edge
a1 → b1 → c1, then draw an edge a1 → b1 → c2, and
so on. We can then pick the paths that meet the thresholds
of association strength for measures such as support, confi-
dence, and IS. In the case of answering wildcard queries, we
will add wildcard levels between each level. The complexity
of the computation can be O(bk) where b is the number
of concepts in the level and k is the number of levels
involved (including wildcard levels). This process can be
computationally expensive when b or k is large. However,
this high computational cost can be reduced significantly
by introducing pruning steps when traversing the graph.
According to our definition of association strength measures,
computation of the strength of an association in a path is
only affected by preceding associations (e.g., in A → B
→ C → D, computation for strength of B → C would
be affected by the strength of A → B, but not by C →
D). Since all the associations are independent of each other,
the measurements of path strengths are also independent.
Therefore, if a link fails to meet the strength threshold, we
can drop the link and all the possible paths containing the
link. Although the worst-case time complexity is not reduced
by this pruning process, in practice the computation time is
largely reduced.

2) Path Mining as an Extension of Association Rule
Mining: When using the global approach to measure the
strength of association, the path mining algorithm can be
viewed as an extension of traditional association rule mining.
Path mining differs from traditional association rule mining
in that a path has more than one association involved, and we
need to check and maintain the strengths of all the associ-
ations in the path (such as confidence and IS). Although
path mining provides more information, the computation
cost is the same as traditional association rule mining. Based
on how we define the association strength, the computation
of confidence and correlation is only affected by preceding
links in the paths. Therefore, as the path grows, we only
need to compute the strength of newly added links, which
makes the complexity equivalent to conventional association
rule mining using the Apriori algorithm [1]. Moreover, since
the strength of existing associations is fixed when a new
association is added to the path, then similar to the pruning
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Figure 5. Process flow of path content retrieval

steps taken with the local strength measure, if a link fails
to meet the strength threshold, we can drop the link and all
the possible paths containing the link.

D. Ranking Path Relevance via Association Strength

When multiple paths exist, one goal is to determine which
path is most relevant to the query. The association strength
can be a good indicator of path relevance. So far, however,
all the measurements focus on individual associations in the
path. We still lack a uniform measure that we can use to
evaluate the relevance of the entire path.

In our algorithm we take a heuristic approach to ranking
the paths by comparing the ”weakest link” of each path. For
example, a path A → (0.4)B → (0.4)C would be ranked
higher than a path A′ → (0.6)B′ → (0.3)C ′ (numbers in
the parentheses indicate the strength of the link) because
the weakest link in the first path (0.4) is stronger than
the weakest link in the second one (0.3). This approach
guarantees that higher ranked paths have reasonably high
strength in all the links. In addition, this ranking approach
can be exploited for pruning in the path discovery process.
Consider the case for finding the top K paths satisfying
a query. For any path containing a link whose strength is
weaker than the weakest links of K existing paths, then
no paths involving the link could be included in the result,
and thus the path can be pruned. If we sort the associations
by their strength before performing the search, then we can
prune all the links with lower strength as well.

IV. PATH CONTENT RETRIEVAL

In the previous sections we discussed our approach to
identifying the paths and measuring path relevance via
association strengths. After obtaining a list of paths, the
next challenge is to study the paths to obtain more detailed
knowledge about the interactions among the concepts. Since
our paths are derived using text mining over a corpus of
scientific literature, the relevant content from the literature
is useful in studying these interactions. We refer to relevant
document elements with knowledge about a path as ”path
content” and the process of searching for path content as

”path content retrieval.” Figure 5 presents the process of
path content retrieval.

Compared to traditional information retrieval, path content
retrieval poses many new challenges. First, we need to
translate a path to a query so that it is digestible for an
information retrieval system to find the relevant content
describing relations between concepts. Second, the retrieved
content should be in fine granularity so that specific informa-
tion about the relations can be revealed. Third, according to
the different demands of the research field, specific types
of results are required in path content retrieval — such
as quantitative experimental results or experiment sample
characteristics.

A. Query Processing for Path Content Retrieval

The first step in path content retrieval is to translate a
given path into a query that is digestible for an information
system to find the relevant content. This can be accom-
plished by applying Boolean operators (e.g., AND, OR)
among concepts in the path to form the basic query which
reveals their relations. For example, a path “schizophrenia→
working memory → prefrontal cortex (PFC) → dopamine”
will be translated to a query “(schizophrenia AND working
memory) OR (working memory AND PFC) OR (PFC AND
dopamine).” Along with this translation, the lexicon can be
exploited to perform query expansion. Query expansion can
be done by matching a concept with its synonyms, as defined
in the lexicon, or alternatively by using the hierarchical
structuring of concepts in the lexicon to match concepts with
more general parent concepts or more specific sub-concepts.

B. Finding Relevant Path Content

After translating a path into a query of concepts for
content retrieval, we can utilize the document index which
records the occurrences of concepts in documents (Sec-
tion II-C) and standard information retrieval methods to
retrieve the most relevant content. In path content retrieval,
we want to retrieve document elements that include relations
between concepts, such as sentences describing such a
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Figure 6. Example implementation of path content retrieval: user interface of the Document Content Explorer. User specifies the query in the “input
panel” on the right and the relevant papers are displayed in the “results panel” on the left. The query shown includes four concepts: schizophrenia, working
memory, prefrontal cortex (PFC) and dopamine, translated from the path “schizophrenia → working memory → PFC → dopamine.”

Figure 7. Example implementation of path content retrieval: detailed view of the Document Content Explorer. The paper “Cognitive Control Deficits
in Schizophrenia: Mechanisms and Meaning” [7] has been retrieved with the path query “schizophrenia → working memory → PFC → dopamine.”
Fine-granularity content in the paper is classified into different categories such as task description, sample characteristics and quantitative results. Content
of different categories is presented in different tabs. The selected tab (task figures) shows figures in the paper that include task descriptions. Both the task
descriptor keywords (“Stroop”) and the query keywords (“prefrontal cortex, PFC”) are highlighted.

relationship, tables presenting experimental results explain-
ing the correlation, or figures illustrating the interactions
between concepts.

Fine-granularity path content, e.g., sentences and tables,
better assists researchers in determining relations between
concepts than coarse-granularity content, e.g., entire docu-
ments. However, due to the short length of fine-granularity
content, the number of hits of concepts in fine-granularity
document elements is usually very low, and these elements
tend to have similar content frequencies. Therefore, it is
difficult to retrieve enough fine-granularity content as well
as to rank it. To remedy this problem, we take a two-step
approach to finding relevant path content. We first retrieve
and rank coarse-granularity content such as papers; then for
each coarse-granularity element, we match fine granularity

content such as sentences and tables, and return these as
the path content. Since fine-granularity content is included
within coarse-granularity content (e.g., a sentence is part
of a paragraph, section, and so on), highly ranked coarse-
granularity content most likely also contains relevant fine-
granularity content. Such a two-step ranking scheme enables
users to access the most relevant content describing the path.

Figure 6 presents an example interface for the first step in
content matching, based on our Document Content Explorer
developed for use in phenomics research (see Section V for
more on the Document Content Explorer). Given a query,
a list of relevant papers is returned. For each paper, basic
information such as the title, authors, journal, and published
date are displayed, along with basic occurrence statistics. By
selecting each paper, its fine-granularity content is displayed
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Figure 8. Components of the construct “cognitive control.” This figure from [8] displays a graphical representation of the construct “cognitive control”
as defined by the literature and expert review of behavioral tasks. The elongated ovals represent various cognitive tasks.

in the document details panel as shown in Figure 7.

C. Results Classification for Specific Research Goals

Based on different research goals, users may be interested
in different types of content. For example, in phenomics,
researchers are typically interested in quantitative experi-
mental results (phenotype measurements) and experiment
descriptions such as sample characteristics. To satisfy the
demand of different users, we further classify our results
and filter them according to different research goals. The
results are classified using the category information from
the concept lexicon. For each document element, we create
a histogram vector by aggregating the count of concepts
for different concept categories. The histogram of concept
categories can be viewed as a feature that indicates the focus
of the document element. In our lexicon there are several
special categories introduced for content classification, such
as sample characteristics, indicators, and sample species. We
classify the content based on the majority category of its
concepts. For example, in the sentence, “We tested WM
[working memory] in infants at 6.5 and 9 months of age
in a task that challenged them to remember the location of
social and non-social targets.” WM is a cognitive concept,
and infants and months of age are concepts related to sample
characteristics. In this case, the majority of the concepts
are in the sample characteristics category, so the content
is classified as sample characteristics.

In the document detailed view of Document Content
Explorer (Figure 7), we can observe that the results are
classified into different categories and are displayed by the

corresponding tabs to permit users to choose content of
interest. In each tab, results are broken down by sections and
kept in the same order as in the original document, so that
users can read them just as when reading the original paper.
The detailed view of a paper provides a quick summary that
permits users to quickly grasp the relevance of the results.
In the list of papers returned for a query, the numbers of
results classified into different categories in the paper are
also presented; this helps users select the papers relevant to
their interests.

V. PHENOMINING: AN EXAMPLE APPLICATION OF PATH
MINING

In this section we will present an example of using path
knowledge discovery for knowledge discovery in phenomics.
More specifically, we plan to answer the question of heri-
tability for cognitive control phenotypes which was previ-
ously presented in [8]. We do this using tools developed to
solve the path knowledge discovery problem in phenomics,
called PhenoMining tools [9]. PhenoMining tools are able
to identify associations among concepts in a multilevel
phenotype lexicon in order to construct a path based on
their co-occurrence in the corpus, and provide a quantitative
way to measure the strength of associations. PhenoMining
tools also provide a Document Content Explorer, which finds
relevant published information for a specific path at fine
granularity, so as to explain the interrelations (see Figures 6
and 7 for example displays from the Document Content
Explorer).
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cognitive control

working memory

(91,0.41)

task switching
(50,0.32)

response inhibition

(36,0.24)

response selection

(24,0.15)

spatial working memory
(43,0.42)

wisconsin card sorting

(39,0.28)

stroop

(28,0.19)

digit span

(17,0.20)

anti saccade

(5,0.11)

delayed match

(10,0.19)

sternberg

(10,0.17)

response mapping
(8,0.14)

(12,0.17)

(40,0.41)

SST

(6,0.10)

(23,0.22)

(7,0.12)

color task(8,0.20)

(6,0.15)

(16,0.17)

(19,0.34)

(25,0.25)

go nogo(7,0.21)

(6,0.20)

(8,0.11)

(4,0.11)

(11,0.26)

choice reaction

(12,0.21)

(6,0.15)

Figure 9. A PhenoGraph generated from path query “cognitive control→
subprocesses→ cognitive tasks”. The strength of associations are computed
based on the local strength measure. The numbers next to the links in the
graph show the support (in absolute value of co-occurrence) and correlation
scores of associations represented by the corresponding link. The thickness
of links is proportional to their correlation score.

“Cognitive control” is a complex process that involves
different phenotype components. Deficits in cognitive con-
trol are apparent in many neuropsychiatric disorders with
strong genetic components. Different behavioral tasks are
used for measuring the performance of those components
with specific indicators. Knowing whether these components
are also under strong genetic control is important for neu-
ropsychiatric research. As an example, “working memory”
is a latent component of cognitive control associated with
schizophrenia and bipolar disorder [8]. The “n-back task”
is a behavioral task measuring a person’s working memory

Table I
SUBPROCESSES AND THEIR CORRESPONDING COGNITIVE TASKS.
Latent Subprocess Cognitive Tasks
Response inhibition GoNoGo, SST (SSRT),

Stroop, Anti Saccade (Anti-Sac)
Task switching Wisconsin Card Sorting (WCST),

Color Task, ID/ED
Working Memory digit span (DS), spatial working memory,

Delayed Match (delayed M2S)
Response Selection Response Mapping (RM Tasks),

Sternberg, Choice Reaction (Choice RT)

Note: The matching is based on the IS score of the associations
between subprocesses and cognitive tasks. The association with the
highest IS score for each task is selected. The names in the parentheses
are the names of the tasks as they appeared in [8].

performance. One important indicator for the n-back task is
accuracy. The heritability of cognitive control is associated
with the heritability of the indicators of behavioral tasks
(e.g., the heritability for accuracy in the n-back task). For-
malizing the nature of cognitive control requires studying
relations among cognitive control, its subprocesses, and
phenotypes such as heritability scores and indicators of
behavioral tasks. This can be viewed as a path knowledge
discovery problem. With the pattern “cognitive control →
subprocess → task → indicator” we can gather known re-
sults about cognitive control. The results of path knowledge
discovery provide a basis for interdisciplinary analysis of the
heritability of cognitive control.

Therefore, we can view the problem of path knowledge
discovery as a three-step process. First, we complete a query
schema to operationally define the construct of cognitive
control by identifying candidate components, tasks, and
indicators that exist in the literature (such as those in
Figure 8). Then, we use path queries to obtain quantitative
heritability results for the task indicators in the corpus.
Finally, we explore this content and extract discoveries about
the heritability of cognitive control.

A. Building the Infrastructure for PhenoMining

Prior to performing path knowledge discovery, we first
created a lexicon from the concepts covered in PhenoWiki
[8]. The lexicon consisted of concepts from four levels —
latent complex constructs, latent processes, cognitive tasks
and indicators. The corpus was then collected according to
the domain of the lexicon. The 9000 papers used for the
corpus were retrieved from PubMed Central using the search
query ((Schizophrenia OR Bipolar Disorder OR Attention
Deficit Disorder) OR (Working Memory OR Response In-
hibition)) AND (Stop-Signal Task OR Go NoGo Task OR
Spatial Capacity Task OR Digit Span Task OR Probabilistic
Reversal Learning Task OR Spatial Manipulation Task OR
Stroop Task). This query, designed by domain experts,
includes important concepts at different levels so as to cover
interactions among concepts and facilitate path knowledge
discovery.
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B. Validating the Path Mining Methodology

We shall use the path “cognitive control → subprocess
→ cognitive task” to determine if cognitive control is
heritable from publications about the subprocesses response
inhibition, response selection, task switching, and working
memory. Figure 9 shows the resulting top paths returned by
a path query of three layers that included cognitive control
as the first layer, concepts in latent processes as the second
layer, and cognitive tasks as the third layer. We refer to
a graph representing the set of search paths returned from
a path query as a PhenoGraph. This PhenoGraph demon-
strates the matching between tasks and the subprocesses of
cognitive control that the tasks measure. In the figure, each
task has relations with multiple subprocesses. For clarity in
the presentation, we choose a higher threshold to generate
the PhenoGraph. Table I presents the results obtained by
choosing the most highly correlated subprocesses for each
task, which are derived using a lower threshold and thus
match more tasks (e.g., ID/ED task). Compared to Figure 8,
which was created by domain experts, the mining tool
achieved very promising results; 12 out of 15 tasks are
correctly associated with their corresponding subprocesses.
Compared to the results from domain experts (as shown in
Figure 8), Figure 9 includes extra links since some tasks
match multiple subprocesses. False positives exist because
the co-occurrence of tasks and subprocesses in a document
element (using paragraph granularity in this example) does
not necessarily indicate that the subprocesses are measured
by the task. Also, it is entirely possible that two subprocesses
are discussed in the same document element, and our system
is unable to separate them. On the other hand, some tasks
are not included in the top paths because the occurrences of
those tasks in the corpus is so low that the correlation with
subprocesses is too low to be included in the results. By
setting the threshold lower, the missing tasks may appear,
but this may also introduce more noise.

Even more important than this direct analysis of the
PhenoGraph is the analysis of the path content. Using the
Document Content Explorer, researchers have the ability to
quickly scan the papers associated with each path, with
relevant fine-granularity content such as sentences, tables,
and figures extracted and classified into categories such as
“task descriptions,” “sample characteristics,” and “quanti-
tative results.” Researchers can then assess the validity of
these knowledge paths and begin the process of digesting the
data from the path content into the format needed for their
final analysis. Overall, using the PhenoMining tools, the time
spent on collecting the relevant literature and deriving the
knowledge structure is greatly reduced, and the results from
the tools are comparable to human-derived results.

VI. RELATED WORK

Traditional association rule mining studies [1], [6] have
focused on finding recurring patterns. As described in [5],

the association rules discovered are primarily intended to
identify rules such as, “a customer purchasing item A is
likely to also purchase item B.” Extending this approach to
the bioinformatics field, association rule mining has been
used to profile gene expression [10] and study protein-
protein interaction [11]. These studies focus on the discovery
of individual associations.

In [4] Tan et al. studied indirect associations, which are
a special type of association rule describing associations
A → B → C: “A customer purchasing item A is likely to
also purchase item Bi ∈ B, and a customer purchasing item
Bi is likely to also purchase item C,” where i = 1, 2, . . . , n.
By introducing the intermediate item sets B, the rules
reveal a “higher-order” (indirect) data dependency between
A and C. This higher-order dependency is similar to the
idea of path in our work. However, there are some major
differences in path knowledge discovery. First, the goal of
mining is different. The high-order dependency focuses on
identifying pairs of indirectly related item sets connected
by an intermediate item set. Our path mining not only
identifies such indirect relations, but also requires that the
intermediate relations satisfy a certain pattern specified in
the path query. Second, our path mining is closely integrated
with content retrieval. Instead of only identifying relations,
our path knowledge discovery process also provides relevant
content describing such relations.

Association analysis involving intermediate concepts has
been applied in bioinformatics. Baker et al. [12] devel-
oped a method for mining connections between chemicals,
proteins and diseases using the biomedical literature as a
knowledge source. Voytek et al. [13] developed a semi-
automatic way to extract the “cognome” — relationships
between brain structure, function and disease. Both works
essentially followed the model that “if A is related to B,
and B is related to C, then A is likely to be related with
C.” These authors empirically evaluated their results by
comparing them with human-generated ones. However they
did not employ quantitative measurements in these relations,
or extend their methods to an association with more than
three concepts. Our work presents a methodology to evaluate
sequences of associations and discover path associations
with a multilevel lexicon from a large text corpus. Moreover,
the introduction of wildcard concept levels greatly increases
the path discovery scope and can lead to new hypotheses for
further research.

There are also other literature-based discovery tools based
on association rule mining. BITOLOA [14] is a tool mining
the association pattern X → Y → Z when two of the
three concepts are specified by the user (e.g., the user may
specify X and Y or X and Z). Arrowsmith [15] is a tool
that finds the links between two separate sets of documents
via common title words and phrases. Both of these tools
are based on patterns of pairwise associations between three
concept sets. By contrast, our tools provide not only the
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ability to mine more complex path patterns, but also the
ability to retrieve relevant path content.

VII. CONCLUSION

Path knowledge discovery consists of two integral
parts—path discovery and path content retrieval—and fo-
cuses on the study of relations among concepts at multiple
levels. Path discovery identifies and measures a path of
knowledge, i.e., a sequence of associations among concepts
across multiple domains, with these associations measured
using an extension of the support, confidence, and corre-
lation measures from traditional association rule mining.
Path content retrieval takes those paths discovered by using
path discovery and uses them to retrieve relevant content
at various levels of granularity from the corpus. This path
content reveals the semantics of the relations represented
by those paths and provides a basis for deeper analysis by
domain experts.

Manually conducting such interdisciplinary analysis re-
quires effort, even from domain experts. This effort can
be exceedingly time-prohibitive, especially as the literature
base grows. Utilizing our path knowledge discovery process,
initial search results can be compiled automatically, and
path content can be retrieved for users. And while it may
be that the actual derivation of final results cannot be
automated, by employing our method, the whole process can
be greatly accelerated. Whereas it takes our method seconds
to retrieve the content and minutes for a user to browse
and select what is relevant, the traditional manual approach
may take several orders of magnitude longer to execute the
same steps, and becomes infeasible when the number of
papers to examine becomes too large. This typically results
in severe reductionist approaches by domain experts when
trying to identify a significant but manageable subset of the
literature. Our method eliminates the need for drastic a priori
approaches to reduce the scope of literature for review. Thus,
with the aid of mining tools, the scope of research can be
enlarged into a corpus of thousands of papers instead of the
150 papers used in [8]. And since our method scales well
with an increasing corpus size, further research is desirable
to extend and integrate different archives beyond PubMed
Central to broaden this corpus. Human intelligence still plays
an important role in this process, as selecting the best paths
and content are quite subjective, but it is clearly beneficial
to use text mining and information retrieval techniques to
replace the mechanical aspects and speed up the process.
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