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Abstract. Malicious users can exploit the correlation among data to infer sensitive information 
from a series of seemingly innocuous data accesses. Thus, we develop an inference violation de-
tection system to protect sensitive data content. Based on data dependency, database schema and 
semantic knowledge, we constructed a semantic inference model (SIM) that represents the possi-
ble inference channels from any attribute to the pre-assigned sensitive attributes. The SIM is then 
instantiated to a semantic inference graph (SIG) for query-time inference violation detection. For a 
single user case, when a user poses a query, the detection system will examine his/her past query 
log and calculate the probability of inferring sensitive information. The query request will be de-
nied if the inference probability exceeds the pre-specified threshold. For multi-user cases, the us-
ers may share their query answers to increase the inference probability. Therefore, we develop a 
model to evaluate collaborative inference based on the query sequences of collaborators and their 
task-sensitive collaboration levels. Experimental studies reveal that information authoritativeness 
and communication fidelity are two key factors that affect the level of achievable collaboration. 
An example is given to illustrate the use of the proposed technique to prevent multiple collabora-
tive users from deriving sensitive information via inference. 

15.1   Introduction 

Access control mechanisms are commonly used to protect users from the divulgence 
of sensitive information in data sources. However, such techniques are insufficient 
because malicious users may access a series of innocuous information and then em-
ploy inference techniques to derive sensitive data using that information. 

To address this inference problem, we develop an inference detection system that re-
sides at the central directory site. Because inference channels can be used to provide a 
scalable and systematic sound inference, we need to construct a semantic inference 
model (SIM) that represents all the possible inference channels from any attribute in the 
system to the set of pre-assigned sensitive attributes. The SIM can be constructed by 
linking all the related attributes which can be derived via attribute dependency from data 
dependency, database schema and semantic related knowledge. Based on the semantic 
inference model, the violation detection system keeps track of a user’s query history. 
                                                           
∗ This research is supported by NSF grant number IIS-03113283. 
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When a new query is posed, all the channels where sensitive information can be inferred 
will be identified. If the probability to infer sensitive information exceeds a pre-
specified threshold, the current query request will then be denied. Therefore, our system 
can prevent malicious users from obtaining sensitive information. 

This inference detection approach is based on the assumption that users are isolated 
and do not share information with one another. This assumption, however, may not be 
the case in a real-life situation. Most users usually work as a team, and each member 
can access the information independently. Afterwards, the members may merge their 
knowledge together and jointly infer the sensitive information. Generalizing from a 
single-user to a multi-user collaborative system greatly increases the complexity of 
the inference detection system.  

For example, one of the sensitive attributes in the system can be inferred from four 
different inference channels. There are two collaborators and each poses queries on 
two separate channels. Based on individual inference violation detection, neither of 
the users violates the inference threshold from their query answers. However, if the 
two users share information, then the aggregated knowledge from the four inference 
channels can cause an inference violation (see Sect. 15.7.2).  

This motivates us to extend our research from a single user to the multiple user 
case, where users may collaborate with each other to jointly infer sensitive data. We 
have conducted a set of experiments, using our inference violation detector as a test 
bed to understand the characteristics in collaboration as well as the effect on collabo-
rative inference. From the experiments, we learn that for a given specific task, the 
amount of information that flows from one user to another depends on the closeness 
of their relationships and the knowledge related to the task. Thus, collaborative infer-
ence for a specific task can be derived by tracking the query history of all the users 
together with their collaboration levels. 

This chapter is organized as follows. Sect. 15.2 presents related work. Sect. 15.3 
introduces a general framework for the inference detection system, which includes the 
knowledge acquisition module, semantic inference model and violation detection 
module. Sect. 15.4 discusses how to acquire and represent knowledge that could gen-
erate inference channels. Sect. 15.5 integrates all possible inference channels into a 
Semantic Inference Model which can be instantiated and then mapped into a Bayesian 
network to reduce the computation complexity for data inference. As shown in 
Sect. 15.6, we are able to detect inference violation at query time for both individual 
user and multiple collaborative users. Sect. 15.7 presents an example to illustrate the 
use of the proposed technique for collaboration inference detection. Sect. 15.8 pre-
sents collaboration level experiments and their estimations. Sect. 15.9 discusses the 
robustness of inference detection and threshold determination via sensitivity analysis. 
Sect. 15.10 presents the conclusion. 

15.2   Related Work 

Database inferences have been extensively studied. Many approaches to address the 
inference problem were presented in [20]. Particularly, Delugach and Hinke used da-
tabase schema and human-supplied domain information to detect inference problems 
during database design time [18, 28, 29]. Garvey, et al. developed a tool for database 
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designers to detect and remove specific types of inference in a multilevel database 
system [22]. Both approaches use schema-level knowledge and do not infer knowl-
edge at the data level. These techniques are also used during database design time and 
not at run time. However, Yip, et al. pointed out the inadequacy of schema-level in-
ference detection, and he identifies six types of inference rules from the data level that 
serve as deterministic inference channels [47]. In order to provide a multilevel secure 
database management system, an inference controller prototype was developed to 
handle inferences during query processing. Rule-based inference strategies were  
applied in this prototype to protect the security [43]. Further, since data update can af-
fect data inference, [21] proposed a mechanism that propagates update to the user his-
tory files to ensure no query is rejected based on the outdated information. To reduce 
the time in examining the entire history log in computing inference, [44] proposed to 
use a prior knowledge of data dependency to reduce the search space of a relation and 
thus reduce the processing time for inference. Open inference techniques were pro-
posed to derive approximate query answering when network partitions occurred in 
distributed databases. Feasible open inference channels can be derived based on query 
and database schema [10]. 

The previous work on data inference mainly focused on deterministic inference 
channels such as functional dependencies. The knowledge is represented as rules and 
the rule body exactly determines the rule head. Although such rules are able to derive 
sound and complete inference, much valuable non-deterministic correlation in data is 
ignored. For example, salary ranges may not deterministically depend on the ranks. 
Further, many semantic relationships, as well as data mining rules, can not be speci-
fied deterministically. To remedy this shortcoming, we propose a probabilistic infer-
ence approach to treat the query-time inference detection problem. The contribution 
of our research consists of: 1) Derive probabilistic data dependency, relational data-
base schema and domain-specific semantic knowledge and represent them as prob-
abilistic inference channels in a Semantic Inference Model. 2) Map the instantiated 
Semantic Inference Model into a Bayesian network for efficient and scalable infer-
ence computation. 3) Propose an inference detection framework for multiple collabo-
rative users.  

15.3   The Inference Framework 

The proposed inference detection system consists of three modules, as shown in  
Fig. 15.1: knowledge acquisition, semantic inference model (SIM), and security viola-
tion detection including user collaboration relation analysis. 

The Knowledge Acquisition module extracts data dependency knowledge, data 
schema knowledge and domain semantic knowledge. Based on the database schema 
and data sources, we can extract data dependency between attributes within the same 
entity and among entities. Domain semantic knowledge can be derived by semantic 
links with specific constraints and rules. A semantic inference model can be con-
structed based on the acquired knowledge. 

The Semantic Inference Model (SIM) is a data model that combines data schema, 
dependency and semantic knowledge. The model links related attributes and entities 
as well as semantic knowledge needed for data inference. Therefore SIM represents 
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all the possible relationships among the attributes of the data sources. A Semantic In-
ference Graph (SIG) can be constructed by instantiating the entities and attributes in 
the SIM. For a given query, the SIG provides inference channels for inferring sensi-
tive information. 

Based on the inference channels derived from the SIG, violation detection  
combines the new query request with the request log, and it checks to see if the cur-
rent request exceeds the pre-specified threshold of information leakage. If there is col-
laboration according to collaboration analysis, the Violation Detection module will 
decide whether to answer a current query based on the acquired knowledge among the 
malicious group members and their collaboration level to the current user. 

Query results 

Knowledge 
Acquisition 

Semantic 
Inference Model 

Violation 
Detection

…

SIG 
Request for query 

Permission or 
Denial 

User query history User Web access history 

Data 

Query Processor

Dependency 
Semantic Info 
Data Schema 

Collaboration 
Analysis 

Collaboration 
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Fig. 15.1. The framework for an Inference Detection System 

15.4   Knowledge Acquisition for Data Inference 

Since users may pose queries and acquire knowledge from different sources, we need 
to construct a semantic inference model for the detection system to track user  
inference intention. The semantic inference model requires the system to acquire 
knowledge from data dependency, database schema and domain-specific semantic 
knowledge. This section will discuss how to acquire that knowledge. 

15.4.1   Data Dependency  

Data dependency represents causal relationships and non-deterministic correlations 
between attribute values. Because of the non-deterministic nature, the dependency be-
tween two attributes A and B is represented by conditional probabilities 
pi|j=Pr(B=bi|A=aj). Thus, the non-deterministic data dependency is a more general 
representation than the relational functional dependency or other types of determinis-
tic relationships. There are two typies of non-deterministic data dependencies as  
defined in the Probabilistic Relational Model [19, 24]: dependency-within-entity and 
dependency-between-related-entities, as defined in the following. 
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Dependency-within-entity: Let A and B be two attributes in an entity E; if B depends 
on A, then for each instance of E, its value of attribute B depends on its value of at-
tribute A with a probability value. To learn the parameter of dependency-within-
entities from relational data, from a relational table that stores entity E, we can derive 
the conditional probabilities pi|j=Pr(B=bi|A=aj) via a sequential scan of the table with 
a counting of the occurrences of A, B, and co-occurrences of A and B. 

Dependency-between-related-entities: Let A be an attribute in entity E1 and C be an 
attribute in E2, and E1 and E2 are related by R, which is a relation that can be derived 
from database schema. If C depends on A, then only for related instances of E1 and 
E2, the value of attribute C in E2 instances depends on the value of attribute A in re-
lated instances of E1. Such dependency-between-related-entities only exists for related 
instances of entities E1 and E2. The parameters of dependency-between-related-
entities can be derived by first joining the two entity tables based on the relation R 
and then scanning and counting the frequency of occurrences of the attribute pair in 
the joined table. If two entities have an m-to-n relationship, then the associative entity 
table can be used to join the related entity tables to derive dependency-between-
related-entities [12].  

15.4.2   Database Schema 

In relational databases, database designers use data definition language to define data 
schema. The owners of the entities specify the primary key and foreign key pairs. 
Such pairing represents a relationship between two entities. If entity E1 has primary 
key pk, entity E2 has foreign key fk, and e1.pk=e2.fk, then dependency-between-
related-entities from attribute A (in e1) to attribute C (in e2) can be derived. 

15.4.3   Domain-Specific Semantic Knowledge 

Other than data dependencies inside relational data sources, outside information such 
as domain knowledge can also be used for inferences. Specifically, domain-specific 
semantic relationships among attributes and/or entities can supplement the knowledge 
of malicious users and help their inference. For example, the semantic knowledge 
“can land” between Runway and Aircraft implies that the length of Runway should be 
greater than the minimum Aircraft landing distance, and the width of Runway should 
be greater than the minimum width required by Aircraft. If we know the runway re-
quirement of aircraft C-5, and C-5 “can land” in the instance of runway r, then the 
values of attributes length and width of r can be inferred from the semantic knowl-
edge. Therefore, we want to capture the domain-specific semantic knowledge as extra 
inference channels in the Semantic Inference Model. 

Semantic knowledge among attributes is not defined in the database and may vary 
with context. However, from a large set of semantic queries posed by the users, we 
can extract the semantic constraints [50]. For example, in the WHERE clause of the 
following query, clauses #3 and #4 are the semantic conditions that specify the se-
mantic relation “can land” between entity Runways and entity Aircrafts. Based on this 
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query, we can extract semantic knowledge “can land” and integrate it into the Seman-
tic Inference Model shown in Fig. 15.3.1  

 Query: Find airports that can land a C-5 cargo plane. 

SELECT AP.APORT_NM 
FROM AIRCRAFTS AC, AIRPORTS AP, RUNWAYS R 
WHERE AC.AC_TYPE_NM = ‘C-5’ and                                                             #1  
AP.APORT_NM = R.APORT_NM and                                                               #2 
AC.WT_MIN_AVG_LAND_DIST_FT <= R.RUNWAY_LENGHT_FT and          #3 

    AC.WT_MIN_RUNWAY_WIDTH_FT <= R.RUNWAY_WIDTH_FT;                   #4 

15.5 Semantic Inference Model 

The Semantic Inference Model (SIM) represents dependent and semantic relation-
ships among attributes of all the entities in the information system. As shown in  
Fig. 15.2, the related attributes (nodes) are connected by three types of relation links: 
dependency link, schema link and semantic link. 

Schema relation

Semantic relation 

Schema link
Dependency link

Semantic link

Entity 

Attribute

Attribute 

Attribute

Attribute

Attribute

Attribute Attribute

Attribute 

Entity Entity 

 

Fig. 15.2. A Semantic Inference Model. Entities are interconnected by schema relations (dia-
mond) and semantic relations (hexagon). The related attributes (nodes) are connected by their 
data dependency, schema and semantic links. 

Dependency link connects dependent attributes within the same entity or related enti-
ties. Consider two dependent attributes A and B. Let A be the parent node and B be 
the child node. The degree of dependency from B to A can be represented by the con-
ditional probabilities pi|j =Pr(B=bi|A=aj). The conditional probabilities of the child 
node given all of its parents are summarized into a conditional probability table (CPT) 
that is attached to the child node. For instance, Fig. 15.3(b) shows the CPT of the 
node “TAKEOFF_LANDING_CAPACITY” of the SIM in Fig. 15.3(a). The condi-
tional probabilities in the CPT can be derived from the database content [19, 24]. For 
example, the conditional probability Pr(B=bi|A=aj) can be derived by counting the 
co-occurrence frequency of the event B=bi and A=aj and dividing it by the occurrence 
frequency of the event A=aj.  
                                                           
1 Clearly, the set of the semantic queries may be incomplete, which can result in the semantic 

knowledge being incomplete as well. However, additional semantic knowledge can be ap-
pended to the Semantic Inference Model as the system gains more semantic queries. The sys-
tem can then reset to include the new knowledge. Otherwise, this will result in inference with 
knowledge update and is beyond the scope of this chapter. 
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Fig. 15.3(a). A Semantic Inference Model example for Airports, Runways and Aircraft 

 

Fig. 15.3(b). Conditional probability table (CPT) for the attribute “TAKEOFF_ LANDING_ 
CAPACITY” summarizes its dependency on the four parent nodes. For example, Pr(Takeoff_ 
landing_capacity=small | Parking_sq_ft=small, Elev_ft =low, Runway_length=short, Run-
way_width=narrow)=0.9. The conditional probabilities in the CPT can be derived from the  
database content. 

node and set the value of the source node to “unknown.” In this case, the source and 
target node are independent, i.e., Pr(T=ti|P1=v1, … Pn=vn, PS=unknown) = 
Pr(T=ti|P1=v1, … Pn=vn). When the semantic relationship is known, the conditional 
probability of the target node is updated according to the semantic relationship and 
the value of the source node. If the value of the source node and the semantic relation 
are known, then Pr(T=ti| P1= v1, … Pn= vn, PS=sj) can be derived from the specific 
semantic relationship. For example, in Fig. 15.4(b), the semantic relationship deter-
mines that Pr(T=t1| P1, … Pn, PS=s1)=0.6 and Pr(T=t1| P1, … Pn, PS=s2)=0.8. 

Schema link connects an attribute of the primary key to the corresponding attribute 
of the foreign key in the related entities. For example, in Fig. 15.3(a), APORT_NM is 
the primary key in AIRPORTS and foreign key of RUNWAYS. Therefore, we con-
nect these two attributes via schema link.  

PS

T
P1

Pn

Target node 

…

Source node  

 

Fig. 15.4(a). Target node T with semantic link from source node PS and dependency links from 
parents P1, …, Pn 
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Fig. 15.4(b). The CPT of target node T summarizes the conditional probabilities of T given 
values of PS and P1, …, Pn. For example, Pr(T=t1 | PS=unknown, P1=v11 , Pn= vn1)=0.5. 

Semantic link connects attributes with a specific semantic relation. To evaluate the 
inference introduced by semantic links, we need to compute the CPT for nodes con-
nected by semantic links. Let T be the target node of the semantic link, PS be the 
source node, and P1, …, Pn be the other parents of T, as shown in Fig. 15.4(a). The 
semantic inference from a source node to a target node can be evaluated as follows. 

If the semantic relation between the source and the target node is unknown or if the 
value of the source node is unknown, then the source and target node are independent. 
Thus, the semantic link between them does not help inference. To represent the case 
of the unknown semantic relationship, we need to introduce the attribute value “un-
known” to the source.  

For example, the semantic relation “can land” between Runway and Aircraft  
(Fig. 15.5(a)) implies that the length of Runway is greater than the minimum required 
Aircraft landing distance. So the source node is aircraft_min_land_dist, and the target 
node is runway_length. Both attributes can take three values: “short,” “medium” and 
“long.” First, we add value “unknown” to source node aircraft_min_land_dist and set 
it as a default value. Then we update the conditional probabilities of the target node to 
reflect the semantic relationship. Here, we assume that runway_length has an equal 
probability of being short, medium or long. When the source node is set to “un-
known,” the runway_length is independent of aircraft_min_land_dist; when the 
source node has a known value, the semantic relation “can land” requires run-
way_length is greater than or equal to aircraft_min_land_dist. Thus, the correspond-
ing CPT for the node runway_length is shown in Fig. 15.5(b). 

15.5.1   Computation Complexity of Constructing Semantic Inference Model 

A SIM consists of linking related attributes (structure) and their corresponding condi-
tional probabilities (parameters). Given a relational database, the learning of a SIM 
can be decomposed into two tasks: parameter learning and structure learning. In the 
first task, we assume that the structure of the SIM is known, i.e., the links between at-
tributes are fixed, and our goal is to derive the conditional probability tables for each 
attribute. Since the parameters of semantic link are determined by its semantic con-
straint, let us now consider the computation complexity on learning parameters of 
data dependencies. Consider that given structure S has m attributes, each attribute Ai 
in table Tj has a set of parents P(Ai). If all parents of Ai are in the same table with Ai, 
then the CPT of Ai can be derived by a single scan of Tj. If attribute Ai has a  
parent from related entity table Tk, then scanning on the joined table of Tj and Tk is 
needed to derive the CPT of Ai. In the worst case, the parameters can be learned in 
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Fig. 15.5(a). The semantic link “can land” between “Aircraft_Min_Land_Dist” and “Run-
way_Length” 

 

Fig. 15.5(b). Conditional Probability Table for Runway_length 

If the structure of the SIM is not given by domain experts, we can generate a set of 
candidate structures with their corresponding parameters, and select the one that best 
matches the data sources. Algorithms for searching good dependency structures can 
be found in [19, 23].  

15.5.2   Semantic Inference Graph 

To perform inference at the instance level, we instantiate the SIM with specific entity 
instances and generate a semantic inference graph (SIG), as shown in Fig. 15.6. Each 
node in the SIG represents an attribute for a specific instance. To highlight the attrib-
utes of an entity instance, we group all the attributes of the instance into a rectangular 
box. Related attributes are then connected via instance-level dependency links, in-
stance-level schema links and instance-level semantic links. The attribute nodes in 
SIG have the same CPT as in SIM because they are just instantiated versions of the 
attributes in entities. As a result, the SIG represents all the instance-level inference 
channels in the SIM. 

Instance-level dependency link: When a SIM is instantiated, the dependency-
within-entity is transformed into dependency-within-instance in the SIG. Similarly, 
the dependency-between-related-entities in the SIM is transformed into a dependency 
between two attributes in the related instances. This type of dependency is preserved 
only if two instances are related by the instantiated schema link. That is, if attribute B 
in instance e2 depends on attribute A in instance e1, and instances e1 and e2 are related 
by R denoted as R(e1, e2), then there is a dependency-between-related-instances from 
B to A.  
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Fig. 15.6. The Semantic Inference Graph for airport instance (LAX), with runway r1 and air-
craft C-5 

Instance-level schema link: The schema links between entities in the SIM represent 
“key, foreign-key” pairs. At instance level, if the value of the primary key of an in-
stance e1 is equal to the value of the corresponding foreign key in the other instance e2 
which can be represented as R(e1, e2), then connecting these two attributes will repre-
sent the schema link at the instance level. Otherwise, these two attributes are not  
connected.  

Instance-level semantic link: At the instance level, assigning the value of the source 
node to “unknown” disconnects the semantic link between the attributes of two in-
stances. On the other hand, if two instances have a specific semantic relation, then the 
inference probability of the target node will be computed based on its CPT and the 
value of the source node. 

15.5.3   Evaluating Inference in Semantic Inference Graph (SIG) 

For a given SIG, there are attribute dependencies within an entity, between related en-
tities, and semantic relationships among attributes. As a result, there are many feasible 
inference channels that can be formed via linking the set of dependent attributes. 
Therefore, we propose to map the SIG to a Bayesian network to reduce the computa-
tional complexity in evaluating user inference probability for the sensitive attributes. 

For any given node in a Bayesian network, if the value of its parent node(s) is 
known, then the node is independent of all its non-descending nodes in the network 
[26, 27, 30, 39, 40]. This independence condition greatly reduces the complexity in 
computing the joint probability of nodes in the network. More specifically, let xi be 
the value of the node Xi, pai be the values of the parent nodes of Xi, then P(xi|pai) de-
notes the conditional probability of xi given pai where i=1,2,…,n. Thus, the joint prob-
ability of the variables xi is reduced to the product of P (xi|pai): 

)(),,( 1 ii
i

n paxPxxP ∏=K  (15.1)

The probability for users to infer the sensitive node S=s given the evidences Di=di, 
i=1, 2,…, n is: 
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which can be further computed using Eq. 15.1. Thus, the probability of inferring a 
sensitive node can be computed from the conditional probabilities in the Bayesian 
network. Many algorithms have been developed to efficiently perform such calcula-
tions [16, 31, 35, 51, 52].  

The Probabilistic Relational Model (PRM) is an extension of the Bayesian network 
that integrates schema knowledge from relational data sources [19, 23, 24]. Specifi-
cally, PRM utilizes a relational structure to develop dependency-between-related-
entities. Therefore, in PRM an attribute can have two distinct types of parent-child 
dependencies: dependency-within-entity and dependency-between-related-entities, 
which match the two types of dependency links in the SIM. Since the semantic links 
in the SIM are similar to dependency links, we can convert each SIM to a PRM-based 
model. The corresponding Bayesian network can be generated after instantiating the 
model to instance level. Thus, for a given network, the probability of inferring a spe-
cific sensitive attribute can be evaluated via efficient Bayesian inference algorithms. 
In our test bed, we use SamIam [41], a comprehensive Bayesian network tool devel-
oped by the Automated Reasoning Group at UCLA, to compute the inference. The 
computation complexity for exact inference is mostly ))exp(( wnO ⋅ , where n is 

number of nodes and w is the tree-width of the network [8, 2, 13, 17, 31, 52] and is 
scalable. 

15.6   Inference Violation Detection for Individual User  

Semantic inference graphs provide an integrated view of the relationships among data 
attributes, which can be used to detect inference violation for sensitive nodes. In such 
a graph, the values of the attributes are set according to the answers of the previous 
posted queries. Based on the list of queries and the user who posted those queries, the 
value of the inference will be modified accordingly. If the current query answer can 
infer the sensitive information greater than the pre-specified threshold, then the re-
quest for accessing the query answer will be denied [9]. 

Consider the example in Fig. 15.3. Let the TAKEOFF_LANDING_ CAPACITY 
of any airport be the sensitive attribute, and it should not be inferred with probability 
greater than 70%. If the user has known that: 1) Aircraft C-5 can land in airport LAX 
runway r1; 2) C-5 has aircraft_min_land_dist = long and aircraft_min_runway_width 
= wide. Then this user is able to infer the sensitive attribute “LAX’s TAKEOFF_ 
LANDING_ CAPACITY = large” via Eqs. 15.2 and 15.1 with probability 58.30%, as 
shown in Fig. 15.7(a). 

Now if the same user poses another query about the “Parking_sq_ft of LAX” and if 
this query is answered (as shown in Fig. 15.7(b), LAX_Parking_Sq_Ft=large), then 
the probability of inferring LAX_TAKEOFF_LANDING_CAPACITY = large by this 
user will increase to 71.50%, which is higher than the pre-specified threshold. Thus, 
this query request should be denied. 
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Fig. 15.7(a). Example of inference violation detection for single user. This is a portion of the 
Bayesian network for the transportation mission planning. The probability distribution of each 
node is shown in a rectangular box. The values of the bold nodes are given by previous query 
answers; the probability values of sensitive nodes are inferred. 

 

Fig. 15.7(b). Given the additional knowledge “LAX_Parking_Sq_Ft=large”, the probability for 
inferring the sensitive information “LAX_TAKEOFF_LANDING_ CAPACITY =large” is in-
creased to 71.50% 

15.7   Inference Violation Detection for Collaborative Users 

15.7.1   Collaborative Inference Violation Detection 

To extend our inference violation detection module for collaborative users, we first 
need to define the collaboration level among users that is a metric for measuring the 
percentage of useful information flow from the source to the recipient. The collabora-
tion level depends on two aspects: authoritativeness of the information source and the 
fidelity of the communication channel between the source and recipient. Authorita-
tiveness can be determined by the reputability and authority of the information  
provider; fidelity depends on such factors as the willingness of the provider to release 
information, and/or the recipient’s understandability of the received information. We 
use collaboration levels to combine the source authoritativeness and channel fidelity. 
The higher the collaboration level between the pair of collaborators, the higher their 
collaboration effectiveness will be. More discussion of how to derive the collabora-
tion level will be presented in Sect. 8. 

Consider users A and B in Fig. 15.8. User B has a collaborative level of 85% for 
the information from A. Let QA and QB be the query answer set of user A and user B. 
User B can combine QA with his own previous query answer set QB and yield a higher 
inference probability for the sensitive node. For the example in Fig. 15.7(a), user B 
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has past query answers QB = {C-5_min_land_dist = long, C-5_min_rw_width = wide} 
and then combines this with his acquired knowledge from user A: QA = 
{LAX_Park_Sqft = large}. Such collaboration increases the inference probability for 
the sensitive node from 58.30% to 66.55%, as shown in Fig. 15.8. Note that because 
the collaborative level of B for information from A is 85%, it yields a lower inference 
probability than the case where user B queries directly about LAX_Parking_Sq_Ft, as 
in Fig. 15.7(b). 

tAB

B

A

tBA

 
Fig. 15.8. Example of inference violation detection for multiple users. User B knows “C5_min_ 
land_dist=long” and “C5_min_rw_width=wide” from his past query answers. User B also has 
the knowledge from A “LAX_Park_Sqft =large” with collaborative level 85%. Thus, the prob-
ability for user B to infer the sensitive information (shown in double ellipses) 
“LAX_Takeoff_Landing_Capacity=large” increases to 66.55%. 

In general, according to the users’ query history, there are two different types of 
collaborative user pairs, as shown in Fig. 15.9: 

Collaboration with non-overlap inference channels: In this case, the two users pose 
queries on different non-overlap inference channels. The inference probability will be 
computed based on their combined knowledge discounted by their collaborative level. 

Collaboration with overlap inference channels: In this case, the query sets posed by 
the two users overlap on inference channels. Such overlap may cause the users to 
have inconsistent belief in the same attribute on the inference channel. Thus, we need 
to integrate the overlapping knowledge according to the collaborative level to com-
pute the appropriate inference probability. 

Case (a) is the simple case of non-overlap inference channels. The influence from 
user A to user B is given by the collaboration level. Therefore, for user B, the query 
answers acquired by A (QA) can be combined with the query answers that are ac-
quired by B (QB), but discounted by B’s collaborative level to A. In addition, because 
QA and QB are from independent non-overlap inference channels, their inferences to 
sensitive node S are independent and can be directly combined. Thus the inference 
probability for the sensitive node can be computed based on the user’s knowledge 
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from his past queries combined with his collaborator’s query answers discounted by 
their respective collaborative level. 

For Case (b), the queries posed by user A and user B overlap on their inference 
channels. Since QA and QB may cause inconsistent belief on some attribute  
nodes, these two query answer sets cannot be simply combined. For example, in  
Fig. 15.10(a), for attribute node X, QA indicates A has known X=x and B can believe 

it with collaboration level ABt  ( 1≤ABt ). 

Inference chan-
nels to sensitive 

node S 

S S

query 
by A 

query 
by B 

(a) Non-overlap inference 
channels 

(b) Overlapped inference 
channels 

Y

X

 

Fig. 15.9. Types of collaborative user pairs posing query sequence on the inference channels 

S

 X=x with 
Prob.= tAB

(tAB>p) 

Y=y infers X=x 
with Prob.= p 

query 
by A 

query 
by B 

(a) QAand QB cause inconsistent belief on X. From 
QB (Y=y), B infers X=x with Prob.= p. From QA

(X=x), B infers X=x with Prob.= tAB.

B’s belief on 
X=x with A’s 
collaboration

S

Believe X=x 
with Prob.= tAB

Ignore Y=y 

(b) Believe X=x with Prob.= tAB yields  in-
accurate  inference probability to S

S

Belief of B on X=x is 
Prob.=Pr(X=x|Y=y, V=x)

Y=y 

VA(X)=x

(c) Introduce soft evidence for QA (X=x) by adding 
a virtual node VA(X) as the child of X. User B now 
believes X=x with Prob.=Pr(X=x|Y=y, VA(X)=x)  

Fig. 15.10. A virtual node can be used in user B’s inference network to resolve inconsistent be-
lief when user B and A overlap on their inference channels 
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On the other hand, QB includes Y=y which can infer X=x with probability p. If 

ABtp ≠ , then QA and QB can cause B to have inconsistent belief on attribute X. 

Without loss of generality, we assume p<tAB for this example. 
One approach to reconciling such inconsistent belief is to assume B will always 

choose to maximize his inference probability. Therefore, as shown in Fig. 15.10(b), B 
only follows A’s advice (X=x with prob.=tAB) and ignore his own acquired knowl-
edge (Y=y infers X=x with prob.=p). However, such a “max-inference” approach is 
not always correct, since people’s belief is often strengthened by the confirmation and 
reduced by the conflicting knowledge. To represent the integration of inconclusive 
belief, we introduce the concept of soft evidence in probability calculus [14]. Soft evi-
dence is inconclusive or unreliable information, as in the previous example, A tells B 

that X=x and B only believes it with tAB ( 1<ABt ). For user B, X=x is inconclusive 

knowledge, and therefore it needs to be set as soft evidence. To specify the soft evi-
dence, we use the Virtual Evidence method developed in [14]. As shown in the  
Fig. 15.10(c), this method first adds a virtual attribute node VA(X) to be the child of 
the attribute node X to represent the event of receiving the soft evidence of X, that  
is, A tells B about X=x. Then the conditional probability of the virtual node is  
determined by the reliability of the soft evidence. In our example, both 

)|)(Pr( xXxXVA ==  and )|)(Pr( xXxXVA ==  are determined by user 

B’s collaboration level of information from A tAB. Thus, the soft evidence can be in-
tegrated into the user’s own knowledge. In the example, if originally B is ignorant 
about X, once A tells B about X=x, B will believe X=x with probability tAB. If origi-
nally B can infer X with knowledge Y=y, then his current belief in X=x can be com-

puted as ))(,|Pr( xXVyYxX A === . Thus, we are able to integrate queries on 

overlapped inference channels from multiple collaborators based on their correspond-
ing collaboration levels. 

Therefore, for any type of two collaborative users, we can integrate one’s knowl-
edge to the other and detect their inference towards sensitive data. When any user 
poses a query, the system not only checks to see if the query requester can infer sensi-
tive data above the threshold with a query answer, it also checks the other team mem-
bers to guarantee that the query answer will not indirectly let them infer the sensitive 
attribute. We can iteratively generalize the above approach to an N-collaborator case. 
In general, when there are N collaborative users in the team, the violation detection 
system tracks the query posed by every team member. A query should be denied if the 
query answer will increase the certainty of any team member to infer the sensitive 
data above the pre-specified threshold. 

 
1. Assume: current query request Q, malicious team M, sensitive data S, threshold of S is T; 
2. List(M) = sort team members M in descending order of inference probability to S; 
3. While(List(M) is not empty) { 
4.     m = first member in List(M) with highest inference probability; 
5.     max_col = the maximum collaborative level from any member in List(M)  

                      to the query requester; 
6.     real_col = m’s collaborative level to query requester; 
7.         If (m integrate answer to Q with max_col can get inference probability < T) 
8.         Then {answer query Q; goto end;} 
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9.         Else  
10.             If (m integrate answer to Q with real_col can get inference probability >= T) 
11.             Then {deny query Q; goto end;} 
12.             Else { List(M) = List(M) – m;} 
13. } 

An inference violation detection algorithm for N collaborative users 
 
We can use the above greedy algorithm to efficiently decide to either answer or 

deny a query request from any team member. We first sort all N members by their in-
ference probability to the sensitive attribute and start with the member having the 
highest inference probability. We also compute every member’s collaborative level to 
the query requester and determine the max collaborative level. Suppose that the mem-
ber with the highest inference probability integrates the current query answer adjusted 
by the maximum collaborative level and still cannot infer sensitive data above the 
threshold. Then we can stop checking the rest of the team members and answer the 
query. This is because no other member in the team will be able to make a higher in-
ference. If the member with the highest inference probability integrates the query an-
swer adjusted by his collaborative level to the requester and can infer the sensitive 
data above or equal to the threshold, then we can stop checking and deny this query. 
Otherwise, we continue on to another member with the next highest inference prob-
ability until a decision can be made. 

15.7.2   An Example of Inference Violation Detection for Collaborative Users 

A set of data sources for transportation and related facilities is available for mission 
planning. Due to the classified nature of the data sources, users can only access lim-
ited amounts of information. Malicious users want to identify whether a specific facil-
ity is capable of launching certain classified missions. However, the users are unable 
to access all the information that is required to derive the conclusion. Therefore, they 
apply inference techniques to infer the otherwise inaccessible information. In the fol-
lowing example, we shall demonstrate how our detection system prevents these users 
from accessing the relevant information. 

As shown in Fig. 15.11, the transportation and facility data sources consist of four 
types of information: 1) takeoff and landing activities and capacity of the airport, such 
as parking_area, runway_length, runway_width, aircraft landing requirements etc.; 2) 
equipment handling capacity, such as weapons, human experts, loading facility; 3) 
airport cargo and warehouse capacity and activities, such as daily cargo handling  
capacity, warehouse space; and 4) fueling storage and consumption. Based on these 
entities and attributes, we can derive the dependency links between attributes, the 
schema links that join different aspects of information together for each airport. Fur-
thermore, based on the following set of semantic queries:  

• Query1: which airports can land a C-5 cargo plane? 
• Query2: which airports have the loading facility that can load weapon type HC-1? 

Query3: which aircraft can carry weapon type HC-1? 

We can extract the semantic knowledge for “can land,” “can load” and “can carry” 
for semantically linking the related attributes, as shown in Fig. 15.11. 
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Fig. 15.11. The SIM for a transportation mission planning example 

Based on these dependency links, schema links and semantic links, a reduced se-
mantic inference model was constructed (Fig. 15.11) to represent all the possible in-
ference channels between data attributes for all the entities. There are four data 
sources which yield four main inference channels to the mission entity: takeoff_ land-
ing to launch_mission; fueling to launch_mission; cargo_handling to launch_mission 
and handle_capacity to launch_mission. Each of the main inference channels consists 
of many local inference channels. To carry out the inference computation, we need to 
generate a semantic inference graph (SIG) by substituting the specific instance to the 
semantic inference model. The corresponding Bayesian network representation 
mapped from the SIG for airport “LAX” is shown in Fig. 15.12. 

Let “Launch Mission?” be the sensitive attribute. The violation detection module ex-
amines each user’s past query log, as well as the current query request. The probability 
to infer “Launch Mission?” in the Bayesian network will be evaluated before answering 
each query. If answering the current query increases the certainty of inferring the sensi-
tive attribute above the pre-specified threshold, then the query will be denied. Let the 
pre-specified threshold for launch mission be 60%, and the users have prior knowledge 
of: 1) Aircraft C-5 can land in airport LAX; 2)Airport LAX can load weapon HC-1. 
When user A poses the sequence of queries shown in Table 15.1, each query answer 
will update his certainty of inferring the “Launch Mission? = yes” (as shown in the  
table). The same is true for user B when he poses the queries in Table 15.2. 
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Fig. 15.12. The Bayesian network for the mission planning example. The bold nodes represent 
user queried attributes. Knowledge from the query answers can be accumulated along the infer-
ence channels towards the sensitive attribute. The inference channels used by each query are 
labeled by its query identifier. The collaborative level from user A of 85% are shown in the 
probability distribution boxes of QA(1), QA(2) and QA(3). When all the seven queries are an-
swered, user B can infer the sensitive attribute (shown in double ellipses) with a certainty of 
64.15%. 

Tables 15.1 and 15.2 are assuming that user A and user B do not collaborate. Nei-
ther A or B are getting enough information to infer the sensitive attribute above the 
threshold, thus all the queries are answered. However, based on the questionnaires 
collected from these two users, we notice that they are collaborators with an 85% col-
laborative level from B to A for this specific “airport mission” task. Therefore, the 
 

Table 15.1. The inference probability of “Launch Mission? = yes” after answering user A’s 
queries. The probabilities are computed from the Bayesian network in Fig. 15.12.  

Query Set of A QA(i) Answeri 

Pr(Launch_miss
ion? = yes | an-
swer1,…, an-
sweri)  

What is current_fuel_storage of airport LAX? large 52.01% 
What is current_fuel_consumption of LAX? large 56.50% 
What is cargo_handling_capacity of LAX? good 59.80% 
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Table 15.2. The inference probability of “Launch Mission? = yes” after answering user B’s 
queries. The probabilities are computed from the Bayesian network in Fig. 15.12. 

Query Set of B QB(i) Answeri 

Pr(Launch_miss
ion?=yes | an-
swer1,…, an-
sweri)  

What is the min_land_dist of aircraft C-5? long 50.31% 
What is the min_rw_width of aircraft C-5? wide 50.85% 
What is the parking_area_sq_ft of airport LAX? large 52.15% 
What is the load_requirement of weapon type 
HC-1? 

high 57.15% 

 

knowledge from their query answers can be combined for collaborative inference. If 
we examine their query set QA and QB on the SIM, we notice that they do not have 
overlapping inference channels. This is because QA focused on the fueling and cargo 
storage of the airport while QB focused on the takeoff and landing activities and mili-
tary instrument handling. Thus, users A and B belong to the “non-overlap inference 
channels” case as shown in Fig. 15.9. We can directly integrate their knowledge from 
query set answers based on their collaboration relation. Thus user B can integrate QA 
into QB and adjust the inference probability using their respective collaborative level, 
as shown in Table 15.3. 

Table 15.3. User B integrates user A’s query set QA into his own query set QB. The Bayesian 
network is used to compute the inference probability in accordance with the posed query se-
quence and adjusted by the collaborative levels of the corresponding answers. 

Integrated Query Set of B (i) 
An-
sweri 

Collabo-
rative 
Level ti  
(%) 

Pr(Launch_mi
ssion? =yes 
|t1*answer1,…, 
ti*answeri)  

QB(1)What is min_land_dist of aircraft 
C-5? 

long 100% 50.31% 

QB(2)What is min_rw_width of aircraft 
C-5? 

wide 100% 50.85% 

QA(1)What is current_fuel_storage of 
LAX? 

large 85% 52.39% 

QA(2)What is current_fuel_consumption 
of LAX? 

large 85% 55.54% 

QB(3)What is parking_area_sq_ft of 
LAX? 

large 100% 56.84% 

QA(3)What is cargo_handling_capacity 
of LAX? 

good 85% 59.15% 

QB(4)What is load_requirement of wea-
pon HC-1? 

high 100% 64.15% 
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From Table 15.3, we note that the last query posed by user B will infer sensitive in-
formation with probability higher than the pre-specified threshold of 60%. Therefore, 
QB(4) should be denied by the violation detection module. In contrast, in the non-
collaborative case as shown in Tables 15.1 and 15.2, all the above queries can be an-
swered. 

15.8   Collaboration Level  

As defined in Sect. 15.7, a collaboration level (CL) is a metrics that can be used to es-
timate the collaborative inference by a group of malicious users. CL consists of two 
factors: information authoritativeness and communication channel fidelity. In this sec-
tion we shall first conduct a set of two experiments to validate the premise of the pro-
posed metrics and then propose a technique to estimate the parameters. 

15.8.1   Experimental study of Collaboration Level 

Since both information authoritativeness and fidelity are user-sensitive, we conducted 
an experiment using the students in one of the authors’ classes as test subjects. The 
experiment was used as homework for the class to ensure their participation. Further, 
to ensure that the experiment was carried out honestly, the experiment outcome would 
not affect their grades. However, the winner would receive extra credit. A web inter-
face was developed for our inference test bed so that students could pose queries di-
rectly to the test bed and receive the answers. The goal of the experiment was to study 
how information authoritativeness and communication fidelity affect the CL. 

Before posing queries for inference, each student needed to register in the system 
and fill in the necessary background information, including their age, gender, major, 
year in school, courses taken, GPA, skills, interests, teamwork ability, social activi-
ties, friends in the class, etc. The information gave us clues about the information 
authoritativeness and communication fidelity of the test subjects. Based on the col-
lected background information, we divided the class into five teams of four students 
to perform collaborative inference. The first team consisted of Ph.D. students with 
good knowledge in the database area, which should have provided good authorita-
tiveness. The second team members were good friends, which provide good commu-
nication fidelity. The other three teams are randomly formed. In the first test, the 
teams were given the SIG structure based on the database, but not the SIG parameters 
(CPTs) nor the threshold of the security attribute. Then we allowed each team to pose 
a fixed number (e.g. four in this experiment) of queries to infer the security attribute. 
The test bed computed their inference probability after each member posed the query. 
The system denied the query request if the posed queries exceeded the threshold. The 
four members in the team could collaborate in the best way possible to increase their 
inference probability of the security attribute and avoid denial. In order to monitor the 
team communication, each team also reported its communication methods in selecting 
the queries, such as email, meeting, voting after debate on query selection. 

Fig. 15.13 displays the maximum inference probability for the five teams. In ex-
periment 1a, we observed that team2 reached the highest inference probability. This is 
because they held meetings to discuss strategies of posing queries and voted if there 
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was disagreement; therefore, their queries leveraged on each other to get better infer-
ence. Team1 asked a set of effective queries that spanned the inference channels 
based on their knowledge of the SIG structure; therefore they also performed well. 
This result reveals that both communication fidelity and information source authorita-
tiveness play very important roles in determining collaboration effectiveness. 

 

 
Fig. 15.13. The inference results of five collaborative teams. In experiment 1a, the teams were 
given the SIG structure but without the parameters (CPTs) and the threshold (75%) of the secu-
rity node. In experiment 1b, the teams were given both the SIG structure and the CPTs and the 
inference threshold (65%) of the sensitive node. 

To study how information source authoritativeness affects the CL, we repeated the 
same experiment in 1b. This time, we let all the teams know the SIG structure, CPTs 
and the threshold value of the security attribute. With the same fixed number of que-
ries, we noticed that with the additional knowledge of the CPTs and threshold of the 
security attribute, all the teams improved their maximum inference probabilities. In 
fact, they were able to ask better queries to improve their inference probability as 
close to the threshold as possible. This experimental result reveals that the informa-
tion source authoritativeness (in this case, the quality of queries) does affect CL in the 
positive way.  

In the first set of experiments, we noted that both information source authoritative-
ness and communication fidelity played a key role in CL and therefore improved in-
ference probability. This motivated us to study these two factors more closely in the 
second experiment. More specifically, we wished to investigate the collaboration ef-
fectiveness under controlled communication fidelity environment. This experiment 
was carried out in a manner similar to that of experiment 1, except it was conducted in 
another graduate class in the following quarter. Because of the small class size, we 
divided the students into two teams, with three members in first two teams. In order to 
control the communication fidelity, we assigned the communication method for each 
team. The first team was allowed to have “full collaboration.” Members were required 
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to meet and discuss query strategies and exchange their query answers in making their 
selection of queries. The second team was allowed “limited collaboration” in which 
they could only email each other with their query answers but could not discuss strat-
egy. In terms of authoritativeness, Team2 had more task-specific knowledge (in this 
case, Bayesian inference) than Team1. 

In this experiment, the two teams were given the SIG, its parameters (CPTs) but 
not the threshold of the sensitive attribute. As shown in Fig. 15.14, although Team2 
was restricted in communication, they could still pose effective queries based on their 
task-specific knowledge to achieve a higher inference probability than Team1. On the 
other hand, although the first team could freely communicate and discuss, their lack 
of task-specific knowledge caused their failure in posing the most aggressive queries 
and, in turn, hurt their inference results. We notice that the second team’s knowledge 
of the task overcame the limitation of their collaboration, and they outperformed the 
first team. 

The above set of experimental results validates our premise that information auth-
oritativeness and communication fidelity are two key parameters that affect collabora-
tion performance. 

 

 
Fig. 15.14. Maximum inference probability for Experiment 2. The teams were given both the 
SIG structure and the CPTs, but not the inference threshold of the security node which was set 
at 85%. 

15.8.2   Estimation of Collaboration Level 

Since the collaboration level consists of two main components: information authorita-

tiveness and communication fidelity, it can be expressed as ),,,( FA eeFAgCL = , 

where A is the authoritativeness of the information source, F is the communication fi-

delity, Ae is the error in estimation of the authoritativeness, and Fe is the error in es-

timating the fidelity. There are many works on trust negotiation in peer-to-peer net-

works that are related with Ae and Fe estimation. The interested reader should refer 
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to papers [1, 7, 32, 48, 49, 45, 42, 46, 15 and 37]. We shall now outline some ap-

proaches to estimate A and F under the case that Ae = Fe =1, which corresponds to 

estimating parameter values in a trusted and honest community.  

Estimation of Authoritativeness A: Information authoritativeness represents the task-
specific knowledge which can be based on the provider’s profile, such as reputation, 
education, profession, and experience that is related to the task. This authoritativeness  
can also be enhanced by information derived from the user social network  structure . 
For example, if many individuals (especially highly authoritative ones) indicate user 
ui as their friend, then ui has a significant impact on others and therefore has a higher 
authority. The link-based similarity analysis (such as page rank) can be used to derive 
the authority of people [38]. Information authoritativeness  can be derived from ques-
tionnaire answers and with additional correlated information from web documents  or 
available social network  information. In general, Information authoritativeness  may 
be based on a set of multiple attributes that are related to the specific task. The estima-
tion can become more complex and would be beyond the scope of this chapter. 

Estimation of Fidelity F: For a given task, the communication fidelity  of two collabo-
rators can be based on their closeness on a set of task-sensitive attributes. Based on 
the registration questionnaire, we can derive their closeness by the similarity com-
puted from the selected attribute set. Additional information from other available 
sources, such as their web sites  and their social networks , can also be used to en-
hance the estimation.  

After estimating A and F, we need to combine them to derive the collaboration in-
ference. One way is to assume they have a linear relationship and thus can be com-
bined linearly. We can then learn the coefficients (such as the weights of A and F) via 
a set of training data  with similar tasks and users. 

15.9   Robustness in Inference Detection  

Usually security experts or database administrators have some idea of the required 
level of protection for each security attribute , but they can hardly give a quantitative 
measurement to describe such protection requirements. Further, in a large database  
system, the dependency relationship between the security attribute  and other  
attributes is complicated. The inference towards security attribute  computed from a 
Bayesian network  depends on both the network topology (qualitative attribute de-
pendencies) and the parameter of the network (conditional probabilities). If a small 
variation of a given parameter can trigger the inference probability  to exceed the 
threshold, then the inference detection  may not satisfy the robustness requirements. 
This motivates us to find a methodology to systematically quantify the robustness of 
the threshold for inference violation detection . 

Sensitivity measures the impact of small changes in a network parameter on a tar-
get probability value or distribution [34]. In other words, a small change in the more 
sensitive attribute will cause a large impact on the inference probability . Therefore, 
the sensitivity values of attributes in the network provide an insight to the robustness 
of inference with respect to the changes in attribute parameter value. In this section, 
we propose to use the sensitivity analysis  results to adjust the security threshold. 
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15.9.1   Sensitivity Definition 

“Sensitivity values are partial derivatives of output probabilities with respect to pa-
rameters being varied in the sensitivity analysis . They measure the impact of small 
changes in a network parameter on a target probability value or distribution” [34]. 
More formally, for a function f(x), the quantity: 
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is typically known as the sensitivity of f to x at x0, which is the ratio of relative change 
in output probability over the relative change in the parameter, where x0 is the initial 
value of X. If we consider the function to be the probability of security node Y given 

the change of attribute node X, then the sensitivity for attribute X at probability 0x  in 

a given network N with the initial probability of the security node inity  can be repre-
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The initial probability of the security node is the probability of Y at the state when 

the set of evidence was given in the network. inity  represents the initial probability of 

Y, which is different from 0y  that represents the probability of Y when 0xX = . 

According to this definition, in a Bayesian network , if minor changes to an attrib-
ute node’s probability can result in a significant change in the output probability of 
the security node, then this attribute node is considered highly sensitive.  

15.9.2   Adjust Security Threshold by Attribute Sensitivity Analysis  

To compute the sensitivity of attributes in an inference network, we first identify all 
inference channels  toward each security node so that the sensitivity values for the at-
tributes along the inference channels  can be computed. The inference channels  in-
clude channels coming into the security node and those going out of the security node. 
For those out-going inference channels , we can treat them as if the channels are com-
ing into the security node by reversing the edges along such channels and revising the 
corresponding conditional probabilities. This is because, in terms of inference, the se-
curity node can be thought of as the “sink” of all information. Regardless of whether 
the attribute is the ancestor or descendent of the security node, the inference is always 
from the attribute towards the security node. Thus, we can compute the attribute sen-
sitivities on both in-coming and out-going inference channels . 

In a large-scale network, because of the large number of attributes, it is time-
consuming to compute the sensitivity value for each attribute on the inference chan-
nels . However, for two attribute nodes on the same inference channel , the node that 
is closer to the security node is more sensitive than the node that is farther from the 
security node at the same probability value. This difference of sensitivity value  
between closer and farther nodes is intuitive as closer nodes generally contain more 
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sensitive information  and are more influential on the security node than that of far-
ther nodes. More specifically, the farther node influences the security node through 
the inference channel  which includes the closer node. Therefore, the amount of 
change at the farther node has the equivalent effect of inferring the security node as a 
smaller (or equal) amount of change at the closer node. For example, in the inference 
channel  in Fig. 15.15(a), the closest attribute to security node “Launch Mission?” is 
“Fueling.” Based on Eq. 15.4, the sensitivity of “Fueling” is greater than the sensitiv-
ity of its parents “LAX_Fueling_Activity” for all x0, as shown in Fig. 15.15(b). Simi-
larly, the sensitivity of “LAX_Fueling_Activity” is greater than the sensitivity of 
“Daily_Fuel_Consumption.” 

By this property, we know that for each inference channel , the attribute node 
closer to the security node is more sensitive than the farther attribute nodes. So to 
measure the maximum sensitivity of each inference channel , we only need to con-
sider the sensitivity value of the attribute node on the channel that is closest to the se-
curity node to represent the sensitivity of the entire inference channel . Thus, in the 
entire network, we only need to check the sensitivity of the attributes on an inference 
channel  that is one hop away from the security node. 

Each value of the security node is protected by a threshold. For example, we need 
threshold for “Launch_Mission=Yes” and another threshold for “Launch_ Mis-
sion=No” so that the malicious user cannot infer the exact value of this attribute 
above the thresholds. When the data administrator proposes a threshold value based 
on the required protection level, he/she can check the sensitivity values of the closest 
attributes on each inference channel . If one of these inference channels  is too sensi-
tive which means that a small change in the attribute value can resulted in exceeding 
the threshold, then the threshold needs to be tightened to make it less sensitive. 

LAX Fueling 
Activity

Launch Mission?

Fueling

Daily Fuel 
Consumption

 x0  

Fig. 15.15(a). A portion of the infer-
ence channel in the Bayesian network 
from the example 

Fig. 15.15(b). The sensitivity of corresponding attrib-
ute nodes in (a) to the security node at selected initial 
values x0. 

15.10   Conclusion 

In this chapter we present a technique that prevents users from inferring sensitive in-
formation  from a series of seemingly innocuous queries. Compared to the determinis-
tic inference approach in previous works, we include non-deterministic relations into 
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inference channels  for query-time inference detection . Specifically, we extract pos-
sible inference channels  from probabilistic data dependency, the database schema 
and the semantic knowledge  and construct a semantic inference model  (SIM). The 
SIM links represent the possible inference channels  from any attribute to the set of 
pre-assigned sensitive attributes. The parameters of attributes in SIM can be com-
puted in polynomial time in terms of the rows and columns of the relational table. The 
SIM is then instantiated by specific instances and reduced to a semantic inference 
graph  (SIG) for inference violation detection  at query time. To reduce computation 
complexity for inference, the SIG can be mapped into a Bayesian network  so that 
available Bayesian network  tools can be used for evaluating the inference probability  
along the inference channels . Therefore, our proposed approach can be scalable to 
large systems.  

When a user poses a query, the detection system will examine his/her past query 
log and calculate the probability of inferring sensitive information  from answering 
the posed query. The query request will be denied if it can infer sensitive information  
with the probability exceeding the pre-specified threshold. We find that the Bayesian 
network  is able to preserve the structure of the inference channels , which is very use-
ful in providing accurate as well as scalable inference violation detection . 

In the multiple-user inference environment, the users can share their query answers 
to collaboratively infer sensitive information . Collaborative inference  is related to 
the collaboration level  as well as the inference channels  of the user-posed queries. 
For inference violation detection , we developed a collaborative inference  model that 
combines the collaborators’ query log sequences into inference channels  to derive the  
collaborative inference  of sensitive information .  

Sensitivity analysis  of attributes in the Bayesian network  can be used to study the 
sensitivity of the inference channels . Our study reveals that the nodes closer to the 
security node have stronger inference effect on the security node. Thus sensitivity 
analysis  of these close nodes can assist domain experts  to specify the threshold of 
the security node to ensure its robustness. 

User profiles and questionnaire data provide a good starting point for learning col-
laboration levels  among collaborative users . However, gathering such information is 
complicated by the fact that the information may be incomplete and incorrect. In addi-
tion, the accuracy of such information is task-specific and user-community sensitive. 
We have constructed a test bed on the inference violation detection  system to study 
the collaboration level  for multiple collaborative users . Our preliminary study re-
veals that information source accuracy and communication fidelity  play key roles in 
the collaboration level . Further research in this area is needed. 
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Questions for Discussions 

1. Discuss what are the benefits of using probabilistic approach as compare with the 
deterministic approach for handling database security? 

2. Discuss the types of knowledge needed to construct the semantic inference model. 
3. Discuss how to acquire the conditional probability table (CPT) for each attribute 

from the data sources and give an example. 
4. Collaboration level can be used as a metric to measure the percentage of useful in-

formation transfer from the source to the recipient in a social network. Provide a 
method (with an example) for determining the collaboration level. 

5. Considering the introducing of virtual node in resolving inconsistent belief as 
shown in Fig. 15.11(c), in addition to collaborator A, suppose user B has another 
collaborator C who also informs B X=x. What will be user B’s belief on X based 
on both A and C’s input? 

6. A robust threshold is defined as any small change of attribute values will not cause 
large impact on the security node. Discuss how can sensitivity analysis be used to 
improve the robust threshold of the security node. 
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