
C
CoXML: COOPERATIVE XML QUERY
ANSWERING

INTRODUCTION

As theWorldWideWeb becomes amajormeans in dissemi-
nating and sharing information, there has been an expo-
nential increase in the amount of data in web-compliant
format such as HyperText Markup Language (HTML) and
Extensible Markup Language (XML). XML is essentially a
textual representation of the hierarchical (tree-like) data
where a meaningful piece of data is bounded by matching
starting and ending tags, such as <name> and </name>.
As a result of the simplicity of XML as compared with
SGML and the expressiveness of XML as compared with
HTML, XML has become the most popular format for
information representation and data exchange.

To cope with the tree-like structure in the XML model,
many XML-specific query languages have been proposed
(e.g., XPath1 and XQuery (1)). All these query languages
aim at the exactmatching of query conditions. Answers are
found when those XML documents match the given query
condition exactly, which however, may not always be the
case in the XML model. To remedy this condition, we
propose a cooperative query answering framework that
derives approximate answers by relaxing query conditions
to less restricted forms. Query relaxation has been success-
fully used in relational databases (e.g., Refs. 2–6) and is
important for the XML model because:

1. Unlike the relational model where users are given a
relatively small-sized schema to ask queries, the
schema in the XML model is substantially bigger
and more complex. As a result, it is unrealistic for
users to understand the full schema and to compose
complex queries. Thus, it is desirable to relax the
user’s querywhen the original query yields null or not
sufficient answers.

2. As the number of data sources available on the Web
increases, it becomes more common to build systems
where data are gathered from heterogeneous data
sources. The structures of the participating data
source may be different even though they use the
same ontologies about the same contents. Therefore,
the need to be able to query differently structured
data sources becomes more important (e.g., (7,8)).
Query relaxation allows a query to be structurally
relaxed and routed to diverse data sources with dif-
ferent structures.

Query relaxation in the relational model focuses on
value aspects. For example, for a relational query ‘‘find a
person with a salary range 50K–55K,’’ if there are no

answers or insufficient results available, the query can
be relaxed to ‘‘find a person with a salary range 45K–
60K.’’ In theXMLmodel, in addition to the value relaxation,
a new type of relaxation called structure relaxation is
introduced, which relaxes the structure conditions in a
query. Structure relaxation introduces new challenges to
the query relaxation in the XML model.

FOUNDATION OF XML RELAXATION

XML Data Model

We model an XML document as an ordered, labeled tree
in which each element is represented as a node and each
element-to-subelement relationship is represented as
an edge between the corresponding nodes. We represent
each data node u as a triple (id, label, <text>), where id
uniquely identifies the node, label is the name of the
corresponding element or attribute, and text is the corre-
sponding element’s text content or attribute’s value.Text is
optional because not every element has a text content.

Figure 1 presents a sample XML data tree describing
an article’s information. Each circle represents a node
with the node id inside the circle and label beside the
circle. The text of each node is represented in italic at
the leaf level.

Due to the hierarchical nature of the XML data model,
we consider the text of a data node u as part of the text of
any of u’s ancestor nodes in the data tree. For example, in
the sample XML data tree (Fig. 1), the node 8 is an ancestor
of the node 9. Thus, the text of the node 9 (i.e., ‘‘Algorithms
for mining frequent itemsets. . .’’) is considered part of the
text of the node 8.

XML Query Model

A fundamental construct in most existing XML query
languages is the tree-pattern query or twig, which selects
elements or attributes with a tree-like structure. In this
article, we use the twig as our basic query model. Similar
to the tree representation of XML data, we model a query
twig as a rooted tree. More specifically, a query twig T is
a tuple (root, V, E), where

! root is the root node of the twig;
! V is the set of nodes in the twig, where each node is a
tripe (id, label, <cont>), where id uniquely identifies
the node, label is the name of the corresponding ele-
ment or attribute, and cont is the content condition
on the corresponding node. cont is optional because
not every query node may have a content condition;

! The content condition for a query node is either a
database-style value constraint (e.g., a Boolean con-
dition such as equality, inequality, or range con-
straint) or an IR-style keyword search. An IR-style
content condition consists of a set of terms, where

*This work is supported by NSF Award ITR#: 0219442
1See http://www.w3.org/TR/xpath/.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.

each term is either a single word or a phrase. Each
termmay be prefixedwithmodifiers such as ‘‘þ’’ or ‘‘#’’
for specifying preferences or rejections over the term.
An IR-style content condition is to be processed in a
nonBoolean style; and

! E is the set of edges in the twig.An edge fromnodes $u2

to $v, denoted as e$u,$v, represents either a parent-to-
child (i.e., ‘‘/’’) or an ancestor-to-descendant (i.e., ‘‘//’’)
relationship between the nodes $u and $v.

Given a twig T, we use T.root, T.V, and T.E to represent
its root, nodes, and edges, respectively. Given a node $v
in the twig T (i.e., v 2 T:V), we use $v.id, $v.label, and
$v.cont to denote the unique ID, the name, and the content
condition (if any) of the node respectively. The IDs of the
nodes in a twig can be skipped when the labels of all the
nodes are distinct.

For example, Fig. 2 illustrates a sample twig, which
searches for articles with a title on ‘‘datamining,’’ a year in
2000, and a body section about ‘‘frequent itemset algo-
rithms.’’ In this query, the user has a preference over the
term algorithm. The twig consists of five nodes, where each
node is associated with an unique id next to the node. The
text under a twig node, shown in italic, is the content or
value condition on the node.

The terms ‘‘twig’’ and ‘‘query tree’’ will be used inter-
changeably throughout this article.

XML Query Answer

With the introduction of XML data and query models, we
shall now introduce the definition of anXMLquery answer.
An answer for a query twig is a set of data nodes that satisfy
the structure and content conditions in the twig. We for-
mally define a query answer as follows:

Definition 1. Query Answer Given an XML data tree
D and a query twig T, an answer for the twig T, denoted
asAT

D, is a set of nodes in the data D such that:

! 8 $u2 T:V , there exists an unique data node u in
AT

D s:t $u:label ¼ u:label. Also, if $u:cont 6¼null and
$u:cont is a database-style value constraint, then the
text of the data node u:text satisfies the value con-
straint. If $u:cont 6¼ null and $u.cont is an IR-style

content condition, then the text of u.text should contain
all the terms that are prefixed with ‘‘þ’’ in $u:cont and
must not contain any terms that are prefixed with ‘‘#’’
in $u:cont;

! 8 e$u;$v 2T:E, let u and v be the data nodes in AT
D that

correspond to the query node $u and $v, respectively,
then the structural relationship between u and v
should satisfy the edge constraint e$u;$v.

For example, given the twig in Fig. 2, the set of nodes
{1, 2, 6, 7, 8} in the sample XML data tree (Fig. 1) is an
answer for the query, which matches the query nodes
{$1, $2, $3, $4, $5}, respectively. Similarly, the set of nodes
{1, 2, 6, 7, 12} is also an answer to the sample query.
Although the text of the data node 10 contain the phrase
‘‘frequent itemset,’’ it does not contain the term algo-
rithm, which is prefixed with ‘‘þ.’’ Thus, the set of data
nodes {1, 2, 6, 7, 10} is not an answer for the twig.

XML Query Relaxation Types

In theXMLmodel, there are two types of query relaxations:
value relaxation and structure relaxation. A value relaxa-
tion expands a value scope to allow the matching of addi-
tional answers. A structure relaxation, on the other hand,
derives approximate answers by relaxing the constraint
on a node or an edge in a twig. Value relaxation is ortho-
gonal to structure relaxation. In this article, we focus on
structure relaxation.

Many structure relaxation types have been proposed
(8–10). We use the following three types, similar to the
ones proposed in Ref. 10, which capture most of the relaxa-
tion types used in previous work.

! Node Relabel. With this relaxation type, a node
can be relabeled to similar or equivalent labels accord-
ing todomainknowledge.Weuse rel($u, l) to represent
a relaxation operation that renames a node $u to
label l. For example, the twig in Fig. 2 can be relaxed
to that in Fig. 3(a) by relabeling the node section to
paragraph.

! Edge Generalization. With an edge relaxation, a
parent-to-child edge (‘/’) in a twig can be generalized to
an ancestor-to-descendant edge (‘//’).Weuse gen(e$u;$v)
to represent a generalization of the edge between
nodes $u and $v. For example, the twig in Fig. 2 can
be relaxed to that in Fig. 3(b) by relaxing the edge
between nodes body and section.

2To distinguish a data node from a query node, we prefix the
notation of a query node with a $.

article $1

bodytitle

section“data
mining”

“frequent itemset”,
+algorithms

year

2000

$3$2 $4

$5

Figure 2. As sample XML twig.

title body

section

author

titlenameAdvances in
Data Mining

IEEE XYZ
Fellow

Existing tools for
mining frequent

itemsets…

A Survey of
frequent itemsets
mining algorithms

1 article

2 3

4 5

7

10

11 13 referenceparagraph

12 section

year6

2000

9

Algorithms for
mining frequent

itemsets…

title

section8

Figure 1. A sample XML data tree.

2 COXML: COOPERATIVE XML QUERY ANSWERING

! Node Deletion. With this relaxation type, a node
may be deleted to derive approximate answers. We
use del($v) to denote the deletion of a node $v. When
$v is a leaf node, it can simply be removed. When $v is
an internal node, the children of node $v will be con-
nected to the parent of $v with ancestor-descendant
edges (‘‘//’’). For instance, the twig in Fig. 2 can be
relaxed to that in Fig. 3(c) by deleting the internal
node body. As the root node in a twig is a special node
representing the search context, we assume that any
twig root cannot be deleted.

Given a twig T, a relaxed twig can be generated by
applying one or more relaxation operations to T. Let m
be the number of relaxation operations applicable to T,
then there are at most

!m
1

"
þ . . .þ

!m
m

"
¼ 2m relaxation

operation combinations. Thus, there are at most 2m

relaxed twigs.

XML QUERY RELAXATION BASED ON SCHEMA
CONVERSION

One approach to XML query relaxation is to convert XML
schema, transform XML documents into relational tables
with the converted schema, and thenapply relational query
relaxation techniques. A schema conversion tool, called
XPRESS (Xml Processing and Relaxation in rElational
Storage System) has been developed for these purposes:

XML documents are mapped into relational formats so
that queries can be processed and relaxed using existing
relational technologies. Figure 4 illustrates the query
relaxation flow via the schema conversion approach. This
process first begins by extracting the schema inform-
ation, such as DTD, from XML documents via tools such
as XML Spy(see http://www.xmlspy.com.) Second, XML
schema is transformed to relational schema via schema
conversion ([e.g., XPRESS). Third, XML documents are
parsed,mapped into tuples, and inserted into the relational
databases. Then, relational query relaxation techniques
[e.g., CoBase (3,6)] can be used to relax query conditions.
Further, semi-structured queries over XML documents
are translated into SQL queries. These SQL queries are
processed and relaxed if there is no answer or there
are insufficient answers available. Finally, results in
the relational format are converted back into XML (e.g.,
the Nesting-based Translation Algorithm (NeT) and
Constraints-based Translation Algorithm (CoT) (11) in
XPRESS). The entire process can be done automatically
and is transparent to users. In the following sections, we
shall briefly describe the mapping between XML and rela-
tional schema.

Mapping XML Schema to Relational Schema

Transforming a hierarchical XML model to a flat rela-
tional model is a nontrivial task because of the following

article

title body

paragraph“data
mining”

“frequent
itemset”,

+algorithms

year

2000

(a) Node relabel

article

title body

section“data
mining”

“frequent
itemset”,

+algorithms

year

2000

(b) Edge generalization

article

title section

“data
mining”

“frequent
itemset”,

+algorithms

year

2000

(c) Node delete
Figure 3. Examples of structure relaxations for
Fig.2.

extract DTD from XML
file

schema map

DTD XML Spy

XML →
Relational

Relational
→ XML

XML →
Relational

XML
Queries

query processing
query relaxation

SQL

TAH

RDB

6 4

7 5

3 2

1

Relaxed
Answers

Relaxed
Answers in

XML formats

generate TAHs

XML
doc

data map

Figure 4. The processing flow of XML query relaxation via schema conversion.

COXML: COOPERATIVE XML QUERY ANSWERING 3

inherent difficulties: the nontrivial 1-to-1 mapping, exis-
tence of set values, complicated recursion, and/or frag-
mentation issues. Several research works have been
reported in these areas. Shanmugasundaram et al. (12)
mainly focuses on the issues of structural conversion. The
Constraints Preserving Inline (CPI) algorithm (13) consi-
ders the semantics existing in the original XML schema
during the transformation. CPI inclines as many descen-
dants of an element as possible into a single relation. It
maps an XML element to a table when there is 1-to-f0; . . .g
or 1-to-f1; . . .g cardinality between its parent and itself.
The first cardinality has the semantics of ‘‘any,’’ denoted
by * inXML.The secondmeans ‘‘at least,’’ denoted byþ. For
example, consider the following DTD fragment:

<!ELEMENT author (name, address)>
<!ELEMENT name (firstname?, lastname)>

A naive algorithm will map every element into a sepa-
rate table, leading to excessive fragmentation of the
document, as follows:

author (address, name_id)
name (id, firstname, lastname)

The CPI algorithm converts the DTD fragment above
into a single relational table as author (firstname, last-
name, address).

In addition, semantics such as #REQUIRED in XML
can be enforced in SQL with NOT NULL. Parent-to-child
relationships are captured with KEYS in SQL to allow
join operations. Figure 5 overviews the CPI algorithm,
which uses a structure-based conversion algorithm (i.e.,
a hybrid algorithm) (13), as a basis and identifies various
semantic constraints in the XML model. The CPI algo-
rithm has been implemented in XPRESS, which reduces
the number of tables generated while preserving most
constraints.

Mapping Relational Schema to XML Schema

After obtaining the results in the relational format, we
may need to represent them in the XML format before
returning them back to users. XPRESS developed a Flat
Translation (FT) algorithm (13), which translates
tables in a relational schema to elements in an XML
schema and columns in a relational schema to attributes
in an XML schema. As FT translates the ‘‘flat’’ relational
model to a ‘‘flat’’ XML model in a one-to-one manner, it
does not use basic ‘‘non-flat’’ features provided by the
XML model such as representing subelements though
regular expression operator (e.g., ‘‘*’’ and ‘‘þ’’). As a result,
the NeT algorithm (11) is proposed to decrease data

redundancy and obtains a more intuitive schema by: (1)
removing redundancies caused by multivalued dependen-
cies; and (2) performing grouping on attributes. The NeT
algorithm, however, considering tables one at a time,
cannot obtain an overall picture of the relational schema
where many tables are interconnected with each other
through various other dependencies. The CoT algorithm
(11) uses inclusion dependencies (INDs) of relational
schema, such as foreign key constraints, to capture the
interconnections between relational tables and represent
them via parent-to-child hierarchical relationships in the
XML model.

Query relaxation via schema transformation (e.g.,
XPRESS) has the advantage of leveraging on the well-
developed relational databases and relational query
relaxation techniques. Information, however, may be lost
during the decomposition of hierarchical XML data into
‘‘flat’’ relational tables. For example, by transforming the
following XML schema into the relational schema author
(firstname, lastname, address), we lose the hierarchical
relationship between element author and element name,
as well as the information that element firstname is
optional.

<!ELEMENT author (name, address)>
<!ELEMENT name (firstname?,lastname)>

Further, this approach does not support structure
relaxations in the XML datamodel. To remedy these short-
comings, we shall perform query relaxation on the XML
model directly, which will provide both value relaxation
and structure relaxation.

A COOPERATIVE APPROACH FOR XML QUERY
RELAXATION

Query relaxation is often user-specific. For a given query,
different users may have different specifications about
which conditions to relax and how to relax them. Most
existing approaches on XML query relaxation (e.g., (10))
do not provide control during relaxation, which may yield
undesired approximate answers. To provide user-specific
approximate query answering, it is essential for an XML
system to have a relaxation language that allows users to
specify their relaxation control requirements and to have
the capability to control the query relaxation process.

Furthermore, query relaxation usually returns a set of
approximate answers. These answers should be ranked
based on their relevancy to both the structure and the
content conditions of the posed query. Most existing rank-
ing models (e.g., (14,15)) only measure the content simila-
rities between queries and answers, and thus are

Figure 5. Overviewof theCPIalgorithm.

DTD
Relational Scheme

Integrity Constraint

hybrid()

FindConstraints()

Relational SchemaCPI

2

1

3

4 COXML: COOPERATIVE XML QUERY ANSWERING

inadequate for ranking approximate answers that use
structure relaxations. Recently, in Ref. (16), the authors
proposed a family of structure scoring functions based on
the occurrence frequencies of query structures among data
without considering data semantics. Clearly, using the rich
semantics provided in XML data in design scoring func-
tions can improve ranking accuracy.

To remedy these shortcomings, we propose a new para-
digm for XML approximate query answering that places
users and their demands in the center of the design
approach. Based on this paradigm, we develop a coopera-
tive XML system that provides userspecific approximate
query answering. More specifically, we first, develop a
relaxation language that allows users to specify approxi-
mate conditions and control requirements in queries (e.g.,
preferred or unacceptable relaxations, nonrelaxable condi-
tions, and relaxation orders).

Second, we introduce a relaxation index structure that
clusters twigs into multilevel groups based on relaxation
types and their distances. Thus, it enables the system to
control the relaxation process based onusers’ specifications
in queries.

Third, we propose a semantic-based tree editing dis-
tance to evaluate XML structure similarities, which is
based on not only the number of operations but also
the operation semantics. Furthermore, we combine struc-
ture and content similarities in evaluating the overall
relevancy.

In Fig. 6, we present the architecture of our CoXML
query answering system. The system contains two major
parts: offline components for building relaxation indexes
and online components for processing and relaxing queries
and ranking results.

! Building relaxation indexes. The Relaxation Index
Builder constructs relaxation indexes, XML Type
Abstraction Hierarchy (XTAH), for a set of document
collections.

! Processing, relaxing queries, and ranking results.
When a user posts a query, the Relaxation Engine
first sends the query to an XML Database Engine to
search for answers that exactly match the structure

conditions and approximately satisfy the content con-
ditions in the query. If enough answers are found,
the Ranking Module ranks the results based on their
relevancy to the content conditions and returns the
ranked results to the user. If there are no answers or
insufficient results, then theRelaxationEngine, based
on the user-specified relaxation constructs and con-
trols, consults the relaxation indexes for the best
relaxed query. The relaxed query is then resubmitted
to the XML Database Engine to search for approxi-
mate answers. The Ranking Module ranks the
returned approximate answers based on their rele-
vancies to both structure and content conditions in the
query. This process will be repeated until either there
are enough approximate answers returned or
the query is no longer relaxable.

The CoXML system can run on top of any existing
XML database engine (e.g., BerkeleyDB3, Tamino4,
DB2XML5) that retrieves exactly matched answers.

XML QUERY RELAXATION LANGUAGE

A number of XML approximate search languages have
been proposed. Most extend standard query languages
with constructs for approximate text search (e.g., XIRQL
(15), TeXQuery (17), NEXI (18)). For example, TeXQuery
extends XQuery with a rich set of full-text search primi-
tives, such as proximity distances, stemming, and thesauri.
NEXI introduces about functions for users to specify
approximate content conditions. XXL (19) is a flexible
XML search language with constructs for users to specify
both approximate structure and content conditions. It,
however, does not allow users to control the relaxation
process. Users may often want to specify their preferred
or rejected relaxations, nonrelaxable query conditions, or
to control the relaxation orders among multiple relaxable
conditions.

To remedy these shortcomings, we propose an XML
relaxation language that allows users both to specify
approximate conditions and to control the relaxation pro-
cess. A relaxation-enabled query Q is a tuple (T , R, C, S),
where:

! T is a twig as described earlier;
! R is a set of relaxation constructs specifying which
conditions in T may be approximated when needed;

! C is a boolean combination of relaxation control stating
how the query shall be relaxed; and

! S is a stop condition indicating when to terminate the
relaxation process.

The execution semantics for a relaxation-enabled query
are as follows: We first search for answers that exactly
match the query; we then test the stop condition to check
whether relaxation is needed. If not, we repeatedly relax

relaxation-enabled
XML query

ranked
results

Ranking
Module

Relaxation
Engine

Relaxation
Indexes

Relaxation
Index Builder

XML
Database Engine

XML
Documents

CoXML

Figure 6. The CoXML system architecture.

3See http://www.sleepycat.com/
4See http://www.softwareag.com/tamino
5See http://www.ibm.com/software/data/db2/

COXML: COOPERATIVE XML QUERY ANSWERING 5

the twig based on the relaxation constructs and control
until either the stop condition is met or the twig cannot be
further relaxed.

Given a relaxation-enabled query Q, we use Q:T , Q:R,
Q:C, and Q:S to represent its twig, relaxation constructs,
control, and stop condition, respectively. Note that a twig is
required to specify a query, whereas relaxation constructs,
control, and stop condition are optional.When only a twig is
present, we iteratively relax the query based on similarity
metrics until the query cannot be further relaxed.

A relaxation construct for a query Q is either a specific
or a generic relaxation operation in any of the following
forms:

! rel(u,#), where u 2Q:T :V , specifies that node u may
be relabeled when needed;

! del(u), where u 2Q:T :V , specifies that node u may be
deleted if necessary; and

! gen(eu,v), where eu;v 2Q:T :E, specifies that edge eu,v
may be generalized when needed.

The relaxation control for a query Q is a conjunction of
any of the following forms:

! Nonrelaxable condition !r,where r2frelðu;#Þ; delðuÞ;
gen ðeu; vÞju; v 2 Q:T :V ; eu; v 2Q; T :Eg, specifies that
node u cannot be relabeled or deleted or edge eu,v
cannot be generalized;

! Pre ferðu; l1; . . . ; lnÞ, where u 2 Q:T :V and li is a label
ð1 ' i ' nÞ, specifies that node u is preferred to be
relabeled to the labels in the order of ðl1; . . . ; lnÞ;

! Reject(u; l1; . . . ; ln), where u 2 Q:T :V , specifies a set
of unacceptable labels for node u;

! RelaxOrderðr1; . . . ; rnÞ, where ri 2 Q:R: ð1 ' i ' nÞ,
specifies the relaxation orders for the constructs in
R to be ðr1; . . . ; rnÞ; and

! UseRTypeðrt1; . . . ; rtkÞ, where rti 2fnode relabel; node
delete; edge generalizegð1 ' i ' k ' 3Þ, specifies the set
of relaxation types allowed to be used. By default, all
three relaxation types may be used.

A stop condition S is either:

! AtLeast(n), where n is a positive integer, specifies the
minimum number of answers to be returned; or

! dðQ:T :T0Þ ' t, whereT0 stands for a relaxed twig and t
a distance threshold, specifies that the relaxation
should be terminated when the distance between
the original twig and a relaxed twig exceeds the
threshold.

Figure 7 presents a sample relaxation-enabled query.
The minimum number of answers to be returned is 20.
When relaxation is needed, the edge between body and
section may be generalized and node year may be deleted.
The relaxation control specifies that node body cannot be
deleted during relaxation. For instance, a section about
‘‘frequent itemset’’ in an article’s appendix part is irrele-
vant. Also, the edge between nodes article and title and the
edge between nodes article and body cannot be generalized.
For instance, an article with a reference to another article
that possesses a title on ‘‘data mining‘‘ is irrelevant.
Finally, only edge generalization and node deletion can
be used.

We now present an example of using the relaxation
language to represent query topics in INEX 056. Figure 8
presents Topic 267 with three parts: castitle (i.e., the query
formulated in an XPath-like syntax), description, and
narrative. The narrative part describes a user’s detailed in-
formation needs and is used for judging result relevancy.

The user considers an article’s title (atl) non-relaxable
and regards titles about ‘‘digital libraries’’ under the bib-
liography part (bb) irrelevant. Based on this narrative, we
formulate this topic using the relaxation language as
shown in Fig. 9. The query specifies that node atl cannot
be relaxed (either deleted or relabeled) and node fm cannot
be relabeled to bb.

Figure 8. Topic 267 in INEX 05.

<inex_topic topic_id="267" query_type="CAS" ct_no="113" >
<castitle>//article//fm//atl[about(., "digital libraries")]</castitle>
<description>Articles containing "digital libraries" in their title.</description>
<narrative>I'm interested in articles discussing Digital Libraries as their main subject.
Therefore I require that the title of any relevant article mentions "digital library" explicitly.
Documents that mention digital libraries only under the bibliography are not relevant, as well
as documents that do not have the phrase "digital library" in their title.</narrative>
</inex_topic>

article

title body

section“data
mining”

“frequent itemset”,
+algorithms

$1

year

2000

$3$2 $4

$5

R = {gen(e$4,$5), del($3)}

C = !del($4) ∧ !gen(e$1,$2) ∧ !gen(e$1, $4) ∧
UseRType(node_delete, edge_generalize)

S = AtLeast(20)

Figure 7. A sample relaxation-enabled query.

6Initiative for the evaluation of XML retrieval, See http://
inex.is.informatik.uni-duisburg.de/

C = !rel($3, -) ∧ !del($3) ∧ Reject($2, bb) article

fm

atl

“digital libraries”

$1

$2

$3

C = !rel($3, -) ∧ !del($3) ∧ Reject($2, bb) article

fm

atl

“digital libraries”

$1

$2

$3

article

fm

atl

“digital libraries”

$1

$2

$3

Figure 9. Relaxation specifications for Topic 267.

6 COXML: COOPERATIVE XML QUERY ANSWERING

XML RELAXATION INDEX

Several approaches for relaxing XML or graph queries
have been proposed (8,10,16,20,21). Most focus on efficient
algorithms for deriving top-k approximate answers with-
out relaxation control. For example, Amer-yahia et al. (16)
proposed a DAG structure that organizes relaxed twigs
based on their ‘‘consumption’’ relationships. Each node in
a DAG represents a twig. There is an edge from twig TA

to twig TB if the answers for TB is a superset of those for
TA. Thus, the twig represented by an ancestor DAG node
is always less relaxed and thus closer to the original twig
than the twig represented by a descendant node. There-
fore, the DAG structure enables efficient top-k searching
when there areno relaxation specifications.When there are
relaxation specifications, the approach in Ref. 16 can also
be adapted to top-k searching by adding a postprocessing
part that checks whether a relaxed query satisfies the
specifications. Such an approach, however, may not be
efficient when relaxed queries do not satisfy the relaxation
specifications.

To remedy this condition, we propose an XML relaxa-
tion index structure, XTAH, that clusters relaxed twigs
into multilevel groups based on relaxation types used by
the twigs and distances between them. Each group con-
sists of twigs using similar types of relaxations. Thus,
XTAH enables a systematic relaxation control based on
users’ specifications in queries. For example, Reject can
be implemented by pruning groups of twigs using unac-
ceptable relaxations. RelaxOrder can be implemented by
scheduling relaxed twigs fromgroups basedon the specified
order.

In the following, we first introduce XTAH and then
present the algorithm for building an XTAH.

XML Type Abstraction Hierarchy—XTAH

Query relaxation is a process that enlarges the search scope
for finding more answers. Enlarging a query scope can be
accomplished by viewing the queried object at different
conceptual levels.

In the relational database, a tree-like knowledge repre-
sentation called Type Abstraction Hierarchy (TAH) (3) is
introduced to provide systematic query relaxation gui-
dance. A TAH is a hierarchical cluster that represents
data objects atmultiple levels of abstractions,where objects
at higher levels are more general than objects at lower
levels. For example, Fig. 10 presents aTAH for brain tumor
sizes, in which a medium tumor size (i.e., 3–10 mm) is a
more abstract representation than a specific tumor size

(e.g., 10 mm). By such multilevel abstractions, a query can
be relaxed by modifying its conditions via generalization
(moving up the TAH) and specialization (moving down the
TAH). In addition, relaxation can be easily controlled via
TAH. For example, REJECT of a relaxation can be imple-
mented by pruning the corresponding node from a TAH.

To support query relaxation in the XML model, we
propose a relaxation index structure similar to TAH, called
XML Type Abstraction Hierarchy (XTAH). An XTAH for a
twig structure T, denoted as XTT , is a hierarchical cluster
that represents relaxed twigs of T at different levels of
relaxations based on the types of operations used by the
twigsand thedistances between them.More specifically, an
XTAH is a multilevel labeled cluster with two types of
nodes: internal and leaf nodes. A leaf node is a relaxed
twig of T. An internal node represents a cluster of relaxed
twigs that use similar operations and are closer to each
other by distance. The label of an internal node is the
common relaxation operations (or types) used by the twigs
in the cluster. The higher level an internal node in the
XTAH, the more general the label of the node, the less
relaxed the twigs in the internal node.

XTAH provides several significant advantages: (1) We
can efficiently relax a query based on relaxation cons-
tructs by fetching relaxed twigs from internal nodes whose
labels satisfy the constructs; (2) we can relax a query at
different granularities by traversing up and down an
XTAH; and (3) we can control and schedule query relaxa-
tion based on users’ relaxation control requirements. For
example, relaxation control such as nonrelaxable condi-
tions, Reject or UseRType, can be implemented by prun-
ing XTAH internal nodes corresponding to unacceptable
operations or types.

Figure 11 shows an XTAH for the sample twig in
Fig. 3(a).7 For ease of reference, we associate each node
in the XTAH with a unique ID, where the IDs of internal
nodes are prefixed with I and the IDs of leaf nodes are
prefixed with T’.

Given a relaxation operation r, let Ir be an internal
node with a label frg. That is, Ir represents a cluster of
relaxed twigs whose common relaxation operation is r. As
a result of the tree-like organization of clusters, each
relaxed twig belongs to only one cluster, whereas the
twig may use multiple relaxation operations. Thus, it
may be the case that not all the relaxed twigs that use
the relaxation operation r are within the group Ir. For
example, the relaxed twig T02, which uses two operations
genðe$1;$2Þ and genðe$4;$5Þ, is not included in the internal
node that represents fgenðe$4;$5Þg, I7, because T02 may
belong to either group I4 or group I7 but is closer to the
twigs in group I4.

To support efficient searching or pruning of relaxed
twigs in anXTAH that uses an operation r, we add a virtual
link from internal node Ir to internal node Ik, where Ik is
not a descendant of Ir, but all the twigs within Ik use
operation r. By doing so, relaxed twigs that use operation
r are either within group Ir or within the groups connected
to Ir by virtual links. For example, internal node I7 is
connected to internal nodes I16 and I35 via virtual links.

all

small medium large

…0 3mm 10mm 15mm4mm3mm 10mm …

Figure 10. A TAH for brain tumor size.

7Due to space limitations, we only show part of the XTAH here.

COXML: COOPERATIVE XML QUERY ANSWERING 7

Thus, all the relaxed twigs using the operation genðe$4;$5Þ
are within the groups I7, I16, and I35.

Building an XTAH

With the introduction of XTAH, we now present the algo-
rithm for building the XTAH for a given twig T.

Algorithm 1 Building the XTAH for a given twig T

Input: T: a twig
K: domain knowledge about similar node labels

Output: XTT : an XTAH for T
1: ROT GerRelaxOperations(T, K) {GerRelaxOperations

(T, K) returns a set of relaxation operations applicable to the
twig T based on the domain knowledge K}

2: let XTT be a rooted tree with four nodes: a root node relax
with three child nodes node_relabel, node_delete and
edge_generalization

3: for each relaxation operation r2ROT do
4: rtype the relaxation type of r
5: InsertXTNode(/relax/rtype, {r}) {InsertXTNode(p, n)

inserts node n into XTT under path p}
6: T0 the relaxed twig using operation r
7: InsertXTNode ð=relax=rtype; =frg;T0Þ
8: end for
9: for k ¼ 2 tojROTj do
10: Sk all possible combinations of k relaxation operations

in ROT

11: for each combination s2Sk do
12: let s ¼ fr1; . . . ; rkg
13: if the set of operations in s is applicable to T then
14: T0 the relaxed twig using the operations in s
15: Ii the node representing s # frigð1 ' i ' kÞ
16: Ij the node s.t. 8 i;dðT0; IjÞ ' dðT0; IiÞð1 ' i; j ' kÞ
17: InsertXTNodeð===Ij; fr1; . . . ; rkgÞ
18: InsertXTNodeð==Ij=fr1; . . . ; rkg; T0Þ
19: AddVLinkð==frjg; ==IjÞ {AddV Link(p1,p2) adds a

virtual link from the node under path p1 to the node
under path p2}

20: end if
21: end for
22: end for

In this subsection, we assume that a distance function
is available that measures the structure similarity
between twigs. Given any two twigs T1 and T2, we use
d(T1, T2) to represent the distance between the two twigs.
Given a twig T and an XTAH internal node I, we measure
the distance between the twig and the internal node,
d(T, I), as the average distance between T and any twig
T0 covered by I.

Algorithm 1 presents the procedure of building the
XTAH for twig T in a top-down fashion. The algorithm first
generates all possible relaxations applicable to T (Line 1).
Next, it initializes the XTAH with the top two level nodes
(Line 2). In Lines 3–8, the algorithm generates relaxed
twigs using one relaxation operation and builds indexes
on these twigs based on the type of the relaxation used:
For each relaxation operation r, it first adds a node to
represent r, then inserts the node into the XTAH based
on r’s type, and places the relaxed twig using r under the
node. In Lines 9–22, the algorithm generates relaxed twigs
using two or more relaxations and builds indexes on these
twigs. Let s be a set of k relaxation operations ðk(2Þ; T0 a
relaxed twig using the operations in s, and I an internal
node representing s. Adding node I into the XTAH is a
three-step process: (1) it first determines I’s parent in the
XTAH (Line 16). In principle, any internal node that uses a
subset of the operations in s canbe I’s parent. Thealgorithm
selects an internal node Ij to be I’s parent if the distance
between T0 and Ij is less than the distance between T0 and
other parent node candidates; (2) It then connects node I to
its parent Ij and adds a leaf node representing T0 to node I
(Lines 17 and 18). (3) Finally, it adds a virtual link from the
internal node representing the relaxation operation rj to
node I (Line 19), where rj is the operation that occurs in the
label of I but not in label of its parent node Ij .

article

body

section

$1

year $3title $2 $4

$5

Twig T

...…

…

relax

{gen(e$4, $5)}

{gen(e$1,$2),
gen(e$4,$5)}

{del($4)}

edge_generalization I1

I7I4

I16

I2

I10

I3

I11 I15

I0

node_delete

{gen(e$1,$2)} …

…

node_relabel

...

Virtual links

…T1
’ article

bodytitle

section

year T8
’ article

bodytitle

section

year

T25
’ article

title sectionyear

…

{del($3)}

I35 {del($3),
gen(e$4, $5)}

…

article

bodytitle

section

T15
’

article

bodytitle

section

T16
’

…

{del($2)}

article

bodyyear

section

T10
’

T2
’ article

bodytitle

section

year

Figure 11. An example of XML relaxation index structure for the twig T.

8 COXML: COOPERATIVE XML QUERY ANSWERING

QUERY RELAXATION PROCESS

Query Relaxation Algorithm

Algorithm 2 Query Relaxation Process

Input: XTT: an XTAH
Q ¼ fT ; R; C; Sg: a relaxation-enabled query

Output: A: a list of answers for the query Q
1: A SearchAnswer(Q:T); {Searching for exactly matched

answers for Q:T}
2: if (the stop condition Q:S is met) then
3: return A
4: end if
5: if (the relaxation controls Q:C are non-empty) then
6: PruneXTAH(XTT, Q:C) {Pruning nodes in XTT that

contain relaxed twigs using unacceptable relaxation
operations based on Q:C}

7: end if
8: if the relaxation constructs Q:R are non-empty then
9: while (Q:S is notmet)&&(not all the constructs inQ:R have

been processed) do
10: T0 the relaxed twig from XTT that best satisfies the

relaxation specifications Q:R & Q:C
11: Insert SearchAnswer(T0) into A
12: end while
13: end if
14: while (Q:T is relaxable)&&(Q:S is not met) do
15: T0 the relaxed twig from XTT that is closest toQ:T based

on distance
16: Insert SearchAnswer(T0) into A
17: end while
18: return A

Figure 12 presents the control flow of a relaxation pro-
cess based on XTAH and relaxation specifications in a
query. The Relaxation Control module prunes irrelevant
XTAH groups corresponding to unacceptable relaxation
operations or types and schedules relaxation operations
based on Prefer and RelaxOrder as specified in the query.
Algorithm 2 presents the detailed steps of the relaxation
process:

1. Given a relaxation-enabled query Q ¼ fT ; R; C; Sg
andanXTAHforQ:T , the algorithmfirst searches for
exactly matched answers. If there are enough num-
ber of answers available, there is no need for relaxa-
tion and the answers are returned (Lines 1–4).

2. If relaxation isneeded, basedon the relaxation control
Q:C (Lines 5–7), the algorithm prunes XTAH internal
nodes that correspond to unacceptable operations

such as nonrelaxable twig nodes (or edges), unaccep-
table node relabels, and rejected relaxation types.
This step can be efficiently carried out by using
internal node labels and virtual links. For example,
the relaxation control in the sample query (Figure 7)
specifies that only node_delete and edge_generaliza-
tion may be used. Thus, any XTAH node that uses
node_relabel, eitherwithin group I2 or connected to I2
by virtual links, is disqualified from searching. Simi-
larly, the internal nodes I15 and I4, representing the
operations del($4) and gen(e$1, $2), respectively, are
pruned from the XTAH by the Relaxation Control
module.

3. After pruning disqualified internal groups, based on
relaxation constructs and control, such as RelaxOr-
der and Prefer, the Relaxation Control module sche-
dules and searches for the relaxed query that best
satisfies users’ specifications from the XTAH. This
step terminates when either the stop condition ismet
or all the constructs have been processed. For exam-
ple, the sample query contains two relaxation con-
structs: gen(e$4,$5) and del($3). Thus, this step selects
the best relaxed query from internal groups, I7 and
I11, representing the two constructs, respectively.

4. If further relaxation is needed, the algorithm then
iteratively searches for the relaxed query that is
closest to the original query by distance, which
may use relaxation operations in addition to those
specified in the query. This process terminates when
either the stop condition holds or the query cannot be
further relaxed.

5. Finally, the algorithm outputs approximate answers.

Searching for Relaxed Queries in an XTAH

We shall now discuss how to efficiently search for the
best relaxed twig that has the least distance to the query
twig from its XTAH in Algorithm 2.

A brute-force approach is to select the best twig by
checking all the relaxed twigs at the leaf level. For a
twigTwithm relaxation operations, the number of relaxed
twigs can be up to 2m. Thus, the worst case time complexity
for this approach is O(2m), which is expensive.

To remedy this condition, we propose to assign repre-
sentatives to internal nodes, where a representative sum-
marizes the distance characteristics of all the relaxed twigs
covered by a node. The representatives facilitate the
searching for the best relaxed twig by traversing an

Query
Processing

Satisfactory
Answers?

Ranking

Relaxation-
enabled Query

Ranked Answers

XTAH

YesNo

Relaxed
Queries

Relaxation Control
(Pruning & Scheduling)

Figure 12. Query relaxation control flow.

COXML: COOPERATIVE XML QUERY ANSWERING 9

XTAH in a top-down fashion, where the path is determined
by the distance properties of the representatives. By doing
so, the worst case time complexity of finding the best
relaxed query is O(d * h), where d is the maximal degree
of an XTAHnode and h is the height of the XTAH.Given an
XTAH for a twig T with m relaxation operations, the
maximal degree of any XTAH node and the depth of the
XTAH are both O(m). Thus, the time complexity of the
approach is O(m2), which is far more efficient than the
brute-force approach (O(2m)).

In this article, we use M-tree (22) for assigning repre-
sentatives to XTAH internal nodes. M-tree provides an
efficient access method for similarity search in the ‘‘metric
space,’’ where object similarities are defined by a distance
function. Given a tree organization of data objects where
all the data objects are at the leaf level, M-tree assigns a
data object covered by an internal node I to be the repre-
sentative object of I. Each representative object stores
the covering radius of the internal node (i.e., the maximal
distance between the representative object and any data
object covered by the internal node). These covering radii
are thenused in determining the path to a data object at the
leaf level that is closest to a query object during similarity
searches.

XML RANKING

Query relaxation usually generates a set of approximate
answers, which need to be ranked before being returned to
users. A query contains both structure and content condi-
tions. Thus, we shall rank an approximate answer based on
its relevancy to both the structure and content conditions
of the posed query. In this section, we first present how
to compute XML content similarity, then describe how to
measure XML structure relevancy, and finally discuss how
to combine structure relevancy with content similarity to
produce the overall XML ranking.

XML Content Similarity

Given an answer A and a query Q, the content similarity
between the answer and the query, denoted as cont_sim(A
and Q), is the sum of the content similarities between the
data nodes and their corresponding matched query nodes.
That is,

cont simðA;QÞ ¼
X

v2A; $u2Q:T :n;umatches $u

cont simðv; $uÞ

(1)

For example, given the sample twig in Fig. 2, the set of
nodes {1, 2, 6, 7, 8} in the sample data tree is an answer.
The content similarity between the answer and the twig
equals to cont_sim(2, $2)þ cont_sim(6, $3)þ cont_sim(8, $5).

We now present how to evaluate the content similarity
between a data node and a query node. Ranking models in
traditional IR evaluate the content similarity between a
document to a query and thus need to be extended to
evaluating the content similarity between an XML data

node anda query node. Therefore,we proposed an extended
vector space model (14) for measuring XML content simi-
larity, which is based on two concepts: weighted term
frequency and inverse element frequency.

Weighted TermFrequency. Due to the hierarchical struc-
ture of the XML data model, the text of a node is also
considered as a part of the ancestor nodes’ text, which
introduces the challenge of how to calculate the content
relevancy of an XML data node v to a query term t, where t
could occur in the text of any node nested within the node
v. For example, all three section nodes (i.e., nodes 8, 10, and
12) in the XML data tree (Fig. 1) contain the phrase
‘‘frequent itemsets’’ in their text parts. The phrase ‘‘fre-
quent itemsets’’ occurs at the title part of the node 8, the
paragraph part in the node 10, and the reference part in
the node 12. The same term occurring at the different
text parts of a node may be of different weights. For
example, a ‘‘frequent itemset’’ in the title part of a section
node has a higher weight than a ‘‘frequent itemset’’ in the
paragraph part of a section node, which, in turn, is more
important than a ‘‘frequent itemset’’ in the reference part
of a section node. As a result, it may be inaccurate to
measure the weight of a term t in the text of a data node
v by simply counting the occurrence frequency of the
term t in the text of the node v without distinguishing
the term’s occurrence paths within the node v.

To remedy this condition, we introduce the concept of
‘‘weighted term frequency,’’ which assigns the weight of a
term t in a data node v based on the term’s occurrence
frequency and the weight of the occurrence path. Given
a data node v and a term t, let p¼ v1.v2. . .vk be an occur-
rence path for the term t in the node v, where vk is a
descendant node of v, vk directly contains the term t, and
v! v1! . . . ! vk represents the path from the node v to
the node vk. Let w(p) and w(vi) denote the weight for the
path p and the node vi, respectively. Intuitively, the weight
of the path p ¼ v1.v2. . .vk is a function of the weights of
the nodes on the path (i.e., w(p) ¼ f(w(v1), . . . w(vk))), with
the following two properties:

1. f(w(v1), w(v2), . . ., w(vk)) is a monotonically increas-
ing function with respect to w(vi) (1 ' i ' k); and

2. f(w(v1), w(v2), . . ., w(vk))) ¼ 0 if any w(vi) ¼ 0 (1 '
i ' k).

The first property states that the path weight function
is a monotonically increasing function. That is, the weight
of a path is increasing if the weight of any node on the
path is increasing. The second property states that if
the weight of any node on the path is zero, then the weight
of the path is zero. For any node vi (1 ' i ' k) on the path p,
if the weight of the node vi is zero, then it implies that
users are not interested in the terms occurring under
the node vi. Therefore, any term in the text of either the
node vi or a descendant node of vi is irrelevant.

A simple implementation of the path weight func-
tion f(w(v1), w(v2), . . ., w(vk)) that satisfies the properties
stated above is to let the weight of a path equal to the

10 COXML: COOPERATIVE XML QUERY ANSWERING

product of the weights of all nodes on the path:

wðpÞ ¼
Yk

i¼1

wðviÞ (2)

With the introduction of the weight of a path, we shall
now define the weighted term frequency for a term t in a
data node v, denoted as t fw(v, t), as follows:

t fwðv; tÞ ¼
Xm

j¼1

wðpjÞ) tf ðv;pj; tÞ (3)

where m is the number of paths in the data node v con-
taining the term t and tf (v, pj, t) is the frequency of the
term t occurred in the node v via the path pj.

For example, Fig. 13 illustrates an example of an XML
data tree with the weight for each node shown in italic
beside the node. The weight for the keyword node is 5
(i.e., w(keyword)¼ 5). From Equation (2), we have
w(front_matter.keyword) ¼ 5*1 ¼ 5, w(body.section.para-
graph) ¼ 2*1*1 ¼ 2, and w(back_matter.reference) ¼ 0*1 ¼
0, respectively. The frequencies of the term ‘‘XML’’ in the
paths front_matter.keyword, body.section.paragraph, and
back_ matter.reference are 1, 2, and 1, respectively. There-
fore, fromEquation (3), theweighted term frequency for the
term ‘‘XML’’ in the data node article is 5*1þ 2*2þ 0*1¼ 9.

Inverse Element Frequency. Terms with different popu-
larity in XML data have different degrees of discrimi-
native power. It is well known that a term frequency (tf)
needs to be adjusted by the inverse document frequency
(idf) (23). A very popular term (with a small idf) is less
discriminative than a rare term (with a large idf). There-
fore, the second component in our content ranking model
is the concept of ‘‘inverse element frequencys’’ (ief), which
distinguishes terms with different discriminative powers
in XML data. Given a query Q and a term t, let $u be the
node in the twig Q:T whose content condition contains
the term t (i.e., t2 $u:cont). LetDN be the set of data nodes
such that each node in DN matches the structure condi-
tion related with the query node $u. Intuitively, the more
frequent the term t occurs in the text of the data nodes in
DN, the less discriminative power the term t has. Thus,
the inverse element frequency for the query term t can be
measured as follows:

ie f ð$u; tÞ ¼ log
N1

N2
þ 1

$
(4)

where N1 denotes the number of nodes in the set DN and
N2 represents the number of the nodes in the set DN
that contain the term t in their text parts.

For example, given the sample XML data tree (Fig. 1)
and the query twig (Fig. 2), the inverse element fre-
quency for the term ‘‘frequent itemset’’ can be calculated
as follows: First, the content condition of the query node
$5 contains the term ‘‘frequent itemset’’; second, there
are three data nodes (i.e., nodes 8, 10, and 12) that match
the query node $5; and third, all the three nodes contain
the term in their text. Therefore, the inverse element
frequency for the term ‘‘frequent itemset’’ is log(3/3 þ 1)
¼ log2. Similarly, as only two nodes (i.e., nodes 8 and 12)
contain the term ‘‘algorithms,’’ the inverse element fre-
quency for the term ‘‘algorithms’’ is log(3/2 þ 1) ¼ log(5/2).

Extended Vector Space Model. With the introduction
‘‘weighted term frequency’’ and ‘‘inverse element fre-
quency,’’ we now first present how we compute the con-
tent similarity between a data node and a query node and
then present how we calculate the content similarity
between an answer and a query.

Given a query node $u and a data node v, where the
node v matches the structure condition related with the
query node $u, the content similarity between the nodes v
and $u can be measured as follows:

cont simðv;$uÞ ¼
X

t2 $u:cont
wðmðtÞÞ) t fwðv; tÞ) ie f ð$u; tÞ (5)

where t is a term in the content condition of the node $u,
m(t) stands for the modifier prefixed with the term t (e.g.,
‘‘þ’’, ‘‘ ’’, ‘‘#’’), andw(m(t)) is theweight for the termmodifier
as specified by users.

For example, given the section node, $5, in the sample
twig (Fig. 2), the data node 8 in Fig. 1 is a match for the
twig node $5. Suppose that the weight for a ‘‘þ’’ term
modifier is 2 and the weight for the title node is 5, respec-
tively. The content similarity between the data node 8
and the twig node $5 equals to t fw(8, ‘‘frequent itemset’’))
ie f($5, ‘‘frequent itemset’’)þw(‘þ’)) t fw(8, ‘‘algorithms’’))
ief($5, ‘‘algorithms’’), which is 5) log2 þ 2) 5) log(5/2) ¼
18.22.Similarly, thedatanode2 is amatch for the twignode
title (i.e., $2) and the content similarity between them is
t fw(2, ‘‘data mining’’)) ie f($2, ‘‘data mining’’) ¼ 1.

Discussions. The extended vector space model has
shown to be very effective in ranking content similarities

1

5

2 0

1

2

3

4

5

7

6

8

front_matter

keyword

body

section

paragraph

back_matter

reference

XML

XML…XML

XML

1

1

1

article 1

i j

i: node id

j: node weight

1

5

2 0

1

2

3

4

5

7

6

8

front_matter

keyword

body

section

paragraph

back_matter

reference

XML

XML…XML

XML

1

1

1

article 1

i j

i: node id

j: node weight

i ji j

i: node id

j: node weight Figure 13. An example of weighted term frequency.

COXML: COOPERATIVE XML QUERY ANSWERING 11

of SCAS retrieval results8(14). SCAS retrieval results are
usually of relatively similar sizes. For example, for the
twig in Fig. 2, suppose that the node section is the target
node (i.e., whose matches are to be returned as answers).
All the SCAS retrieval results for the twig will be sections
inside article bodies. Results that approximatelymatch the
twig, however, could be nodes other than section nodes,
such as paragraph, body, or article nodes, which are of
varying sizes. Thus, to apply the extended vector space
model for evaluating content similarities of approximate
answers under this condition, we introduce the factor of
‘‘weighted sizes’’ into the model for normalizing the biased
effects caused by the varying sizes in the approximate
answers (24):

cont simðA;QÞ ¼
X

v2A; $u2 Q:T :V; vmatches $u

cont simðv; $uÞ
log2 wsizeðvÞ

(6)

where wsize(v) denotes the weighted size of a data node v.
Given an XML data node v, wsize(v) is the sum of the

number of terms directly contained in node v’s text, size-
(v.text), and the weighted size of all its child nodes adjusted
by their corresponding weights, as shown in the following
equation.

wsizeðvÞ ¼ sizeðv:textÞ þ
X

vi s:t: vjvi
wsizeðviÞ *wðviÞ (7)

For example, the weighted size of the paragraph node
equals the number of terms in its text part, because the
paragraph node does not have any child node.

Our normalization approach is similar to the scoring
formula proposed in Ref. 25, which uses the log of a docu-
ment size to adjust the product of t f and idf.

Semantic-based Structure Distance

The structure similarity between two twigs can be mea-
sured using tree editing distance (e.g., (26)), which is fre-
quently used for evaluating tree-to-tree similarities. Thus,
we measure the structure distance between an answer
A and a query Q, struct_dist(A, Q), as the editing distance
between the twig Q +T and the least relaxed twig T0,
d(Q:T , T0), which is the total costs of operations that relax
Q:T to T0:

struct distðA;QÞ ¼ dðQ:T ;T0Þ ¼
Xk

i¼1

costðriÞ (8)

where {r1, . . ., rk} is the set of operations that relaxes Q:T
to T0 and cost(ri) ð0 ' costðriÞ ' 1Þ is equal to the cost of
the relaxation operation rið1 ' i ' kÞ.

Existing edit distance algorithms do not consider ope-
ration cost. Assigning equal cost to each operation is
simple, but does not distinguish the semantics of different

operations. To remedy this condition, we propose a
semantic-based relaxation operation cost model.

We shall first present how we model the semantics of
XML nodes. Given an XML dataset D, we represent each
data node vi as a vector {wi1, wi2, . . ., wiN}, where N is the
total number of distinct terms in D and wij is the weight of
the jth term in the text of vi. The weight of a term may be
computed using tf*idf (23) by considering each node as a
‘‘document.’’ With this representation, the similarity
between two nodes can be computed by the cosine of their
corresponding vectors. The greater the cosine of the two
vectors, the semantically closer the two nodes.

We now present how to model the cost of an operation
based on the semantics of the nodes affected by the opera-
tion with regard to a twig T as follows:

! Node Relabel – rel(u, l)
A node relabel operation, rel(u, l), changes the label of
a node u from u.label to a new label l. The more
semantically similar the two labels are, the less the
relabel operationwill cost. The similarity between two
labels, u.label and l, denoted as sim(u.label, l), can be
measured as the cosine of their corresponding vector
representations in XML data. Thus, the cost of a
relabel operation is:

costðrelðu; lÞÞ ¼ 1# simðu:lable; lÞ (9)

For example, using the INEX 05 data, the cosine of
the vector representing section nodes and the vector
representing paragraph nodes is 0.99, whereas the
cosine of the vector for section nodes and the vector
for figure nodes is 0.38. Thus, it is more expensive to
relabel node section to paragraph than to figure.

! Node Deletion – del(u)
Deleting a node u from the twig approximates u to its
parent node in the twig, say v. The more semantically
similar node u is to its parent node v, the less the
deletion will cost. Let Vv=u and Vv be the two vectors
representing the data nodes satisfying v/u and v,
respectively. The similarity between v/u and v,
denoted as sim(v/u, v), can be measured as the cosine
of the two vectors Vv/u and Vv. Thus, a node deletion
cost is:

costðdelðuÞÞ ¼ 1# simðv=u; uÞ (10)

For example, using the INEX 05 data, the cosine of
the vector for section nodes inside body nodes and the
vector for body nodes is 0.99, whereas the cosine of
the vector for keyword nodes inside article nodes
and the vector for article nodes is 0.2714. Thus, delet-
ing the keyword node in Fig. 3(a) costs more than
deleting the section node.

! Edge Generalization – gen(ev,u)
Generalizing the edge between nodes $v and $u
approximates a child node v/u to a descendant node
v//u. The closer v/u is to v//u in semantics, the less
the edge generalization will cost. Let Vv/u and Vv//u

be two vectors representing the data nodes satisfying

8In a SCAS retrieval task, structure conditions must be matched
exactly whereas content conditions are to be approximately
matched.

12 COXML: COOPERATIVE XML QUERY ANSWERING

v/u and v//u, respectively. The similarity between v/
u and v//u, denoted as sim(v/u, v//u), can be mea-
sured as the cosine of the two vectors Vv/u and Vv//u.
Thus, the cost for an edge generalization can be mea-
sured as:

costðgenðev;uÞÞ ¼ 1# simðv=u; v==uÞ (11)

For example, relaxing article/title in Fig. 3(a) to
article//title makes the title of an article’s author
(i.e., /article/author/title) an approximate match.
As the similarity between an article’s title and an
author’s title is low, the cost of generalizing article/
title to article//title may be high.

Note that our cost model differs from Amer-Yahia et al.
(16) in that Amer-Yahia et al. (16) applies idf to twig
structures without considering node semantics, whereas
we applied tf*idf to nodes with regard to their correspond-
ing data content.

The Overall Relevancy Ranking Model

We now discuss how to combine structure distance and
content similarity for evaluating the overall relevancy.

Given a query Q, the relevancy of an answer A to the
query Q, denoted as sim(A, Q), is a function of two
factors: the structure distance between A and Q (i.e.,
struct_dist(A, Q)), and the content similarity between A
and Q, denoted as cont_sim(A, Q). We use our extended
vector space model for measuring content similarity (14).
Intuitively, the larger the structure distance, the less the
relevancy; the larger the content similarity, the greater

the relevancy. When the structure distance is zero
(i.e., exact structure match), the relevancy of the answer
to the query should be determined by their content
similarity only. Thus, we combine the two factors in a
way similar to the one used in XRank (27) for combining
element rank with distance:

simðA;QÞ ¼ astruct distðA;QÞ * cost simðA;QÞ (12)

where a is a constant between 0 and 1.

A SCALABLE AND EXTENSIBLE ARCHITECTURE

Figure 14 illustrates a mediator architecture framework
for a cooperative XML system. The architecture consists of
an application layer, amediation layer, and an information
source layer. The information source layer includes a set of
heterogeneous data sources (e.g., relational databases,
XML databases, and unstructured data), knowledge bases,
and knowledge base dictionaries or directories. The knowl-
edge base dictionary (or directory) stores the characteris-
tics of all theknowledgebases, includingXTAHanddomain
knowledge in the system. Non-XML data can be converted
into the XML format by wrappers. The mediation layer
consists of data source mediators, query parser mediators,
relaxationmediators, XTAHmediators, and directorymed-
iators. These mediators are selectively interconnected to
meet the specific application requirements. When the
demand for certain mediators increases, additional copies
of the mediators can be added to reduce the loading. The
mediator architecture allows incremental growth with
application, and thus the system is scalable. Further,

XML
DB

Unstructured
Data

Wrapper

Relational
DB

KB1
Dictionary/
Directory

...

KB
n

Application

Mediation

Information
Sources

QPM: Query Parser Mediator
DSM: Data Source Mediator
RM: Relaxation Mediator
XTM: XTAH Mediator
DM: Directory of Mediators

Mediation Capability

Mediation Requirement

Mediation Capability

Mediation Requirement

Wrapper

...

XML
DB

XML
DB

...

...
...

User

... ...

Application

... DMDMDM

QPM

RM

DSM

QPMQPM

RMRM

DSMDSM

QPM

RM

DSM

QPMQPM

RMRM

DSMDSM

QPM

RM

XTM

QPMQPM

RMRM

XTMXTM

QPM

RM

XTM

QPMQPM

RMRM

XTMXTM

Figure 14. A scalable and extensible
cooperative XML query answering system.

COXML: COOPERATIVE XML QUERY ANSWERING 13

different types of mediators can be interconnected and can
communicate with each other via a common communica-
tion protocol (e.g., KQML (28), FIPA9) to perform a joint
task. Thus, the architecture is extensible.

For query relaxation, based on the set of frequently used
query tree structures, the XTAHs for each query tree
structure can be generated accordingly. During the query
relaxation process, the XTAH manager selects the appro-
priate XTAH for relaxation. If there is no XTAH available,
the system generates the corresponding XTAH on-the-fly.

We shall now describe the functionalities of various
mediators as follows:

! Data Source Mediator (DSM)
The data source mediator provides a virtual database
interface to query different data sources that usually
have different schema. The data source mediator
maintains the characteristics of the underlying data
sources and provides a unified description of these
data sources. As a result, XML data can be accessed
from data sources without knowing the differences of
the underlying data sources.

! Query Parser Mediator (PM)
Thequery parsermediator parses the queries from the
application layer and transforms the queries into
query representation objects.

! Relaxation Mediator (RM)
Figure 15 illustrates the functional components of the
relaxationmediator,which consists of a pre-processor,
a relaxation manager, and a post-processor. The flow
of the relaxation process is depicted in Fig. 16.When a

relaxation-enabled query is presented to the relaxa-
tion mediator, the system first goes through a pre-
processing phase. During pre-processing, the system
transforms the relaxation constructs into standard
XML query constructs. All relaxation control opera-
tions specified in the query are processed and for-
warded to the relaxation manager and are ready for
use if the query requires relaxation. The modified
query is then presented to the underlying databases
for execution. If no answers are returned, then the
relaxation manager relaxes the query conditions
guided by the relaxation index (XTAH). We repeat
the relaxation process until either the stop condition is
met or the query is no longer relaxable. Finally, the
returned answers are forwarded to the post-proces-
sing module for ranking.

! XTAH Mediator (XTM)
TheXTAHmediator provides three conceptually sepa-
rate, yet interlinked functions to peer mediators:
XTAH Directory, the XTAH Management, and the
XTAH Editing facilities, as illustrated in Fig. 17.

Usually, a system contains a large number of
XTAHs. To allow other mediators to determine which
XTAHs exist within the system and their char-
acteristics, the XTAH mediator contains a directory.
This directory is searchable by the XML query tree
structures.

The XTAH management facility provides client
mediators with traversal functions and data extrac-
tion functions (for reading the information out of
XTAH nodes). These capabilities present a common
interface so that peer mediators can traverse and
extract data from an XTAH. Further, the XTAH

Figure 16. The flow chart of XML query relaxa-
tion processing.

Preprocessor

Query Processing

Postprocessor

Present Answers

Satisfactory
Answers?

Relaxation
ManagerXTAH

Query Relaxation

Parsed Query
Approximate

Answers

Relaxation Mediator

9See http://www.fipa.org.

Preprocessor

Relaxation
Manager

Post-
processor

Data Source
Mediator

XTAH
MediatorRanked

Answers

Figure 15. The relaxation mediator.

XTAH Management

XTAH Editor

XTAH Directory

Capability:
Generate XTAH
Browse XTAH
Edit and reformat XTAH
Traverse XTAH nodes

Requirements:
Data sources

Figure 17. The XTAH mediator.

14 COXML: COOPERATIVE XML QUERY ANSWERING

mediatorhasaneditor that allowsusers to editXTAHs
to suit their specific needs. The editor handles recal-
culation of all information contained within XTAH
nodes during the editing process and supports expor-
tation and importation of entire XTAHs if a peer
mediator wishes to modify it.

! Directory Mediator (DM)
The directory mediator provides the locations, char-
acteristics, and functionalities of all the mediators in
the system and is used by peermediators for locating a
mediator to perform a specific function.

A COOPERATIVE XML (CoXML) QUERY ANSWERING
TESTBED

A CoXML query answering testbed has been developed at
UCLA to evaluate the effectiveness of XML query relaxa-
tion through XTAH. Figure 18 illustrates the architecture
of CoXML testbed, which consists of a query parser, a
preprocessor, a relaxation manager, a database manager,
anXTAHmanager, anXTAHbuilder, and a post-processor.
We describe the functionality provided by each module as
follows:

! XTAHBuilder.Given a set of XMLdocuments and the
domain knowledge, theXTAHbuilder constructs a set
of XTAHs that summarizes the structure character-
istics of the data.

! Query Parser. The query parser checks the syntax of
the query. If the syntax is correct, then it extracts
information from theparsedquery and creates a query
representation object.

! Preprocessor. The pre-processor transforms relaxa-
tion constructs (if any) in the query into the standard
XML query constructs.

! Relaxation Manager. The relaxation manager per-
forms the following services: (1) building a relaxation
structure based on the specified relaxation constructs
and controls; (2) obtaining the relaxed query condi-
tions from the XTAH Manager; (3) modifying the
query accordingly; and (4) retrieving the exactly
matched answers.

! Database Manager. The database manager interacts
with an XML database engine and returns exactly
matched answers for a standard XML query.

! XTAH Manager. Based on the structure of the query
tree, theXTAHmanager selects an appropriate XTAH
to guide the query relaxation process.

! Post-processor. The post-processor takes unsorted
answers as input, ranks them based on both structure
and content similarities, and outputs a ranked list of
results.

EVALUATION OF XML QUERY RELAXATION

INEX is a DELOS working group10 that aims to provide a
means for evaluating XML retrieval systems in the form of
a large heterogeneous XML test collection and appropriate
scoring methods. The INEX test collection is a large set of
scientific articles, represented in XML format, from pub-
lications of the IEEE Computer Society covering a range of
computer science topics. The collection, approximately 500
megabytes, contains over 12,000 articles from 18 maga-
zines/transactions from the period of 1995 to 2004, where
an article (on average) consists of 1500 XML nodes. Differ-
ent magazines/transactions have different data organiza-
tions, although they use the same ontology for representing
similar content.

There are three types of queries in the INEX query sets:
content-only (CO), strict content and structure (SCAS), and
vague content and structure (VCAS). CO queries are tradi-
tional information retrieval (IR) queries that are written in
natural language and constrain the content of the desired
results. Content and structure queries not only restrict
content of interest but also contain either explicit or impli-
cit references to theXMLstructure. The difference between
a SCAS and a VCAS query is that the structure conditions
in a SCAS query must be interpreted exactly whereas the
structure conditions in a VCAS query may be interpreted
loosely.

To evaluate the relaxation quality of theCoXMLsystem,
we perform the VCAS retrieval runs on the CoXML testbed
and compare the results against the INEX’s relevance
assessments for the VCAS task, which can be viewed as
the ‘‘gold standard.’’ The evaluaion studies reveal the
expressiveness of the relaxation language and the effec-
tiveness of using XTAH in providing user-desired relaxa-
tion control. The evaluation results demonstrate that our
content similarity model has significantly high precision at
low recall regions. The model achieves the highest average
precision as comparedwith all the 38 official submissions in

e
Query
Parser

Pre-
processor

Database
Manager

XTAH
Manager

Relaxation
Manager

XTAH
Builder

…. Domain
Knowledge

XTAH

Post-
Processor

Relaxation-
enabled query

Ranked
Approximate

Answers

XML DB1XML DB1 XML DBnXML DBn

Figure 18. The architecture of the CoXML testbed.
10See http://www.iei.pi.cnr.it/DELOS

COXML: COOPERATIVE XML QUERY ANSWERING 15

INEX 03 (14). Furthermore, the evaluation results also
demonstrate that using the semantic-based distance func-
tion yields results with greater relevancy than using the
uniform-cost distance function. Comparing with other sys-
tems in INEX 05, our user-centeric relaxation approach
retrieves approximate answerswithgreater relevancy (29).

SUMMARY

Approximate matching of query conditions plays an impor-
tant role in XML query answering. There are two
approaches to XML query relaxation: either through
schema conversion or directly through the XML model.
Converting the XML model to the relational model by
schema conversion can leverage on the mature relational
model techniques, but information may be lost during such
conversions. Furthermore, this approach does not support
XML structure relaxation. Relaxation via the XML model
approach remedies these shortcomings. In this article, a
new paradigm for XML approximate query answering is
proposed that places users and their demands at the center
of the design approach. Based on this paradigm,we develop
an XML system that cooperates with users to provide user-
specific approximate query answering. More specifically, a
relaxation language is introduced that allows users to
specify approximate conditions and relaxation control
requirements inaposedquery.Wealso developa relaxation
index structure, XTAH, that clusters relaxed twigs into
multilevel groups based on relaxation types and their
interdistances. XTAH enables the system to provide user-
desired relaxation control as specified in the query.
Furthermore, a rankingmodel is introduced that combines
both content and structure similarities in evaluating the
overall relevancy of approximate answers returned from
query relaxation. Finally, a mediatorbased CoXML archi-
tecture is presented.The evaluation results using the INEX
test collection reveal the effectiveness of our proposed user-
centric XML relaxation methodology for providing user-
specific relaxation.

ACKNOWLEDGMENTS

The research and development of CoXML has been a team
effort.Wewould like to acknowledge our CoXMLmembers,
Tony Lee, Eric Sung, Anna Putnam, Christian Cardenas,
JosephChen, andRuzan Shahinian, for their contributions
in implementation, testing, and performance evaluation.

BIBLIOGRAPHY

1. S. Boag, D. Chamberlin, M. F Fernandez, D. Florescu, J.
Robie, and J. S. (eds.), XQuery 1.0: An XMLQuery Language.
Available http://www.w3.org/TR/xquery/.

2. W. W Chu ,Q. Chen, and A. Huang, Query Answering via
Cooperative Data Inference. J. Intelligent Information Sys-
tems (JIIS), 3 (1): 57–87, 1994.

3. W. Chu, H. Yang, K. Chiang, M. Minock, G. Chow, and C.
Larson, CoBase: A scalable and extensible cooperative infor-
mation system. J. Intell. Inform. Syst., 6 (11), 1996.

4. S. Chaudhuri and L. Gravano, Evaluating Top-k Selection
Queries. In Proceedings of 25th International Conference on
Very Large Data Bases, September 7–10, 1999, Edinburgh,
Scotland, UK.

5. T. Gaasterland, Cooperative answering through controlled
query relaxation, IEEE Expert, 12 (5): 48–59, 1997.

6. W.W. Chu, Cooperative Information Systems, in B. Wah (ed.),
The Encyclopedia of Computer Science and Engineering,
New York: Wiley, 2007.

7. Y. Kanza, W. Nutt, and Y. Sagiv, Queries with Incomplete
Answers Over Semistructured Data. In Proceedings of the
Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, May 31 – June 2, 1999,
Philadelphia, Pennsylvania.

8. Y. Kanza and Y. Sagiv, In Proceedings of the Twentieth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 21–23, 2001, Santa Barbara,
California.

9. T. Schlieder, In Proceedings of 10th International Conference
on Extending Database Technology, March 26–31, 2006,
Munich, Germany.

10. S. Amer-Yahia, S. Cho, and D. Srivastava, XML Tree Pattern
Relaxation. In Proceedings of 10th International Conference on
Extending Database Technology, March 26–31, 2006, Munich,
Germany.

11. D. Lee, M. Mani, and W. W Chu, Schema Conversions
Methods between XML and Relational Models, Knowledge
Transformation for the Semantic Web. Frontiers in Artificial
Intelligence and Applications Vol. 95, IOS Press, 2003,
pp. 1–17.

12. J. Shanmugasundaram,K. Tufte,G. He,C. Zhang,D. DeWitt
and J. Naughton. Relational Databases for Querying XML
Documents: Limitations and Opportunities. In Proceedings of
25th International Conference on Very Large Data Bases,
September 7–10, 1999, Edinburgh, Scotland, UK.

13. D. Lee and W.W Chu, CPI: Constraints-preserving Inlining
algorithm formappingXMLDTDto relational schema,J.Data
and Knowledge Engineering, Special Issue on Conceptual
Modeling, 39 (1): 3–25, 2001.

14. S. Liu, Q. Zou, and W. Chu, Configurable Indexing and Rank-
ing for XML Information Retrieval. In Proceedings of the 27th

Annual International ACMSIGIRConference onResearch and
Development in Information Retrieval, July 25–29, 2004,
Sheffield, UK.

15. N. Fuhr and K. Grobjohann, XIRQL: A Query Language for
Information Retrieval in XML Documents. In Proceedings of
the 24th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
September 9–13, 2001, New Orleans Louisiana.

16. S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and
D. Toman, Structure andContent Scoring for XML. InProceed-
ings of the 31st International Conference on Very Large Data
Bases, August 30–September 2, 2005, Trondheim, Norway.

17. S. Amer-Yahia, C. Botev, and J. Shanmugasundaram, TeXQu-
ery:AFull-Text SearchExtension toXQuery. InProceedings of
13th International World Wide Web Conference. May 17–22,
2004, New York.

18. A. Trotman andB. Sigurbjornsson, NarrowedExtendedXPath
I NEXI. In Proceedings of the 3rd Initiative of the Evaluation of
XML Retrieval (INEX 2004) Workshop, December 6–8, 2004,
Schloss Dagstuhl, Germany,

19. A. Theobald and G. Weikum, Adding Relevance to XML. In
Proceedings of the 3rd International Workshop on the Web and

16 COXML: COOPERATIVE XML QUERY ANSWERING

Databases, WebDB 2000, Adam’s, May 18–19, 2000, Dallas,
Texas.

20. A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivastava,
Adaptive Processing of Top-k Queries in XML. In Proceedings
of the21st InternationalConference onDataEngineering, ICDE
2005, April 5–8, 2005, Tokyo, Japan.

21. I. Manolescu, D. Florescu, and D. Kossmann, Answering
XML Queries on Heterogeneous Data Sources. In Proceedings
of 27th International Conference on Very Large Data Bases,
September 11–14, 2001, Rome, Italy.

22. P. Ciaccia, M. Patella, and P. Zezula, M-tree: An Efficient
Access Method for Similarity Search in Metric Spaces. In
Proceedings of 23rd International Conference on Very Large
Data Bases, August 25–29, 1997, Athens, Greece.

23. G. SaltonandM.JMcGill, Introduction toModern Information
Retrieval, New York: McGraw-Hill, 1983.

24. S. Liu, W. Chu, and R. Shahinian, Vague Content and Struc-
ture Retrieval(VCAS) for Document-Centric XML Retrieval.
Proceedings of the 8th International Workshop on the Web and
Databases (WebDB 2005), June 16–17, 2005, Baltimore,
Maryland.

25. W. B Frakes and R. Baeza-Yates, Information Retreival: Data
Structures and Algorithms, Englewood Cliffs, N.J.: Prentice
Hall, 1992.

26. K. ZhangandD. Shasha,Simple fast algorithms for theediting
distance between trees and related problems, SIAM J. Com-
put., 18 (6):1245– 1262, 1989.

27. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram,
XRANK: Ranked Keyword Search Over XML Document. In
Proceedings of the 2003 ACM SIGMOD International Confer-
ence on Management of Data, June 9–12, 2003, San Diego,
California.

28. T. Finin, D. McKay, R. Fritzson, andR. McEntire, KQML:An
information andknowledge exchangeprotocol, inK. Fuchi and
T. Yokoi, (eds), Knowledge Building and Knowledge Sharing,
Ohmsha and IOS Press, 1994.

29. S. Liu and W. W Chu, CoXML: A Cooperative XML Query
Answering System. Technical Report # 060014, Computer
Science Department, UCLA, 2006.

30. T. Schlieder and H. Meuss, Querying and ranking XML
documents, J. Amer. So. Inf. Sci. Technol., 53 (6):489.

31. J. Shanmugasundaram,K. Tufte,G. He,C. Zhang,D. DeWitt,
and J. Naughton, Relational Databases for Querying
XML Documents: Limitations and Opportunities. In VLDB,
1999.

WESLEY W. CHU

SHAORONG LIU

University of California,
Los Angeles

Los Angeles, California

COXML: COOPERATIVE XML QUERY ANSWERING 17

