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Abstract. In this chapter, three semantics-based schema conversion methods are pre-
sented: 1) CPI converts an XML schema to a relational schema while preserving se-
mantic constraints of the original XML schema, 2) NeT derives a nested structured
XML schema from a flat relational schema by repeatedly applying:tta¢ operator

so that the resulting XML schema becomes hierarchical, and 3) CoT takes a relational
schema as input, where multiple tables are interconnected through inclusion depen-
dencies and generates an equivalent XML schema as output.

1 Introduction

Recently, XML [1] has emerged as tle factostandard for data formats on the web. The

use of XML as the common format for representing, exchanging, storing, and accessing data
poses many new challenges to database systems. Since the majority of everyday data is still
stored and maintained in relational database systems, we expect that the needs to convert data
formats between XML and relational models will grow substantially. To this end, several
schema conversion algorithms have been proposed (e.g., [2, 3, 4, 5]). Although they work
well for the given applications, the XML-to-Relational or Relational-to-XML conversion al-
gorithms only capture thetructure of the original schema and largely ignore the hidden
semantic constraintsto clarify, consider the following DTD that models conference publi-
cations:

<IELEMENT conf(title,soc,year,mon?,paper+)>
<IELEMENT paper(pid,title,abstract?)>

Suppose the combination tifle  andyear uniquely identifies theonf . Using the
hybrid inlining algorithm [4], the DTD would be transformed to the following relational
schema:

conf (title,soc,year,mon)
paper (pid,title,conf _title,conf_year,abstract)

While the relational schema correctly captures the structural aspect of the DTD, it does not
enforce correct semantics. For instance, it cannot prevent attupkgper(100,'DTD...’,
'ER’,3000,...") from being inserted. However, tupte is inconsistent with the se-
mantics of the given DTD since the DTD implies that the paper cannot exist without be-
ing associated with a conference and there is apparently no conference “ER-3000” yet. In
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database terms, this kind of violation can be easily prevented bgcusion dependency
saying ‘paper[conf _title,conf _year] C confftitle,year]

The reason for this inconsistency between the DTD and the transformed relational schema
is that most of the proposed conversion algorithms, so far, have largely ignored the hidden
semantic constraintsf the original schema.

1.1 Related Work

Schema Conversion vs. Schema Matchindt is important to differentiate the problem that

we deal with in this chapter, namedsshema conversigoroblem, from another similar one
known asschema matchingroblem. Given aourceschemas; and atarget schema, the
schema matching problem finds a “mapping” that relates elemerig@ones ir¢;. On the

other hand, in the schema conversion problem, oiglaceschemas, is given and the goal

is to find atarget schemat, that is equivalent ta,. Often, the source and target schemas

in the schema matching problem belong to the same data malgl, relational model),
while they belong to different models in the schema conversion problem (e.g., relational and
XML models). Schema matching problem itself is a difficult problem with many important
applications and deserves special attention. For further discussion on the schema matching
problem, refer to [6] (survey), [7] (latest development), etc.

Between XML and Non-relational Models Schema conversion between different models
has been extensively investigated. Historically, the trend for schema conversion has always
been between consecutive models or models with overlapping time frames, as they have
evolved (e.g., between Network and Relational models [8, 9], between ER and OO mod-
els [10, 11], or between UML and XML models [12, 13, 14, 15]). For instance, [16] deals
with conversion problems in OODB area; since OODB is a richer environment than RDB,
their work is not readily applicable to our application. The logical database design methods
and their associated conversion techniques to other data models have been extensively stud-
ied in ER research. For instance, [17] presents an overview of such techniques. However,
due to the differences between ER and XML models, those conversion techniques need to be
modified substantially. In general, since works developed in this category are often ad hoc
and were aimed at particular applications, it is not trivial to apply them to schema conversion
between XML and relational models.

From XML to Relational : From XML to relational schema, several conversion algorithms
have been proposed recently. STORED [2] is one of the first significant attempts to store XML
data in relational databases. STORED uses a data mining technique to find a representative
DTD whose support exceeds the pre-defined threshold and using the DTD, converts XML
documents to relational format. Because [18] discusses template language-based conversion
from DTD to relational schema, it requires human experts to write an XML-based conversion
rule. [4] presents three inlining algorithms that focus on the table level of the schema con-
versions. On the contrary, [3] studies different performance issues among eight algorithms
that focus on the attribute and value level of the schema. Unlike these, we propose a method
where the hidden semantic constraints in DTDs are systematically found and translated into

There are cases where schema matching problem deals with a mapping between different data models (e.g.,
[6]), but we believe most of such cases can be replaced by: 1) a schema conversion between different models,
followed by 2) a schema matching within the same model.
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relational formats [19]. Since the method is orthogonal to the structure-oriented conversion
method, it can be used along with algorithms in [2, 18, 4, 3].

From Relational to XML : There have been different approaches for the conversion from the
relational model to XML model, such as XML Extender from IBM, XML-DBMS, SilkRoute [20],
and XPERANTO [5]. All of the above tools require the user to specify the mapping from the
given relational schema to XML schema. In XML Extender, the user specifies the mapping
through a language such as DAD or XML Extender Transform Language. In XML-DBMS,
a template-driven mapping language is provided to specify the mappings. SilkRoute pro-
vides a declarative query language (RXL) for viewing relational data in XML. XPERANTO
uses XML query language for viewing relational data in XML. Note that in SilkRoute and
XPERANTO, the user has to specify the query in the appropriate query language.

1.2 Overview of Three Schema Translation Algorithms

In this chapter, we present three schema conversion algorithms that not only capture the
structure, but also the semantics of the original schema.

1. CPI (Constraints-preserving Inlining Algorithm): identifies various semantics constraints
in the original XML schema and preserves them by rewriting them in the final relational
schema.

2. NeT (Nesting-based Translation Algorithm): derives a nested structure from a flat rela-
tional schema by repeatedly applying thest operator so that the resulting XML schema
becomes hierarchical. The main idea is to find a more intuitive element content model of
the XML schema that utilizes the regular expression operators provided by the XML
schema specification (e.g., “*” or “+”).

3. CoT (Constraints-based Translation Algorithm): Although NeT infers hidden character-
istics of data by nesting, it is only applicable to a single table at a time. Therefore, it is
unable to capture the overall picture of relational schema where multiple tables are in-
terconnected. To remedy this problem, CoT considers inclusion dependencies during the
translation, and merges multiple inter-connected tables into a coherent and hierarchical
parent-child structure in the final XML schema.

2 The CPI Algorithm

Transforming a hierarchical XML model to a flat relational model is not a trivial task due
to several inherent difficulties such as non-trivial 1-to-1 mapping, existence of set values,
complicated recursion, and/or fragmentation issues [4]. Most XML-to-Relational conversion
algorithms (e.qg., [18, 2, 3, 4]) have so far focused mainly on the issue of structural conver-
sion, largely ignoring the semantics that already existed in the original XML schema. Let us
first describe various semantic constraints that one can mine from the DTD. Throughout the
discussion, we will use the DTD and XML document in Tables 1 and 2 as examples.
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<IELEMENT conf (title,date,editor?,paper*)>

<IATTLIST conf id ID #REQUIRED>

<IELEMENT title  (#PCDATA)>

<IELEMENT date EMPTY>

<IATTLIST date year  CDATA #REQUIRED
mon CDATA #REQUIRED
day CDATA #IMPLIED>

<IELEMENT editor (person*)>

<IATTLIST editor eids IDREFS #IMPLIED>

<IELEMENT paper (title,contact?,author,cite?)>

<IATTLIST paper id ID #REQUIRED>

<IELEMENT contact EMPTY>

<IATTLIST contact aid IDREF #REQUIRED>

<IELEMENT author (person+)>

<IATTLIST author id ID #REQUIRED>

<IELEMENT person (name,(email|phone)?)>

<IATTLIST person id ID #REQUIRED>

<IELEMENT name EMPTY>

<IATTLIST name fn CDATA #IMPLIED
In CDATA #REQUIRED>

<I[ELEMENT email  (#PCDATA)>

<I[ELEMENT phone  (#PCDATA)>

<IELEMENT cite (paper*)>

<IATTLIST cite id ID #REQUIRED
format (ACM|IEEE) #IMPLIED>

Table 1: A DTD forConference

2.1 Semantic Constraints in DTDs

Cardinality Constraints: In a DTD declaration, there are only 4 possible cardinality rela-
tionships between an element and its sub-elements as illustrated below:

<IELEMENT article (title, author+, ref*, price?)>

1. (0,1): An element can have either zero or one sub-element. (e.g., sub-efgoent)
2. (1,1): An element must have one and only one sub-element. (e.g., sub-eliiment)
3. (0,N): An element can have zero or more sub-elements. (e.g., sub-el@ihgnt

4. (1,N): An element can have one or more sub-elements. (e.g., sub-ekamtizort )

Following the notations in [17], let us call each cardinality relationship as type (0,1), (1,1),
(O,N), (1,N), respectively. From these cardinality relationships, three major constraints can be
inferred. The first is whether or not the sub-element can be null. We use the not&tien “

()" to denote that an elemend cannot be null. This constraint is easily enforced byt L

or NOT NULLclause in SQL. The second is whether or not more than one sub-element
can occur. This is also known angleton constraintn [21] and is one kind of equality-
generating dependencies. The third, given an element, whether or not its sub-element should
occur. This is one kind of tuple-generating dependencies. The second and third types will be
further discussed below.

Inclusion Dependencies (INDs)AnN Inclusion Dependen@ssures that values in the columns
of one fragment must also appear as values in the columns of other fragments and is a gener-
alization of the notion ofeferential integrity
A trivial form of INDs found in the DTD is that “given an elemeft and its sub-element
Y, Y must be included inX (i.e.,Y C X)". For instance, from theonf element and its
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<conf id:“eIrOé"> . .
<title>Int’l Conf. on Conceptual Modeling</title>
<date> <year>2005</year> <mon>May</mon> <day>20</day> </date>
<editor eids="sheth bossy">
<person id="klavans"> . . .
<name fn="Judith" In="Klavans"/> <email>klavans@cs.columbia.edu</email>
</person>
</editor>
<paper id="p1"> )
<title>Indexing Model for Structured...</title>
<contact aid="dao"/>.
</p<a%Lgr>or> <person id="dao"><name fn="Tuong" In="Dao"/> </author>
<paper id="p2"> . . .
<title>Logical Information Modeling...</title>
<contact™ aid="shah"/>
<author> . " S " "
<person id="shah"> <name fn="Kshitij" In="Shah"/> </person>
<person id="sheth"> ) ) )
<name fn="Amit" In="Sheth"/> <email>amit@cs.uga.edu</email>
</person>
</au h%r>.. 100" f t="ACM">
="c rmat=
er |d0=' 3,p>

<CI£% al
<titte>Making Sense of Scientific...</title>
<author> =~ "
<person id="bossy">
<name fn="Marcia" In="Bossy"/> <phone>391.4337</phone>
</person> .
</author> </paper> </cite> </paper>
</conf>
<paper id="p7"> . .
<title>Consfraints-preserving Trans...</title>
<contact aid="lee"/>
<author> .
<person id="lee"> . )
<name fn="Dongwon" In="Lee"/> <email>dongwon@cs.ucla.edu</email>
</person> </author
<cite _id="c200" format="IEEE"/>
<[paper>

Table 2: An example XML document conforming to the DTD in Table 1.

four sub-elements in th€onference DTD, the following INDs can be found as long as
conf is not null: {conf title C conf, conf.date C conf, conf.editor

C conf, conf.paper C conf }. Another form of INDs can be found in the attribute
definition part of the DTD with the use of tHOREF(S) keyword. For instance, consider
thecontact andeditor elements inth€onference DTD shown below:

<IELEMENT person (name,(email|phone)?>
<IATTLIST person id ID #REQUIRED>
<IELEMENT contact EMPTY>

<IATTLIST contact aid IDREF #REQUIRED>
<IELEMENT editor (person*)>

<IATTLIST editor eids IDREFS #IMPLIED>

The DTD restricts thaid attribute of thecontact element such that it can only point to
theid attribute of theperson element. Further, theeids attribute can only point to mul-
tiple id attributes of thgperson element. As a result, the following INDs can be derived:
{editor.eids C person.id, contact.aid C person.id }. Such INDs can
best be enforced by the “foreign key” if the attribute being referenced is a primary key. Oth-
erwise, it needs to use tlEHECKASSERTION or TRIGGERSacility of SQL.

Equality-Generating Dependencies (EGDs)The Singleton Constrainf21] restricts an
element to have “at most” one sub-element. When an element Xygatisfies the sin-
gleton constraint towards its sub-element typeif an element instance of type X has
two sub-elements instances andy, of type Y, theny; andy, must be the same. This

2Precisely, an attribute withDREF type does not specify which element it should point to. This information
is available only by human experts. However, new XML schema languages such as XML-Schema and DSD can
express where the reference actually points to [22].
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Relationship Symbol notnull EGDs TGDs
(0,1) ? no yes no
(1,1 yes yes yes
(O,N) * no no no
(1,N) + yes no yes

Table 3: Cardinality relationships and their corresponding semantic constraints.

property is known agquality-Generating Dependencies (EGRs) is denoted by X —

Y” in database theory. For instance, two EG@sonf — conf.title, conf —
conf.date } can be derived from theonf element in Table 1. This kind of EGDs can
be enforced by an SQUNIQUEconstruct. In general, EGDs occur in the case of the (0,1)
and (1,1) mappings in the cardinality constraints.

Tuple-Generating Dependencies (TGDs)TGDs in a relational model require that some
tuples of a certain form be present in the table and use-thiesymbol. Two useful forms of
TGDs from DTD are thehild andparent constraint$21].

1. Child constraint: "Parent — Child" states that every element of tygéurent
must have at least one child element of typgild. This is the case of the (1,1) and
(1,N) mappings in the cardinality constraints. For instance, from the DTD in Table 1,
because theonf element must contain thigle  anddate sub-elements, the child
constrainttonf —» {title, date } holds.

2. Parentconstraint: "Child  — Parent” states that every element of typéild must
have a parent element of typrent. According to XML specification, XML documents
can start from any level of element without necessarily specifying its parent element,
when a root element is not specified ¥DOCTYPE root> . In the DTD in Table 1,
for instance, theditor anddate elements can have tloenf element as their parent.
Further, if we know that all XML documents were started at toaf element level,
rather than theditor ordate level, then the parent constraifeditor, date }—
conf holds. Note that thétle ~ — conf does not hold since thigle  element can
be a sub-element of either thenf or paper element.

2.2 Discovering and Preserving Semantic Constraints from DTDs

The CPI algorithm utilizes a structure-based conversion algorithm as a basis and identifies
various semantic constraints described in Section 2.1. We will ude/tiréd algorithm [4] as

the basis algorithm. CPI first construct®aD graphthat represents the structure of a given

DTD. A DTD graph can be constructed when parsing the given DTD. Its nodes are elements,
attributes, or operators in the DTD. Each element appears exactly once in the graph, while
attributes and operators appear as many times as they appear in the DTD. CPI then annotates
various cardinality relationships (summarized in Table 3) among nodes to each edge of the
DTD graph. Note that the cardinality relationship types in the graph consider not only element
vS. sub-element relationships but also element vs. attribute relationships. Figure 1 illustrates
an example of such an annotated DTD graph forGbaference DTD in Table 1.
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:l top node

0,1) ?
(1,1)

(ON) *
(1,N) +

Figure 1: An annotateBTD graphfor the Conference DTD in Table 1.

CREATE TABLE paper (

id NUMBER NOT NULL,
title VARCHAR(50) NOT NULL,
contact_aid VARCHAR(20),

cite_id VARCHAR(20),

cite_format VARCHAR(50) CHECK (VALUE IN ("ACM", "IEEE")),

root_elm VARCHAR(20) NOT NULL,

parent_elm VARCHAR(20),

fk_cite VARCHAR(20) CHECK (fk_cite IN (SELECT cite_id FROM paper)),
fk_conf VARCHAR(20),

PRIMARY KEY (id),

UNIQUE (cite_id),

FOREIGN KEY (fk_conf) REFERENCES conf(id),

FOREIGN KEY (contact_aid) REFERENCES person(id)

);

Figure 2: Final relational “schema” for thpaper element in theConference DTD in Table 1, generated by
CPI algorithm.

Once the annotated DTD graph is constructed, CPI follows the basic navigation method
provided by thehybrid algorithm; it identifiestop nodes[4, 19] that are the nodes: 1) not
reachable from any nodes (e.g., source node), 2) direct chilti"adr“ +” operator node, 3)
recursive node with indegree 1, or 4) one node between two mutually recursive nodes with
indegree= 1. Then, starting from each top nod@g inline all the elements and attributes at
leaf nodeseachable fronT" unless they are other top nodes. In doing so, each annotated car-
dinality relationship can be properly converted to its counterpart in SQL syntax as described
in Section 2.1. The details of the algorithm are beyond the scope of this chapter and interested
readers can refer to [19]. For instance, Figure 2 and Table 4 are such output relational schema
and data in SQL notation, automatically generated by the CPI algorithm.

3 The NeT Algorithm

The simplest Relational-to-XML translation method, termed as FT (Flat Translation) in [23],
is to translate 1) tables in a relational schema to elements in an XML schema and 2) columns
in a relational schema to attributes in an XML schema. FT is a simple and effective translation
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paper
id rootelm parentelm fkconf fkcite title contactaid citeid cite_format
pl conf conf er05 - Indexing ... dao - -
p2 conf conf er05 - Logical ... shah c100 ACM
p3 conf cite - c100 Making ... - - -

p7 paper - - - Constraints ... lee c200 IEEE

Table 4: Final relational “data” for theaper element in theConference DTD in Table 1, generated by CPI
algorithm.

algorithm. However, since FT translates the “flat” relational model to a “flat” XML model in
a one-to-one manner, it does not utilize several basic “non-flat” features provided by the
XML model for data modeling, such as representi@geating sub-elementisrough regular
expression operators (e.g., “*”, “+”). To remedy the shortcomings of FT, we propose the NeT
algorithm that utilizes variouslement content modeat$ the XML model. NeT uses theest
operator [24] to derive a “good” element content model.

Informally, for a tablet with a set of columng’, nestingon a non-empty columiX’ € C
collects all tuples that agree on the remaining colufins X into a set. Formally,

Definition 1 (Nest). [24]. Let ¢ be an-ary table with column sef’, and X € C' and
X = C — X. For each(n — 1)-tupley € II¢(t), we define am-tuple v* as follows:
v [X] =7, andy*[X] = {k[X] | k € t A &[X] = 7. Thennestx(t) = {v* | v € TI(¢)}.

After nestx(t), if column X only has a set with “single” valu¢v} for all the tuples,
then we say thatesting failedand we treafv} andv interchangeably (i.e{v} = v). Thus
when nesting failed, the following is trueestx (t) = ¢. Otherwise, if columnX has a set
with “multiple” values{uv., ..., vy } with & > 2 for at least one tuple, then we say thasting
succeeded

Example 1. Consider a table? in Table 5. Here we assume that the column®3, andC' are
non-nullable. In computingest 4(R) at (b), the first, third, and fourth tuples @t agree on
their values in columnsH, C) as (a, 10), while their values of the colurdrare all different.
Therefore, these different values are grouped (i.e., nested) into fls&8}. The result is
the first tuple of the tableest4(R) — ({1,2,3}, &, 10). Similarly, since the sixth and seventh
tuples of R agree on their values as (b, 20), they are grouped to &4ed}. In computing
nestg(R) at (c), there are no tuples i that agree on the values of the columag ().
Thereforenestg(R) = R. In computinguestc(R) at (d), since the first two tuples &f— (1,

a, 10) and (1, a, 20) — agree on the values of the columngy), they are grouped to (1, a,
{10,20}). Nested tables (e) through (j) are constructed similarly.

Since thenest operator requires scanning of the entire set of tuples in a given table,
it can be quite expensive. In addition, as shown in Example 1, there are various ways to
nest the given table. Therefore, it is important to find an efficient way (that usesthe
operator a minimum number of times) of obtaining an acceptable element content model.
For a detailed description on the various properties ofrihe operator, the interested are
referred to [23, 25].

Lemma 1. Consider a tableé with column set”, candidate keyss, K, ..., K, C C, and
column sef{ such thatk' = K;NK>N...NK,. Further, let|C| = nand|K| = m (n > m).
Then, the number of necessary nestidgsis bounded byv < 7" | m%

3Here, we only consider single attribute nesting.
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A B (C A B C
#1]1 a 10 aF B C 1 a 10 A B c*
#2|1 a 20 23 a 10 1 a 20 1 a {1020
#3112 a 10 '1' a 20 2 a 10 2 a 10
#4|13 a 10 1 b 10 3 a 10 3 a 10
45| 4 b 10 45 b 20 4 b 10 4 b {1020
#6 |4 b 20 ! 4 b 20 5 b 20
#7115 b 20 5 b 20
@R (b) nest4(R) (c)nestp(R) =R (d) nestc(R)
A* B C AY B OF b { 1320}
123 a 10 1 a {10,20 , o Uue
1 a 20 23 a 10 5 o 10
4 b 10 4 b {1020 2 b {1020
{45, b 20 5 b 20 5 b 20
@) :nzzi? gzzztsz: SZ%) (f) nest a(nesto(R)) (g) nestp(nesto(R))
AT B C AT B ct
{1,2,3 a 10 1 a {10,2¢
1 a 20 {23, a 10
4 b 10 4 b {1020
45 b 20 5 b 20
) nestc(nestp(nesta(R))) () nestp(nest(nestc(R)))
= nestg(nestc(nest a(R))) = nesta(nestg(nestc(R)))

Table 5: A relational table? and its various nested forms. Column names containing a set after nesting (i.e.,
nesting succeeded) are appended by “+” symbol.

Lemma 1 implies that when candidate key information is available, one can avoid un-
necessary nestings substantially. For instance, suppose attribated C' in Table 5 con-
stitute a key forR. Then, one needs to compute onhest4(R) at (b), nesto(R) at (d),
nestc(nest4(R)) at (€),nest4(nesto(R)) at (f) in Table 5.

After applying thenest operator to the given table repeatedly, there may remain several
nested tables where nesting succeeded. In general, the choice of the final schema should take
into consideration the semantics and usages of the underlying data or application and this
is where user intervention is beneficial. By default, without further input from users, NeT
chooses the nested table where the most number of nestings succeeded as the final schema,
since this is a schema which provides low “data redundancy”. The outline of the NeT algo-
rithm is as follows:

1. For each table; in the input relational schemR, apply thenest operator repeatedly until no
nesting succeeds.

2. Choose the best nested table based on the selected criteria. Denote thistféble.as, c;—1, ¢,
..., Cn), Where nesting succeeded on the colufmns. .., ck—1}.
(a) If k =1, follow the FT translation.
(b) Ifk>1,

i. For each column; (1 < i < k — 1), if ¢; was nullable inR, usec; for the element
content model, and,” otherwise.
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ii. Foreach colummr; (k < j <n),if ¢; was nullable irnR, usec;’- for the element content
model, and:; otherwise.

4 The CoT Algorithm

The NeT algorithm is useful for decreasing data redundancy and obtaining a more intuitive
schema by 1) removing redundancies caused by multivalued dependencies, and 2) performing
grouping on attributes. However, NeT considers tables one at a time, and cannot obtain an
overall pictureof the relational schema where many tables are interconnected with each other
through various other dependencies. To remedy this problem, we propose the CoT algorithm
that uses Inclusion Dependencies (INDs) of relational schema. General forms of INDs are
difficult to acquire from the database automatically. However, we shall consider the most
pervasive form of INDs, foreign key constraints, which can be queried through ODBC/JDBC
interface.

The basic idea of the CoT is the following: For two distinct tabieand ¢ with lists
of columnsX andY, respectively, suppose we have a foreign key constrairt C ¢[/],
wherea C X and C Y. Also suppose thail; C X is the key fors. Then, different
cardinality binary relationships betweerandt¢ can be expressed in the relational model by
a combination of the following: 1) is unique/not-unique, and 2)is nullable/non-nullable.
Then, the translation of two tablest with a foreign key constraint works as follows:

1. If «is non-nullable (i.e., none of the columnsmtan take null values), then:

(a) If a is unique, then there is B : 1 relationship betweer andt¢, and can be captured as
<IELEMENT t (Y, s?)>

(b) If «is not-unique, then there isla: n relationship between andt, and can be captured as
<IELEMENT t (Y, s*)>

2. If sis represented as a sub-element,d¢hen the key fos will change fromK to (Ks — «). The
key fort¢ will remain the same.

Extending this to the general case where multiple tables are interconnected via INDs,
consider the schema with a set of tables ...,¢,} and INDst;[a;] C t;[5;], wherei, j < n.
We consider only those INDs that are foreign key constraints (;&onstitutes the primary
key of the tablet;), and wheren; is non-nullable. The relationships among tables can be
captured by a graphical representation, termed IND-Graph.

Definition 2 (IND-Graph). An IND-GraphG = (V, F) consists of a node sét and a
directed edge sek, such that for each table, there exists a nod&; € V/, and for each
distinct IND¢;[a] C ¢;[f], there exists an edge;; € E from the nodé/; to V;.

Note the edge direction is reversed from the IND direction for convenience. Given a set
of INDs, the IND-Graph can be easily constructed. Once an IND-Graph G is constructed,
CoT needs to decide the starting point to apply translation rules. For that purpose, we use the
notion oftop nodes Intuitively, an element is a top node ifagannotbe represented as a sub-
element of any other element. LEdenote the set of top nodes. Then, CoT travefsassing
a Breadth-First Search (BFS), until it traverses all the nodes and edges, while capturing the
INDs on edges as either sub-elements (when the node is visited for the first time) or IDREF
attributes (when the node was visited already).
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student(Sid___, Name, Advisor) student(Advisor) C prof(Eid)
emp(Eid , Name, ProjName) emp(ProjName) C proj(Pname)
prof(Eid , Name, Teach) prof(Teach)  C course(Cid)
course(Cid _, Title, Room) prof(Eid, Name) C emp(Eid, Name)
dept(Dno , Mgr) dept(Mgr) < emp(Eid)
proj(Pname , Pmgr) proj(Pmgr) C emp(Eid)

Table 6: An example schema with associated INDs.

course

Figure 3: The IND-Graph representation of the schema in Tali@®nodeslenoted by rectangular nodes).

Example 2. Consider a schema and its associated INDs in Table 6. The IND-Graph with two
top nodes is shown in Figure 3: tpburse : There is no node, where there is an IND of the
form course|a] C t[3], and 2)emp: There is a cyclic set of INDs betweempandproj ,

and there exists no nodesuch that there is an IND of the foramp|[a]| C ¢[3] or projla] C

t[5]. Then,

e First, starting from a top nodeourse , do a BFS scan. Pull up a reachable nqutef
intocourse and label it as a sub-element YELEMENT course (Cid, Title,

Room, prof *)>. Similarly, the nodestudent is also pulled up into its parent node
prof by <IELEMENT prof (Eid, Name, student *)> . Since the nodstu-
dent is aleaf, no nodes can be pulled RIELEMENT student (Sid, Name)>

Since there is no more unvisited reachable node ftonrse , the scan stops.

Next, starting from another top no@enp, pull up neighboring noddept into empsim-
ilarly by <IELEMENT emp (Eid, Name, ProjName, dept *)> and <!ELE-
MENT dept (Dno, Mgr)> . Then, visita neighboring nogeof , butprof was vis-
ited already. To avoid data redundancy, an attribRef _prof is added teempaccord-
ingly. Since attributes in the left-hand side of the corresponding INDf (Eid, Name)
C emp(FEid, Name), form a super key, the attribuiRef prof is assigned typtDREF,
and notIDREFS: <!ATTLIST prof Eid ID> and<!ATTLIST emp Ref _prof
IDREF>.

Next, visit a nodgroj and pull it up toemp by <IELEMENT emp (Eid, Name,
ProjName, dept *, proj *)> and<!ELEMENT proj (Pname)> .Inthe nextstep,
visit a nodeemp from prof . Since it was already visited, an attribuRef _emp of type
IDREFS is added tqoroj , and the scan stops.

It is worthwhile to point out that there are several places in CoT where human experts

can help to find a better mapping based on the semantics and usages of the underlying data
or application.
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] DTD Semantics \ DTD Schema \ Relational Schema |
Name Domain Elm/Attr  ID/IDREF(S) | Table/Attr — — -0
novel literature 10/1 1/0 5/13 6 9 9
play Shakespeare 21/0 0/0 14/46 17 30 30
tstmt religious text 28/0 0/0 17/52 17 22 22
vCard businesscard 23/1 0/0 8/19 18 13 13
ICE contentsynd,| 47/157 0/0 27/283 43 60 60
MusicML music desc. 12/17 0/0 8/34 9 12 12
OSD  s/wdesc. 16/15 0/0 15/37 2 2 2
PML  web portal 46/293 0/0 41/355 29 36 36
Xbel bookmark 9/13 3/1 9/36 9 1 1
XMI metadata 94/633 31/102 129/3013 10 7 7
BSML DNAseq. | 112/2495 84/97 104/2685 99 33 33

Table 7: Summary of CPI algorithm.

5 Experimental Results
5.1 CPIResults

CPI was tested against DTDs gathered from OASFsr all cases, CPI successfully identi-
fied hidden semantic constraints from DTDs and correctly preserved them by rewriting them
in SQL. Table 7 shows a summary of our experimentation. Note that people seldom used
thelD andIDREF(S) constructs in their DTDs except in th&Ml andBSMLcases. The
number of tables generated in the relational schema was usually smaller than that of ele-
ments/attributes in DTDs due to the inlining effect. The only exception to this phenomenon
was theXMI case, where extensive use of types (0,N) and (1,N) cardinality relationships
resulted in many top nodes in the ADG.

The number of semantic constraints had a close relationship with the design of the DTD
hierarchy and the type of cardinality relationship used in the DTD. For instancéMhe
DTD had many type (0,N) cardinality relationships, which do not contribute to the semantic
constraints. As a result, the number of semantic constraints at the end was small, compared
to that of elements/attributes in the DTD. This was also true foaB®&case. On the other
hand, in thelCE case, since it used many type (1,1) cardinality relationships, it resulted in
many semantic constraints.

5.2 NeT Results

Our preliminary results comparing the goodness ofXiSehema obtained from NeT and FT

with that obtained from DB2XML v 1.3 [26] appeared in [23]. We further applied our NeT
algorithm on several test sets drawn from UCI KDDML® repositories, which contain a
multitude of single-table relational schemas and data. Sample results are shown in Table 8.
Two metrics are shown in Figure 4(a). A high value kestRaticshows that we did not per-

form unnecessary nesting and the high valueMalueRatioshows that the nesting removed

a great deal of redundancy.

4http:/lwww.oasis-open.org/cover/xml.html
Shttp://kdd.ics.uci.edu/
Shttp://www.ics.uci.edu/~mlearn/MLRepository.html
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] Test Set]| Attr. /tuple | NestRatio | ValueRatio | Size before / aftef Nested attr| Time (sec.)]

Balloons1 5/16 42 /64 80/22 0.455/0.152 3 1.08
Balloons2 5/16 42/ 64 80/22 0.455/0.150 3 1.07
Balloons3 5/16 40/ 64 80/42 0.455/0.260 3 1.14
Balloons4 5/16 42 /64 80/22 0.455/0.149 3 1.07
Hayes 6/132 1/6 792 /522 1.758/1.219 1 1.01
Bupa 71345 0/7 238712387 7.234/7.234 0 4.40
Balance 5/625 56 /65 3125/1120] 6.265/2.259 4 21.48
TA Eval 6/110 25317326 660 /534 1.559/1.281 5 24.83

Car 711728 1870/1957 | 12096 /779| 51.867/3.157 6 469.47

Flare 13/365 | 11651/13345 4745/2834| 9.533/5.715 4 6693.41

Table 8: Summary of NeT experimentations.

oeiesd
. # of successful nestin
NestRatio = - g
# of total nesting @ @ @
) # of original data values
ValueRatio = 375F fata values in nested table @

(a) Metrics (b) The IND-Graph representation of TPC-H schema

Figure 4: Metrics and IND-Graph.

In our experimentatioh we observed that most of the attempted nestings were successful,
and hence our optimization rules are quite efficient. In Table 8, we see that nesting was useful
for all data sets except for thigupa data set. Also nesting waspeciallyuseful for theCar
data set, where the size of the nested table is 6%lyf the original data set. Time required
for nesting is an important parameter, and it jointly depends on the number of attempted
nestings and the number of tuples. The number of attempted nestings depends on the number
of attributes, and increases drastically as the number of attributes increases. This is observed
for theFlare data set, where we have to do nesting on 13 attributes.

5.3 CoT Results

For testing CoT, we need some well-designed relational schema where tables are intercon-
nected via inclusion dependencies. For this purpose, we use the TPC-H schemd&,v 1.3.0
which is an ad-hoc, decision support benchmark and has 8 tables and 8 inclusion dependen-
cies. The IND-Graph for the TPC-H schema is shown in Figure 4(b). CoT identified two
top-nodes —part andregion , and eventually generated the XML document having in-
terwoven hierarchical structures; six of the eight inclusion dependencies are mapped using a
sub-element, and the remaining two are mapped USIREF attributes.

Figure 5 shows a comparison of the number of data values originally present in the
database, and the number of data values in the XML document generated by FT and CoT.
Because FT is a flat translation, the number of data values in the XML document generated

Available athttp://www.cs.ucla.edu/~mani/xml
8http://www.tpc.org/tpch/spec/h130.pdf
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150000

100000 r :

50000 | ]

# of data values in XML document

0 1 1 1
0 0.5 1 1.5 2 25

size of TPC-H raw data (MB)

Figure 5: Size comparison of two algorithms.

by FT is the same as the number of data values in the original data. However, CoT is able to
decrease the number of data values in the generated XML document by mot€%han

6 Conclusion

We have presented a method to transform a relational schema to an XML schema, and two
methods to transform an XML schema to a relational schema, bsthucturalandsemantic
aspects. All three algorithms are “correct” in the sense that they have all preserved the original
information of relational schema. For instance, using the notion of information capacity [27],
a theoretical analysis for the correctness of our translation procedures is possible; we can
actually show that CPI, NeT and CoT algorithms egeiivalence preserving conversions
Despite the difficulties in conversions between XML and relational models, there are
many practical benefits. We strongly believe that devising more accurate and efficient con-
version methodologies between XML and relational models is important. The prototypes of
our algorithms are available dtttp://www.cobase.cs.ucla.edu/projects/xpress/
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