
Schema Conversion Methods between XML
and Relational Models

Dongwon Lee, Penn State University
Murali Mani and Wesley W. Chu, University of California, Los Angeles

dongwon@psu.edu, mani@cs.ucla.edu, wwc@cs.ucla.edu

Abstract. In this chapter, three semantics-based schema conversion methods are pre-
sented: 1) CPI converts an XML schema to a relational schema while preserving se-
mantic constraints of the original XML schema, 2) NeT derives a nested structured
XML schema from a flat relational schema by repeatedly applying thenest operator
so that the resulting XML schema becomes hierarchical, and 3) CoT takes a relational
schema as input, where multiple tables are interconnected through inclusion depen-
dencies and generates an equivalent XML schema as output.

1 Introduction

Recently, XML [1] has emerged as thede factostandard for data formats on the web. The
use of XML as the common format for representing, exchanging, storing, and accessing data
poses many new challenges to database systems. Since the majority of everyday data is still
stored and maintained in relational database systems, we expect that the needs to convert data
formats between XML and relational models will grow substantially. To this end, several
schema conversion algorithms have been proposed (e.g., [2, 3, 4, 5]). Although they work
well for the given applications, the XML-to-Relational or Relational-to-XML conversion al-
gorithms only capture thestructureof the original schema and largely ignore the hidden
semantic constraints. To clarify, consider the following DTD that models conference publi-
cations:

<!ELEMENT conf(title,soc,year,mon?,paper+)>
<!ELEMENT paper(pid,title,abstract?)>

Suppose the combination oftitle andyear uniquely identifies theconf . Using the
hybrid inlining algorithm [4], the DTD would be transformed to the following relational
schema:

conf (title,soc,year,mon)
paper (pid,title,conf_title,conf_year,abstract)

While the relational schema correctly captures the structural aspect of the DTD, it does not
enforce correct semantics. For instance, it cannot prevent a tuplet1: paper(100,’DTD...’,
’ER’,3000,’...’) from being inserted. However, tuplet1 is inconsistent with the se-
mantics of the given DTD since the DTD implies that the paper cannot exist without be-
ing associated with a conference and there is apparently no conference “ER-3000” yet. In

2 D. Lee, M. Mani, and W. W. Chu

database terms, this kind of violation can be easily prevented by aninclusion dependency
saying “paper[conf title,conf year] ⊆ conf[title,year] ”.

The reason for this inconsistency between the DTD and the transformed relational schema
is that most of the proposed conversion algorithms, so far, have largely ignored the hidden
semantic constraintsof the original schema.

1.1 Related Work

Schema Conversion vs. Schema Matching: It is important to differentiate the problem that
we deal with in this chapter, named asschema conversionproblem, from another similar one
known asschema matchingproblem. Given asourceschemas1 and atarget schemat1, the
schema matching problem finds a “mapping” that relates elements ins1 to ones int1. On the
other hand, in the schema conversion problem, only asourceschemas2 is given and the goal
is to find atarget schemat2 that is equivalent tos2. Often, the source and target schemas
in the schema matching problem belong to the same data model1 (e.g., relational model),
while they belong to different models in the schema conversion problem (e.g., relational and
XML models). Schema matching problem itself is a difficult problem with many important
applications and deserves special attention. For further discussion on the schema matching
problem, refer to [6] (survey), [7] (latest development), etc.

Between XML and Non-relational Models: Schema conversion between different models
has been extensively investigated. Historically, the trend for schema conversion has always
been between consecutive models or models with overlapping time frames, as they have
evolved (e.g., between Network and Relational models [8, 9], between ER and OO mod-
els [10, 11], or between UML and XML models [12, 13, 14, 15]). For instance, [16] deals
with conversion problems in OODB area; since OODB is a richer environment than RDB,
their work is not readily applicable to our application. The logical database design methods
and their associated conversion techniques to other data models have been extensively stud-
ied in ER research. For instance, [17] presents an overview of such techniques. However,
due to the differences between ER and XML models, those conversion techniques need to be
modified substantially. In general, since works developed in this category are often ad hoc
and were aimed at particular applications, it is not trivial to apply them to schema conversion
between XML and relational models.

From XML to Relational : From XML to relational schema, several conversion algorithms
have been proposed recently. STORED [2] is one of the first significant attempts to store XML
data in relational databases. STORED uses a data mining technique to find a representative
DTD whose support exceeds the pre-defined threshold and using the DTD, converts XML
documents to relational format. Because [18] discusses template language-based conversion
from DTD to relational schema, it requires human experts to write an XML-based conversion
rule. [4] presents three inlining algorithms that focus on the table level of the schema con-
versions. On the contrary, [3] studies different performance issues among eight algorithms
that focus on the attribute and value level of the schema. Unlike these, we propose a method
where the hidden semantic constraints in DTDs are systematically found and translated into

1There are cases where schema matching problem deals with a mapping between different data models (e.g.,
[6]), but we believe most of such cases can be replaced by: 1) a schema conversion between different models,
followed by 2) a schema matching within the same model.

Schema Conversion Methods between XML and Relational Models 3

relational formats [19]. Since the method is orthogonal to the structure-oriented conversion
method, it can be used along with algorithms in [2, 18, 4, 3].

From Relational to XML : There have been different approaches for the conversion from the
relational model to XML model, such as XML Extender from IBM, XML-DBMS, SilkRoute [20],
and XPERANTO [5]. All of the above tools require the user to specify the mapping from the
given relational schema to XML schema. In XML Extender, the user specifies the mapping
through a language such as DAD or XML Extender Transform Language. In XML-DBMS,
a template-driven mapping language is provided to specify the mappings. SilkRoute pro-
vides a declarative query language (RXL) for viewing relational data in XML. XPERANTO
uses XML query language for viewing relational data in XML. Note that in SilkRoute and
XPERANTO, the user has to specify the query in the appropriate query language.

1.2 Overview of Three Schema Translation Algorithms

In this chapter, we present three schema conversion algorithms that not only capture the
structure, but also the semantics of the original schema.

1. CPI (Constraints-preserving Inlining Algorithm): identifies various semantics constraints
in the original XML schema and preserves them by rewriting them in the final relational
schema.

2. NeT (Nesting-based Translation Algorithm): derives a nested structure from a flat rela-
tional schema by repeatedly applying thenest operator so that the resulting XML schema
becomes hierarchical. The main idea is to find a more intuitive element content model of
the XML schema that utilizes the regular expression operators provided by the XML
schema specification (e.g., “*” or “+”).

3. CoT (Constraints-based Translation Algorithm): Although NeT infers hidden character-
istics of data by nesting, it is only applicable to a single table at a time. Therefore, it is
unable to capture the overall picture of relational schema where multiple tables are in-
terconnected. To remedy this problem, CoT considers inclusion dependencies during the
translation, and merges multiple inter-connected tables into a coherent and hierarchical
parent-child structure in the final XML schema.

2 The CPI Algorithm

Transforming a hierarchical XML model to a flat relational model is not a trivial task due
to several inherent difficulties such as non-trivial 1-to-1 mapping, existence of set values,
complicated recursion, and/or fragmentation issues [4]. Most XML-to-Relational conversion
algorithms (e.g., [18, 2, 3, 4]) have so far focused mainly on the issue of structural conver-
sion, largely ignoring the semantics that already existed in the original XML schema. Let us
first describe various semantic constraints that one can mine from the DTD. Throughout the
discussion, we will use the DTD and XML document in Tables 1 and 2 as examples.

4 D. Lee, M. Mani, and W. W. Chu

<!ELEMENT conf (title,date,editor?,paper*)>
<!ATTLIST conf id ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT date EMPTY>
<!ATTLIST date year CDATA #REQUIRED

mon CDATA #REQUIRED
day CDATA #IMPLIED>

<!ELEMENT editor (person*)>
<!ATTLIST editor eids IDREFS #IMPLIED>
<!ELEMENT paper (title,contact?,author,cite?)>
<!ATTLIST paper id ID #REQUIRED>
<!ELEMENT contact EMPTY>
<!ATTLIST contact aid IDREF #REQUIRED>
<!ELEMENT author (person+)>
<!ATTLIST author id ID #REQUIRED>
<!ELEMENT person (name,(email|phone)?)>
<!ATTLIST person id ID #REQUIRED>
<!ELEMENT name EMPTY>
<!ATTLIST name fn CDATA #IMPLIED

ln CDATA #REQUIRED>
<!ELEMENT email (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT cite (paper*)>
<!ATTLIST cite id ID #REQUIRED

format (ACM|IEEE) #IMPLIED>

Table 1: A DTD forConference .

2.1 Semantic Constraints in DTDs

Cardinality Constraints : In a DTD declaration, there are only 4 possible cardinality rela-
tionships between an element and its sub-elements as illustrated below:

<!ELEMENT article (title, author+, ref*, price?)>

1. (0,1): An element can have either zero or one sub-element. (e.g., sub-elementprice)

2. (1,1): An element must have one and only one sub-element. (e.g., sub-elementtitle)

3. (0,N): An element can have zero or more sub-elements. (e.g., sub-elementref)

4. (1,N): An element can have one or more sub-elements. (e.g., sub-elementauthor)

Following the notations in [17], let us call each cardinality relationship as type (0,1), (1,1),
(0,N), (1,N), respectively. From these cardinality relationships, three major constraints can be
inferred. The first is whether or not the sub-element can be null. We use the notation “X 9
∅” to denote that an elementX cannot be null. This constraint is easily enforced by theNULL
or NOT NULLclause in SQL. The second is whether or not more than one sub-element
can occur. This is also known assingleton constraintin [21] and is one kind of equality-
generating dependencies. The third, given an element, whether or not its sub-element should
occur. This is one kind of tuple-generating dependencies. The second and third types will be
further discussed below.

Inclusion Dependencies (INDs): An Inclusion Dependencyassures that values in the columns
of one fragment must also appear as values in the columns of other fragments and is a gener-
alization of the notion ofreferential integrity.

A trivial form of INDs found in the DTD is that “given an elementX and its sub-element
Y , Y must be included inX (i.e., Y ⊆ X)”. For instance, from theconf element and its

Schema Conversion Methods between XML and Relational Models 5

<conf id="er05">
<title>Int’l Conf. on Conceptual Modeling</title>
<date> <year>2005</year> <mon>May</mon> <day>20</day> </date>
<editor eids="sheth bossy">

<person id="klavans">
<name fn="Judith" ln="Klavans"/> <email>klavans@cs.columbia.edu</email>

</person>
</editor>
<paper id="p1">

<title>Indexing Model for Structured...</title>
<contact aid="dao"/>
<author> <person id="dao"><name fn="Tuong" ln="Dao"/> </author>

</paper>
<paper id="p2">

<title>Logical Information Modeling...</title>
<contact aid="shah"/>
<author>

<person id="shah"> <name fn="Kshitij" ln="Shah"/> </person>
<person id="sheth">

<name fn="Amit" ln="Sheth"/> <email>amit@cs.uga.edu</email>
</person>

</author>
<cite id="c100" format="ACM">

<paper id="p3">
<title>Making Sense of Scientific...</title>
<author>

<person id="bossy">
<name fn="Marcia" ln="Bossy"/> <phone>391.4337</phone>

</person>
</author> </paper> </cite> </paper>

</conf>
<paper id="p7">

<title>Constraints-preserving Trans...</title>
<contact aid="lee"/>
<author>

<person id="lee">
<name fn="Dongwon" ln="Lee"/> <email>dongwon@cs.ucla.edu</email>

</person> </author>
<cite id="c200" format="IEEE"/>

</paper>...

Table 2: An example XML document conforming to the DTD in Table 1.

four sub-elements in theConference DTD, the following INDs can be found as long as
conf is not null:{conf.title ⊆ conf, conf.date ⊆ conf, conf.editor
⊆ conf, conf.paper ⊆ conf }. Another form of INDs can be found in the attribute
definition part of the DTD with the use of theIDREF(S) keyword. For instance, consider
thecontact andeditor elements in theConference DTD shown below:

<!ELEMENT person (name,(email|phone)?>
<!ATTLIST person id ID #REQUIRED>
<!ELEMENT contact EMPTY>
<!ATTLIST contact aid IDREF #REQUIRED>
<!ELEMENT editor (person*)>
<!ATTLIST editor eids IDREFS #IMPLIED>

The DTD restricts theaid attribute of thecontact element such that it can only point to
the id attribute of theperson element2. Further, theeids attribute can only point to mul-
tiple id attributes of theperson element. As a result, the following INDs can be derived:
{editor.eids ⊆ person.id, contact.aid ⊆ person.id }. Such INDs can
best be enforced by the “foreign key” if the attribute being referenced is a primary key. Oth-
erwise, it needs to use theCHECK, ASSERTION, or TRIGGERSfacility of SQL.

Equality-Generating Dependencies (EGDs): The Singleton Constraint[21] restricts an
element to have “at most” one sub-element. When an element typeX satisfies the sin-
gleton constraint towards its sub-element typeY , if an element instancex of type X has
two sub-elements instancesy1 and y2 of type Y , theny1 and y2 must be the same. This

2Precisely, an attribute withIDREF type does not specify which element it should point to. This information
is available only by human experts. However, new XML schema languages such as XML-Schema and DSD can
express where the reference actually points to [22].

6 D. Lee, M. Mani, and W. W. Chu

Relationship Symbol not null EGDs TGDs
(0,1) ? no yes no
(1,1) yes yes yes
(0,N) * no no no
(1,N) + yes no yes

Table 3: Cardinality relationships and their corresponding semantic constraints.

property is known asEquality-Generating Dependencies (EGDs)and is denoted by “X →
Y ” in database theory. For instance, two EGDs:{conf → conf.title, conf →
conf.date } can be derived from theconf element in Table 1. This kind of EGDs can
be enforced by an SQLUNIQUEconstruct. In general, EGDs occur in the case of the (0,1)
and (1,1) mappings in the cardinality constraints.

Tuple-Generating Dependencies (TGDs): TGDs in a relational model require that some
tuples of a certain form be present in the table and use the “�” symbol. Two useful forms of
TGDs from DTD are thechild andparent constraints[21].

1. Child constraint: "Parent � Child" states that every element of typeParent
must have at least one child element of typeChild. This is the case of the (1,1) and
(1,N) mappings in the cardinality constraints. For instance, from the DTD in Table 1,
because theconf element must contain thetitle anddate sub-elements, the child
constraintconf � {title, date } holds.

2. Parent constraint: "Child � Parent" states that every element of typeChild must
have a parent element of typeParent. According to XML specification, XML documents
can start from any level of element without necessarily specifying its parent element,
when a root element is not specified by<!DOCTYPE root> . In the DTD in Table 1,
for instance, theeditor anddate elements can have theconf element as their parent.
Further, if we know that all XML documents were started at theconf element level,
rather than theeditor or date level, then the parent constraint{editor, date }�
conf holds. Note that thetitle � conf does not hold since thetitle element can
be a sub-element of either theconf or paper element.

2.2 Discovering and Preserving Semantic Constraints from DTDs

The CPI algorithm utilizes a structure-based conversion algorithm as a basis and identifies
various semantic constraints described in Section 2.1. We will use thehybridalgorithm [4] as
the basis algorithm. CPI first constructs aDTD graphthat represents the structure of a given
DTD. A DTD graph can be constructed when parsing the given DTD. Its nodes are elements,
attributes, or operators in the DTD. Each element appears exactly once in the graph, while
attributes and operators appear as many times as they appear in the DTD. CPI then annotates
various cardinality relationships (summarized in Table 3) among nodes to each edge of the
DTD graph. Note that the cardinality relationship types in the graph consider not only element
vs. sub-element relationships but also element vs. attribute relationships. Figure 1 illustrates
an example of such an annotated DTD graph for theConference DTD in Table 1.

Schema Conversion Methods between XML and Relational Models 7

date

year

mon

day

title

id name

fn ln email

contactaid

eids

person

conf

paper

id

id
top node

(0,1)

(1,1)
(1,1)

(0,N)

(1,N)

(0,N)

(0,1)
(1,1) editor

(0,N)

(0,1) (0,1)(1,1)

(1,1)
(1,1)

author(1,1)

(1,1)

cite

(0,1)(1,1)

(0,1)

(0,1)

(0,N)

(1,1)

(1,1)

(1,1)

(0,1)
(1,1)
(0,N)
(1,N)

?

*
+

id

(1,1)

format

phone

(0,1)

Figure 1: An annotatedDTD graphfor theConference DTD in Table 1.

CREATE TABLE paper (
id NUMBER NOT NULL,
title VARCHAR(50) NOT NULL,
contact_aid VARCHAR(20),
cite_id VARCHAR(20),
cite_format VARCHAR(50) CHECK (VALUE IN ("ACM", "IEEE")),
root_elm VARCHAR(20) NOT NULL,
parent_elm VARCHAR(20),
fk_cite VARCHAR(20) CHECK (fk_cite IN (SELECT cite_id FROM paper)),
fk_conf VARCHAR(20),
PRIMARY KEY (id),
UNIQUE (cite_id),
FOREIGN KEY (fk_conf) REFERENCES conf(id),
FOREIGN KEY (contact_aid) REFERENCES person(id)

);

Figure 2: Final relational “schema” for thepaper element in theConference DTD in Table 1, generated by
CPI algorithm.

Once the annotated DTD graph is constructed, CPI follows the basic navigation method
provided by thehybrid algorithm; it identifiestop nodes[4, 19] that are the nodes: 1) not
reachable from any nodes (e.g., source node), 2) direct child of “* ” or “ +” operator node, 3)
recursive node with indegree> 1, or 4) one node between two mutually recursive nodes with
indegree= 1. Then, starting from each top nodeT , inline all the elements and attributes at
leaf nodesreachable fromT unless they are other top nodes. In doing so, each annotated car-
dinality relationship can be properly converted to its counterpart in SQL syntax as described
in Section 2.1. The details of the algorithm are beyond the scope of this chapter and interested
readers can refer to [19]. For instance, Figure 2 and Table 4 are such output relational schema
and data in SQL notation, automatically generated by the CPI algorithm.

3 The NeT Algorithm

The simplest Relational-to-XML translation method, termed as FT (Flat Translation) in [23],
is to translate 1) tables in a relational schema to elements in an XML schema and 2) columns
in a relational schema to attributes in an XML schema. FT is a simple and effective translation

8 D. Lee, M. Mani, and W. W. Chu

paper
id root elm parentelm fk conf fk cite title contactaid cite id cite format
p1 conf conf er05 – Indexing ... dao – –
p2 conf conf er05 – Logical ... shah c100 ACM
p3 conf cite – c100 Making ... – – –
p7 paper – – – Constraints ... lee c200 IEEE

Table 4: Final relational “data” for thepaper element in theConference DTD in Table 1, generated by CPI
algorithm.

algorithm. However, since FT translates the “flat” relational model to a “flat” XML model in
a one-to-one manner, it does not utilize several basic “non-flat” features provided by the
XML model for data modeling, such as representingrepeating sub-elementsthrough regular
expression operators (e.g., “*”, “+”). To remedy the shortcomings of FT, we propose the NeT
algorithm that utilizes variouselement content modelsof the XML model. NeT uses thenest
operator [24] to derive a “good” element content model.

Informally, for a tablet with a set of columnsC, nestingon a non-empty columnX ∈ C
collects all tuples that agree on the remaining columnsC −X into a set3. Formally,

Definition 1 (Nest). [24]. Let t be a n-ary table with column setC, and X ∈ C and
X = C − X. For each(n − 1)-tuple γ ∈ ΠX(t), we define ann-tuple γ∗ as follows:
γ∗[X] = γ, andγ∗[X] = {κ[X] | κ ∈ t ∧ κ[X] = γ. Then,nestX(t) = {γ∗ | γ ∈ ΠX(t)}.

After nestX(t), if column X only has a set with “single” value{v} for all the tuples,
then we say thatnesting failedand we treat{v} andv interchangeably (i.e.,{v} = v). Thus
when nesting failed, the following is true:nestX(t) = t. Otherwise, if columnX has a set
with “multiple” values{v1, ..., vk} with k ≥ 2 for at least one tuple, then we say thatnesting
succeeded.

Example 1. Consider a tableR in Table 5. Here we assume that the columnsA, B, andC are
non-nullable. In computingnestA(R) at (b), the first, third, and fourth tuples ofR agree on
their values in columns (B, C) as (a, 10), while their values of the columnA are all different.
Therefore, these different values are grouped (i.e., nested) into a set{1,2,3}. The result is
the first tuple of the tablenestA(R) – ({1,2,3}, a, 10). Similarly, since the sixth and seventh
tuples ofR agree on their values as (b, 20), they are grouped to a set{4,5}. In computing
nestB(R) at (c), there are no tuples inR that agree on the values of the columns (A, C).
Therefore,nestB(R) = R. In computingnestC(R) at (d), since the first two tuples ofR – (1,
a, 10) and (1, a, 20) – agree on the values of the columns (A, B), they are grouped to (1, a,
{10,20}). Nested tables (e) through (j) are constructed similarly.

Since thenest operator requires scanning of the entire set of tuples in a given table,
it can be quite expensive. In addition, as shown in Example 1, there are various ways to
nest the given table. Therefore, it is important to find an efficient way (that uses thenest
operator a minimum number of times) of obtaining an acceptable element content model.
For a detailed description on the various properties of thenest operator, the interested are
referred to [23, 25].

Lemma 1. Consider a tablet with column setC, candidate keys,K1, K2, . . . , Kn ⊆ C, and
column setK such thatK = K1∩K2∩ . . .∩Kn. Further, let|C| = n and|K| = m (n ≥ m).
Then, the number of necessary nestings,N , is bounded byN ≤

∑m
k=1 mk

3Here, we only consider single attribute nesting.

Schema Conversion Methods between XML and Relational Models 9

A B C
#1 1 a 10
#2 1 a 20
#3 2 a 10
#4 3 a 10
#5 4 b 10
#6 4 b 20
#7 5 b 20

A+ B C
{1,2,3} a 10

1 a 20
4 b 10

{4,5} b 20

A B C
1 a 10
1 a 20
2 a 10
3 a 10
4 b 10
4 b 20
5 b 20

A B C+

1 a {10,20}
2 a 10
3 a 10
4 b {10,20}
5 b 20

(a)R (b) nestA(R) (c) nestB(R) = R (d) nestC(R)

A+ B C
{1,2,3} a 10

1 a 20
4 b 10

{4,5} b 20

A+ B C+

1 a {10,20}
{2,3} a 10

4 b {10,20}
5 b 20

A B C+

1 a {10,20}
2 a 10
3 a 10
4 b {10,20}
5 b 20

(e)
nestB(nestA(R))

= nestC(nestA(R)) (f) nestA(nestC(R)) (g) nestB(nestC(R))

A+ B C
{1,2,3} a 10

1 a 20
4 b 10

{4,5} b 20

A+ B C+

1 a {10,20}
{2,3} a 10

4 b {10,20}
5 b 20

(h)
nestC(nestB(nestA(R)))

= nestB(nestC(nestA(R))) (i)
nestB(nestA(nestC(R)))

= nestA(nestB(nestC(R)))

Table 5: A relational tableR and its various nested forms. Column names containing a set after nesting (i.e.,
nesting succeeded) are appended by “+” symbol.

Lemma 1 implies that when candidate key information is available, one can avoid un-
necessary nestings substantially. For instance, suppose attributesA andC in Table 5 con-
stitute a key forR. Then, one needs to compute only:nestA(R) at (b), nestC(R) at (d),
nestC(nestA(R)) at (e),nestA(nestC(R)) at (f) in Table 5.

After applying thenest operator to the given table repeatedly, there may remain several
nested tables where nesting succeeded. In general, the choice of the final schema should take
into consideration the semantics and usages of the underlying data or application and this
is where user intervention is beneficial. By default, without further input from users, NeT
chooses the nested table where the most number of nestings succeeded as the final schema,
since this is a schema which provides low “data redundancy”. The outline of the NeT algo-
rithm is as follows:

1. For each tableti in the input relational schemaR, apply thenest operator repeatedly until no
nesting succeeds.

2. Choose the best nested table based on the selected criteria. Denote this table ast′i(c1, . . . , ck−1, ck,
. . . , cn), where nesting succeeded on the columns{c1, . . . , ck−1}.

(a) If k = 1, follow the FT translation.

(b) If k > 1,

i. For each columnci (1 ≤ i ≤ k − 1), if ci was nullable inR, usec∗i for the element
content model, andc+

i otherwise.

10 D. Lee, M. Mani, and W. W. Chu

ii. For each columncj (k ≤ j ≤ n), if ci was nullable inR, usec?
j for the element content

model, andcj otherwise.

4 The CoT Algorithm

The NeT algorithm is useful for decreasing data redundancy and obtaining a more intuitive
schema by 1) removing redundancies caused by multivalued dependencies, and 2) performing
grouping on attributes. However, NeT considers tables one at a time, and cannot obtain an
overall pictureof the relational schema where many tables are interconnected with each other
through various other dependencies. To remedy this problem, we propose the CoT algorithm
that uses Inclusion Dependencies (INDs) of relational schema. General forms of INDs are
difficult to acquire from the database automatically. However, we shall consider the most
pervasive form of INDs, foreign key constraints, which can be queried through ODBC/JDBC
interface.

The basic idea of the CoT is the following: For two distinct tabless and t with lists
of columnsX andY , respectively, suppose we have a foreign key constraints[α] ⊆ t[β],
whereα ⊆ X andβ ⊆ Y . Also suppose thatKs ⊆ X is the key fors. Then, different
cardinality binary relationships betweens andt can be expressed in the relational model by
a combination of the following: 1)α is unique/not-unique, and 2)α is nullable/non-nullable.
Then, the translation of two tabless, t with a foreign key constraint works as follows:

1. If α is non-nullable (i.e., none of the columns ofα can take null values), then:

(a) If α is unique, then there is a1 : 1 relationship betweens and t, and can be captured as
<!ELEMENT t (Y, s?)> .

(b) If α is not-unique, then there is a1 : n relationship betweens andt, and can be captured as
<!ELEMENT t (Y, s*)> .

2. If s is represented as a sub-element oft, then the key fors will change fromKs to (Ks − α). The
key for t will remain the same.

Extending this to the general case where multiple tables are interconnected via INDs,
consider the schema with a set of tables{t1, ..., tn} and INDsti[αi] ⊆ tj[βj], wherei, j ≤ n.
We consider only those INDs that are foreign key constraints (i.e.,βj constitutes the primary
key of the tabletj), and whereαi is non-nullable. The relationships among tables can be
captured by a graphical representation, termed IND-Graph.

Definition 2 (IND-Graph). An IND-Graph G = (V, E) consists of a node setV and a
directed edge setE, such that for each tableti, there exists a nodeVi ∈ V , and for each
distinct INDti[α] ⊆ tj[β], there exists an edgeEji ∈ E from the nodeVj to Vi.

Note the edge direction is reversed from the IND direction for convenience. Given a set
of INDs, the IND-Graph can be easily constructed. Once an IND-Graph G is constructed,
CoT needs to decide the starting point to apply translation rules. For that purpose, we use the
notion oftop nodes. Intuitively, an element is a top node if itcannotbe represented as a sub-
element of any other element. LetT denote the set of top nodes. Then, CoT traversesG, using
a Breadth-First Search (BFS), until it traverses all the nodes and edges, while capturing the
INDs on edges as either sub-elements (when the node is visited for the first time) or IDREF
attributes (when the node was visited already).

Schema Conversion Methods between XML and Relational Models 11

student(Sid , Name, Advisor)
emp(Eid , Name, ProjName)
prof(Eid , Name, Teach)
course(Cid , Title, Room)
dept(Dno , Mgr)
proj(Pname , Pmgr)

student(Advisor) ⊆ prof(Eid)
emp(ProjName) ⊆ proj(Pname)
prof(Teach) ⊆ course(Cid)
prof(Eid, Name) ⊆ emp(Eid, Name)
dept(Mgr) ⊆ emp(Eid)
proj(Pmgr) ⊆ emp(Eid)

Table 6: An example schema with associated INDs.

prof

student

dept

proj

emp

course

Figure 3: The IND-Graph representation of the schema in Table 6 (top nodesdenoted by rectangular nodes).

Example 2. Consider a schema and its associated INDs in Table 6. The IND-Graph with two
top nodes is shown in Figure 3: 1)course : There is no nodet, where there is an IND of the
form course[α] ⊆ t[β], and 2)emp: There is a cyclic set of INDs betweenempandproj ,
and there exists no nodet such that there is an IND of the formemp[α] ⊆ t[β] or proj[α] ⊆
t[β]. Then,

• First, starting from a top nodecourse , do a BFS scan. Pull up a reachable nodeprof
intocourse and label it as a sub-element by<!ELEMENT course (Cid, Title,
Room, prof ∗)> . Similarly, the nodestudent is also pulled up into its parent node
prof by <!ELEMENT prof (Eid, Name, student ∗)> . Since the nodestu-
dent is a leaf, no nodes can be pulled in:<!ELEMENT student (Sid, Name)> .
Since there is no more unvisited reachable node fromcourse , the scan stops.

• Next, starting from another top nodeemp, pull up neighboring nodedept into empsim-
ilarly by <!ELEMENT emp (Eid, Name, ProjName, dept ∗)> and <!ELE-
MENT dept (Dno, Mgr)> . Then, visit a neighboring nodeprof , butprof was vis-
ited already. To avoid data redundancy, an attributeRef prof is added toempaccord-
ingly. Since attributes in the left-hand side of the corresponding IND,prof(Eid, Name)
⊆ emp(Eid, Name), form a super key, the attributeRef prof is assigned typeIDREF,
and notIDREFS: <!ATTLIST prof Eid ID> and<!ATTLIST emp Ref prof
IDREF>.

• Next, visit a nodeproj and pull it up toemp by <!ELEMENT emp (Eid, Name,
ProjName, dept ∗, proj ∗)> and<!ELEMENT proj (Pname)> . In the next step,
visit a nodeemp from prof . Since it was already visited, an attributeRef empof type
IDREFS is added toproj , and the scan stops.

It is worthwhile to point out that there are several places in CoT where human experts
can help to find a better mapping based on the semantics and usages of the underlying data
or application.

12 D. Lee, M. Mani, and W. W. Chu

DTD Semantics DTD Schema Relational Schema

Name Domain Elm/Attr ID/IDREF(S) Table/Attr → � 9 ∅
novel literature 10/1 1/0 5/13 6 9 9

play Shakespeare 21/0 0/0 14/46 17 30 30
tstmt religious text 28/0 0/0 17/52 17 22 22
vCard business card 23/1 0/0 8/19 18 13 13

ICE content synd. 47/157 0/0 27/283 43 60 60
MusicML music desc. 12/17 0/0 8/34 9 12 12

OSD s/w desc. 16/15 0/0 15/37 2 2 2
PML web portal 46/293 0/0 41/355 29 36 36

Xbel bookmark 9/13 3/1 9/36 9 1 1
XMI metadata 94/633 31/102 129/3013 10 7 7

BSML DNA seq. 112/2495 84/97 104/2685 99 33 33

Table 7: Summary of CPI algorithm.

5 Experimental Results

5.1 CPI Results

CPI was tested against DTDs gathered from OASIS4. For all cases, CPI successfully identi-
fied hidden semantic constraints from DTDs and correctly preserved them by rewriting them
in SQL. Table 7 shows a summary of our experimentation. Note that people seldom used
the ID and IDREF(S) constructs in their DTDs except in theXMI andBSMLcases. The
number of tables generated in the relational schema was usually smaller than that of ele-
ments/attributes in DTDs due to the inlining effect. The only exception to this phenomenon
was theXMI case, where extensive use of types (0,N) and (1,N) cardinality relationships
resulted in many top nodes in the ADG.

The number of semantic constraints had a close relationship with the design of the DTD
hierarchy and the type of cardinality relationship used in the DTD. For instance, theXMI
DTD had many type (0,N) cardinality relationships, which do not contribute to the semantic
constraints. As a result, the number of semantic constraints at the end was small, compared
to that of elements/attributes in the DTD. This was also true for theOSDcase. On the other
hand, in theICE case, since it used many type (1,1) cardinality relationships, it resulted in
many semantic constraints.

5.2 NeT Results

Our preliminary results comparing the goodness of theXSchema obtained from NeT and FT
with that obtained from DB2XML v 1.3 [26] appeared in [23]. We further applied our NeT
algorithm on several test sets drawn from UCI KDD5 / ML6 repositories, which contain a
multitude of single-table relational schemas and data. Sample results are shown in Table 8.
Two metrics are shown in Figure 4(a). A high value forNestRatioshows that we did not per-
form unnecessary nesting and the high value forValueRatioshows that the nesting removed
a great deal of redundancy.

4http://www.oasis-open.org/cover/xml.html
5http://kdd.ics.uci.edu/
6http://www.ics.uci.edu/∼mlearn/MLRepository.html

Schema Conversion Methods between XML and Relational Models 13

Test Set Attr. / tuple NestRatio ValueRatio Size before / after Nested attr. Time (sec.)

Balloons1 5 / 16 42 / 64 80 / 22 0.455 / 0.152 3 1.08
Balloons2 5 / 16 42 / 64 80 / 22 0.455 / 0.150 3 1.07
Balloons3 5 / 16 40 / 64 80 / 42 0.455 / 0.260 3 1.14
Balloons4 5 / 16 42 / 64 80 / 22 0.455 / 0.149 3 1.07

Hayes 6 / 132 1 / 6 792 / 522 1.758 / 1.219 1 1.01
Bupa 7 / 345 0 / 7 2387 / 2387 7.234 / 7.234 0 4.40

Balance 5 / 625 56 / 65 3125 / 1120 6.265 / 2.259 4 21.48
TA Eval 6 / 110 253 / 326 660 / 534 1.559 / 1.281 5 24.83

Car 7 / 1728 1870 / 1957 12096 / 779 51.867 / 3.157 6 469.47
Flare 13 / 365 11651 / 13345 4745 / 2834 9.533 / 5.715 4 6693.41

Table 8: Summary of NeT experimentations.

NestRatio =
of successful nesting

of total nesting

ValueRatio =
of original data values

of data values in nested table

supplier

lineitem

nation

orders

partsupp

customer

part

region

(a) Metrics (b) The IND-Graph representation of TPC-H schema

Figure 4: Metrics and IND-Graph.

In our experimentation7, we observed that most of the attempted nestings were successful,
and hence our optimization rules are quite efficient. In Table 8, we see that nesting was useful
for all data sets except for theBupa data set. Also nesting wasespeciallyuseful for theCar
data set, where the size of the nested table is only6% of the original data set. Time required
for nesting is an important parameter, and it jointly depends on the number of attempted
nestings and the number of tuples. The number of attempted nestings depends on the number
of attributes, and increases drastically as the number of attributes increases. This is observed
for theFlare data set, where we have to do nesting on 13 attributes.

5.3 CoT Results

For testing CoT, we need some well-designed relational schema where tables are intercon-
nected via inclusion dependencies. For this purpose, we use the TPC-H schema v 1.3.08,
which is an ad-hoc, decision support benchmark and has 8 tables and 8 inclusion dependen-
cies. The IND-Graph for the TPC-H schema is shown in Figure 4(b). CoT identified two
top-nodes –part and region , and eventually generated the XML document having in-
terwoven hierarchical structures; six of the eight inclusion dependencies are mapped using a
sub-element, and the remaining two are mapped usingIDREF attributes.

Figure 5 shows a comparison of the number of data values originally present in the
database, and the number of data values in the XML document generated by FT and CoT.
Because FT is a flat translation, the number of data values in the XML document generated

7Available athttp://www.cs.ucla.edu/∼mani/xml
8http://www.tpc.org/tpch/spec/h130.pdf

14 D. Lee, M. Mani, and W. W. Chu

0

50000

100000

150000

200000

250000

0 0.5 1 1.5 2 2.5

of

 d
at

a
va

lu
es

 in
 X

M
L

do
cu

m
en

t

size of TPC-H raw data (MB)

FT
CoT

Figure 5: Size comparison of two algorithms.

by FT is the same as the number of data values in the original data. However, CoT is able to
decrease the number of data values in the generated XML document by more than12%.

6 Conclusion

We have presented a method to transform a relational schema to an XML schema, and two
methods to transform an XML schema to a relational schema, both instructuralandsemantic
aspects. All three algorithms are “correct” in the sense that they have all preserved the original
information of relational schema. For instance, using the notion of information capacity [27],
a theoretical analysis for the correctness of our translation procedures is possible; we can
actually show that CPI, NeT and CoT algorithms areequivalence preserving conversions.

Despite the difficulties in conversions between XML and relational models, there are
many practical benefits. We strongly believe that devising more accurate and efficient con-
version methodologies between XML and relational models is important. The prototypes of
our algorithms are available at:http://www.cobase.cs.ucla.edu/projects/xpress/

References

[1] Bray, T., Paoli, J., Sperberg-McQueen (Eds), C.M.: “Extensible Markup Language (XML) 1.0 (2nd Edi-
tion)”. W3C Recommendation (2000)http://www.w3.org/TR/2000/REC-xml-20001006.

[2] Deutsch, A., Fernandez, M.F., Suciu, D.: “Storing Semistructured Data with STORED”. In: ACM SIG-
MOD International Conference on Management of Data, Philadephia, PA (1998)

[3] Florescu, D., Kossmann, D.: “Storing and Querying XML Data Using an RDBMS”. IEEE Data Engineer-
ing Bulletin22 (1999) 27–34

[4] Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., Naughton, J.: “Relational Databases for
Querying XML Documents: Limitations and Opportunities”. In: International Conference on Very Large
Data Bases, Edinburgh, Scotland (1999)

[5] Carey, M., Florescu, D., Ives, Z., Lu, Y., Shanmugasundaram, J., Shekita, E., Subramanian, S.:
“XPERANTO: Publishing Object-Relational Data as XML”. In: International Workshop on the Web
and Databases, Dallas, TX (2000)

Schema Conversion Methods between XML and Relational Models 15

[6] Madhavan, J., Berstein, P.A., Rahm, E.: “Generic Schema Matching with Cupid”. In: International Con-
ference on Very Large Data Bases, Roma, Italy (2001)

[7] Miller, R.J., Haas, L., Hernandez, M.A.: “Schema Mapping as Query Discovery”. In: International Con-
ference on Very Large Data Bases, Cairo, Egypt (2000)

[8] Navathe, S.B.: “An Intuitive Approach to Normalize Network Structured Data”. In: International Confer-
ence on Very Large Data Bases, Montreal, Quebec, Canada (1980)

[9] Lien, Y.E.: “On the Equivalence of Database Models”. Journal of the ACM29 (1982) 333–362

[10] Boccalatte, A., Giglio, D., Paolucci, M.: “An Object-Oriented Modeling Approach Based on Entity-
Relationship Diagrams and Petri Nets”. In: IEEE Internal conference on Systems, Man and Cybernetics,
San Diego, CA (1998)

[11] Gogolla, M., Huge, A.K., Randt, B.: “Stepwise Re-Engineering and Development of Object-Oriented
Database Schemata”. In: International Workshop on Database and Expert Systems Applications, Vienna,
Austria (1998)

[12] Bisova, V., Richta, K.: “Transformation of UML Models into XML”. In: ADBIS-DASFAA Symposium
on Advances in Databases and Information Systems, Prague, Czech Republic (2000)

[13] Conrad, R., Scheffner, D., Freytag, J.C.: “XML Conceptual Modeling using UML”. In: International
Conference on Conceptual Modeling, Salt Lake City, UT (2000)

[14] Hou, J., Zhang, Y., Kambayashi, Y.: “Object-Oriented Representation for XML Data”. In: International
Symposium on Cooperative Database Systems for Advanced Applications, Beijing, China (2001)

[15] Al-Jadir, L., El-Moukaddem, F.: “F2/XML: Storing XML Documents in Object Databases”. In: Interna-
tional Conference on Object Oriented Infomation Systems, Montpellier, France (2002)

[16] Christophides, V., Abiteboul, S., Cluet, S., Scholl, M.: “From Structured Document to Novel Query
Facilities”. In: ACM SIGMOD International Conference on Management of Data, Minneapolis, MN
(1994)

[17] Batini, C., Ceri, S., Navathe, S.B.: “Conceptual Database Design: An Entity-Relationship Approach”. The
Benjamin/Cummings Pub. (1992)

[18] Bourret, R.: “XML and Databases”. Web page (1999)
http://www.rpbourret.com/xml/XMLAndDatabases.htm.

[19] Lee, D., Chu, W.W.: “CPI: Constraints-Preserving Inlining Algorithm for Mapping XML DTD to Rela-
tional Schema”. Journal of Data & Knowledge Engineering39 (2001) 3–25

[20] Fernandez, M.F., Tan, W.C., Suciu, D.: “SilkRoute: Trading between Relations and XML”. In: Interna-
tional World Wide Web Conference, Amsterdam, Netherlands (2000)

[21] Wood, P.T.: “Optimizing Web Queries Using Document Type Definitions”. In: International Workshop
on Web Information and Data Management, Kansas City, MO (1999) 28–32

[22] Lee, D., Chu, W.W.: “Comparative Analysis of Six XML Schema Languages”. ACM SIGMOD Record
29 (2000) 76–87

[23] Lee, D., Mani, M., Chiu, F., Chu, W.W.: “Nesting-based Relational-to-XML Schema Translation”. In:
International Workshop on the Web and Databases, Santa Barbara, CA (2001)

[24] Jaeschke, G., Schek, H.J.: “Remarks on the Algebra of Non First Normal Form Relations”. In: ACM
Symposium on Principles of Database Systems, Los Angeles, CA (1982)

[25] Lee, D., Mani, M., Chiu, F., Chu, W.W.: “NeT & CoT: Translating Relational Schemas to XML Schemas
using Semantic Constraints”. In: ACM International Conference on Information and Knowledge Manage-
ment, McLean, VA (2002)

[26] Turau, V.: “Making Legacy Data Accessible for XML Applications”. Web page (1999)
http://www.informatik.fh-wiesbaden.de/∼turau/veroeff.html.

[27] Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: “Schema Equivalence in Heterogeneous Systems: Bridg-
ing Theory and Practice (Extended Abstract)”. In: Extending Database Technology, Cambridge, UK
(1994)

