
NeT & CoT: Translating Relational Schemas to XML
Schemas using Semantic Constraints

Dongwon Lee Murali Mani ∗ Frank Chiu Wesley W. Chu

Penn State Univ. UCLA UCLA UCLA
dongwon@psu.edu mani@cs.ucla.edu frankchiu@cs.ucla.edu wwc@cs.ucla.edu

ABSTRACT
Two algorithms, called NeT and CoT, to translate relational
schemas to XML schemas using various semantic constraints
are presented. The XML schema representation we use is a
language-independent formalism named XSchema, that is
both precise and concise. A given XSchema can be mapped
to a schema in any of the existing XML schema language
proposals. Our proposed algorithms have the following char-
acteristics: (1) NeT derives a nested structure from a flat
relational model by repeatedly applying the nest operator
on each table so that the resulting XML schema becomes
hierarchical, and (2) CoT considers not only the structure
of relational schemas, but also semantic constraints such as
inclusion dependencies during the translation. It takes as
input a relational schema where multiple tables are inter-
connected through inclusion dependencies and converts it
into a good XSchema. To validate our proposals, we present
experimental results using both real schemas from the UCI
repository and synthetic schemas from TPC-H.

Categories and Subject Descriptors
H.2.1 [Logical Design]: [Schema and subschema]; H.2.3
[Languages]: [Data description languages (DDL)]; H.2.5
[Heterogeneous Databases]: [Data translation]

General Terms
Algorithms

Keywords
XML, Schema Translation, Semantic Constraints

1. INTRODUCTION
XML [3] is rapidly becoming one of the most widely adopted

technologies for information exchange and representation on

∗partially supported by NSF grants 0086116, 0085773,
9817773.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’02, November 4–9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-492-4/02/0011 ...$5.00.

the World Wide Web. With XML emerging as the data for-
mat of the Internet era, there is a substantial increase in
the amount of data encoded in XML. However, the major-
ity of everyday data is still stored and maintained in rela-
tional databases. Therefore, we expect the needs to convert
such relational data into XML documents will grow substan-
tially as well. In this paper, we study the problems in this
conversion. Especially, we are interested in finding XML
schema1 (e.g., DTD [3], RELAX-NG [5], XML-Schema [22])
that best describes the existing relational schema. Having
an XML schema that precisely describes the semantics and
structures of the original relational data is important to fur-
ther maintain the converted XML documents in future.

At present, there exist several tools that enable the com-
position of XML documents from relational data, such as
XML Extender from IBM2, XML-DBMS3, DB2XML [23],
SilkRoute [8], and XPERANTO [4]. In these tools, the suc-
cess of the conversion is closely related with the quality of
the target XML schema onto which a given input relational
schema is mapped. However, the mapping from the rela-
tional schema to the XML schema is specified by human ex-
perts. Therefore, when large amount of relational schemas
and data need to be translated into XML documents, a sig-
nificant investment of human effort is required to initially
design target schemas. To make matters worse, in the con-
text of merging legacy relational data to existing XML doc-
uments, devising a good XML schema that does not violate
existing structures and constraints is a non-trivial task. Be-
ing able to automatically infer a precise XML schema out of
relational schema would be very useful in such settings.

In this paper, therefore, we are interested in finding a
method that can infer the best XML schema from the given
relational schema automatically. We particularly focus on
two aspects of the translation: (1) Structural aspect: We
want to find the most intuitive and precise XML schema
structure from the given relational schema. We especially
try to use the hidden characteristics of data using nest op-
erator, and (2) Semantic aspect: During the translation,
we want to use semantic constraints that could be either ac-
quired from database directly or provided by human experts
explicitly.

We first present a straightforward relational to XML trans-

1We differentiate two terms – XML schema(s) and XML-
Schema. The former refers to a general term for schema in
XML model while the latter refers to one particular kind of
XML schema language proposed by W3C [22].
2http://www-4.ibm.com/software/data/db2/extenders/xmlext/
3http://www.rpbourret.com/xmldbms/index.htm

lation algorithm, called Flat Translation (FT). Since FT
maps the flat relational model to the flat XML model in a
one-to-one manner, it does not utilize the regular expression
operators (e.g., “*”, “+”) supported in the content models
of XML. Then, we present our first proposal called Nesting-
based Translation (NeT), to remedy the problems found in
FT. NeT derives nested structures from a flat relational
model by the use of the nest operator so that the result-
ing XML schema is more intuitive and precise than other-
wise. Although NeT infers hidden characteristics of data
by nesting, it is only applicable to a single table at a time.
Therefore, it is unable to capture a correct “big picture” of
relational schema where many tables are interconnected. To
remedy this problem, we present the second proposal called
Constraints-based Translation (CoT); CoT considers inclu-
sion dependencies during the translation. Such constraints
can be acquired from database through ODBC/JDBC inter-
face or provided by human experts who are familiar with the
semantics of the relational schema being translated. CoT
is capable of generating a more intuitive XML schema than
what NeT. Figure 1 illustrates the overview of our approach.

Related Work: There have been different approaches for
the conversion from relational model to XML model, such
as XML Extender from IBM, XML-DBMS, SilkRoute [8],
XPERANTO [4], DB2XML [23] and NeT [14]. All the above
tools (except NeT) require the user to specify the mapping
from the given relational model to the XML model. In XML
Extender, the user specifies the mapping through a language
such as DAD or XML Extender Transform Language. In
XML-DBMS, a template-driven mapping language is pro-
vided to specify the mappings. SilkRoute provides a declar-
ative query language (RXL) for viewing relational data in
XML. XPERANTO uses XML query language for view-
ing relational data in XML. Note that in SilkRoute and
XPERANTO, the user has to specify the query in the appro-
priate query language. DB2XML uses an algorithm similar
to FT (and hence suffers from similar problems). NeT does
not require user-input for mapping the relational model to
XML model, however it does not use semantic constraints
specified in the relational model.

There also have been work in mapping from non-relational
models to XML model, and XML to relational and other
models. In [20, 21], the authors study the conversion from
XML to relational models. [15] studies the conversion from
XML to ER model and vice versa. Generation of an XML
schema from a UML model is studied in [18]. Given a set
of XML documents, generating an XML schema for them is
studied in [10].

Roadmap: In Section 2, we first present formalisms to rep-
resent relational as well as XML schemas in a language inde-
pendent notation. In Section 3, we propose NeT algorithm
that uses the nest operator developed in the nested rela-
tional model community. In Section 4, we propose an im-
proved CoT algorithm that considers various semantic con-
straints during the translation to generate a better XML
schema, in addition to applying nest operations for each
table. In Section 5, we discuss some issues related to cor-
rectness and goodness of the schema that NeT and CoT
generate. In Section 6, we report the results from our ex-
perimentations. Finally, concluding remarks and future di-
rections are discussed in Section 7.

2. INPUT & OUTPUT MODELS
We first briefly define the input and output models for

the translation. In relational databases, schema is typically
created by SQL DDL (e.g., CREATE) statements. Therefore,
by examining such DDL statements, one can find out the
original schema information. Even if such DDL statements
are not available, one can still infer the schema information
- table and column names, key and foreign key information,
etc - by querying the database through an ODBC/JDBC in-
terface or by examining the database directly. In this paper,
regardless of how one acquired the schema information, we
assume that the schema information is encoded in a vector
R defined below.

Let us assume the existence of a set T̂ of table names, a set

Ĉ of column names and a set b̂ of atomic base types defined
in the standard SQL (e.g., integer, char, string). When name

collision occurs, a column name c ∈ Ĉ is qualified by a table

name t ∈ T̂ using the “[]” notation (e.g., t[c]).

Definition 1 (Relational Schema) A relational schema
is denoted by 4-tuple R = (T, C, P, ∆), where:

• T is a finite set of table names in T̂ ; C is a function
from a table name t ∈ T to a set of column names
c ∈ Ĉ,

• P is a function from a column name c to its column
type definition: i.e., P (c) = α, where α is a 5-tuple

(τ, u, n, d, f), where τ ∈ b̂, u is either “υ” (unique) or
“¬υ” (not unique), n is either “?” (nullable) or “¬?”
(not nullable), d is a finite set of valid domain values
of c or ε if not known, and f is a default value of c or
ε if not known, and

• ∆ is a finite set of relational integrity constraints that
can be either retrieved from databases directly or pro-
vided by human experts. 2

Example 1. Consider two tables student(Sname, Advisor,

Course) and professor(Pname, Office) where keys are un-
derlined, and Advisor is a foreign key referencing Pname col-
umn. The column Office is an integer type, while the rest
of the columns are string types. Also Office may be null.
When student’s advisor has not yet been decided, professor
“Prof. Smith” will be the initial advisor. Student can have
many advisors and take zero or more courses. The corre-
sponding relational schema and data fragment are given in
Table 1. 2

Next, let us define the output model. Lately, there have
been about a dozen competing XML schema language pro-
posals. Although XML-Schema is being shaped by W3C
and will replace DTD soon, it is likely that different ap-
plications will choose different XML schema languages that
best suit their particular purposes. Therefore, instead of
choosing one language proposal, we formalize a core set of
important features into a new notion of XSchema and use
it as our output modeling language. The benefits of such
formalization is that it is both concise and precise. More
importantly, it breaks the tie between the translation algo-
rithm that we are developing and the final schema language
notations. Informally, XSchema borrows structural features
from DTD and RELAX-NG, and data types and constraint

Constraints

RDB CoT

XML
Schemas

Final
XML

Schema

Schema
Designer

NeT

Figure 1: Overview of our approach. Two algorithms, NeT and CoT, can be used independently or jointly;
(1) R → NeT → X, (2) R → CoT → X, or (3) R → NeT → CoT → X.

T = {student, professor}
C(student) = {Sname, Advisor, Course}

C(professor) = {Pname, Office}
P (Sname) = (string,¬v,¬?, ε, ε)

P (Advisor) = (string,¬v,¬?, ε, “Prof.Smith′′)
P (Course) = (string,¬v,¬?, ε, ε)
P (Pname) = (string, v,¬?, ε, ε)
P (Office) = (integer,¬v, ?, ε, ε)

∆ = {{Sname, Advisor, Course} key→ student,

Pname
key→ professor, Advisor ⊆ Pname

student:
Sname Advisor Course

John Prof. Muntz Multimedia
John Prof. Zaniolo Logic
John Prof. Zaniolo Data Mining
Tom Prof. Muntz Queueing Theory
Tom Prof. Chu Database Systems
Tom Prof. Chu Distributed Databases

professor:
Pname Office

Prof. Muntz 600
Prof. Chu 550
Prof. Zaniolo
Prof. Parker 490

Table 1: Example relational schema and data.

specification features from XML-Schema. From a formal
language and database perspective [17], XSchema is a local
tree grammar extended with attribute, datatype and con-
straint specifications.

Starting from the notations in [7], we define XSchema

below. We first assume the existence of a set Ê of element
names, a set Â of attribute names and a set τ̂ of atomic data
types defined in [1] (e.g., ID, IDREF, string, integer, date,

etc). When needed, an attribute name a ∈ Â is qualified
by the element names using the path expression notation

e1.e2 · · · en.a, where ei ∈ Ê, 1 ≤ i ≤ n).

Definition 2 (XSchema) An XSchema is denoted by 6-tuple
X = (E, A, M, P, r, Σ), where:

• E is a finite set of element names in Ê; A is a function
from an element name e ∈ E to a set of attribute
names a ∈ Â,

• M is a function from an element name e ∈ E to its
element type definition: i.e., M(e) = α, where α is a
regular expression: α ::= ε | τ | α + α | α, α | α? | α∗ |
α+, where ε denotes the empty element, τ ∈ τ̂ , “+”
for the union, “,” for the concatenation, “α?” for zero
or one occurrence, “α∗” for the Kleene star, and “α+”
for “α, α∗”,

• P is a function from an attribute name a to its at-
tribute type definition: i.e., P (a) = β, where β is a
4-tuple (τ, n, d, f), where τ ∈ τ̂ , n is either “?” (nul-
lable) or “¬?” (not nullable), d is a finite set of valid
domain values of a or ε if not known, and f is a default
value of a or ε if not known, and

• r ⊆ E is a finite set of root elements; Σ is a finite set
of integrity constraints for XML model 2

Translation from XSchema to the actual XML schema lan-
guage notations is relatively straightforward and not dis-
cussed further in this paper. It is worthwhile to note, how-
ever, that depending on the chosen XML schema language,
some of the features specifiable in XSchema might not be
translatable at the end. For instance, any “non-trivial type”
or composite key information would be lost if one decides to
use DTD as the final XML schema language.

3. FLAT TRANSLATION AND NESTING-
BASED TRANSLATION

XML model uses two basic building blocks to construct
XML documents – attribute and element. A few basic char-
acteristics inherited from XML model include: (1) the at-
tributes of a node are not ordered, while the child elements
of a node are ordered, (2) both support data types as speci-
fied in [1], and (3) elements can express multiple occurrences
better than attributes. The detailed capabilities of those,
however, vary depending on the chosen XML schema lan-
guage. In translating R to X, therefore, one can either use
attribute or element in X to represent the same entity in R
(e.g, a column with string type in R can be translated to
either attribute or element with string type in X).

To increase the flexibility of the algorithms, we assume
that there are two modes – attribute-oriented and element-
oriented. Depending on the mode, an algorithm can selec-
tively translate an entity in R to either attribute or element
if both can capture the entity correctly. However, if the
chosen XML schema language requires attribute or element
for an entity (e.g., a key column in R needs to be trans-
lated to an attribute with type ID in X), we assume that the
algorithm follows the limitations.

3.1 Flat Translation

The simplest translation method is to translate (1) tables
in R to elements in X and (2) columns in R to attributes (in
attribute-oriented mode) or elements (in element-oriented
mode) in X. These two modes are analogous except that
element-oriented mode adds additional order semantics to
the resulting schema. Since X represents the “flat” relational
tuples faithfully, this method is called Flat Translation (FT).
The general procedure of the Flat Translation is omitted
in the interest of space and can be found in [14].

FT is a simple and effective translation algorithm, but
it has some problems. As the name implies, FT translates
the “flat” relational model to a “flat” XML model in a one-
to-one manner. The drawback of FT is that it does not
utilize several basic “non-flat” features provided by XML for
data modeling such as representing repeating sub-elements
through regular expression operators (e.g., “*”, “+”). We
remedy this problem in the NeT algorithm below.

3.2 Nesting-based Translation
To remedy the problems of FT, one needs to utilize vari-

ous element content models of XML. Towards this goal, we
propose to use the nest operator [12]. Our idea is to find a
“best” element content model that uses α∗ or α+ using the
nest operator. First, let us define the nest operator. Infor-
mally, for a table t with a set of columns C, nesting on a
non-empty column X ∈ C collects all tuples that agree on
the remaining columns C −X into a set4. Formally,

Definition 3 (Nest) [12]. Let t be a n-ary table with
column set C, and X ∈ C and X = C − X. For each
(n− 1)-tuple γ ∈ ΠX(t), we define an n-tuple γ∗ as follows:

γ∗[X] = γ, and γ∗[X] = {κ[X] | κ ∈ t ∧ κ[X] = γ. Then,
nestX(t) = {γ∗ | γ ∈ ΠX(t)}. 2

After nestX(t), if column X has only a set with “single”
value {v} for all the tuples, then we say that nesting failed
and we treat {v} and v interchangeably (i.e., {v} = v). Thus
when nesting failed, the following is true: nestX(t) = t.
Otherwise, if column X has a set with “multiple” values
{v1, ..., vk} with k ≥ 2 for at least one tuple, then we say
that nesting succeeded. The general procedure for nesting
is given in [14].

Example 2. Consider a table R in Table 2. Here we assume
that the columns A, B, C are non-nullable. In computing
nestA(R) at (b), the first, third, and fourth tuples of R
agree on their values in columns (B, C) as (a, 10), while
their values of the column A are all different. Therefore,
these different values are grouped (i.e., nested) into a set
{1,2,3}. The result is the first tuple of the table nestA(R) –
({1,2,3}, a, 10). Similarly, since the sixth and seventh tuples
of R agree on their values as (b, 20), they are grouped to
a set {4,5}. In computing nestB(R) at (c), there are no
tuples in R that agree on the values of the columns (A,
C). Therefore, nestB(R) = R. In computing nestC(R) at
(d), since the first two tuples of R – (1, a, 10) and (1, a,
20) – agree on the values of the columns (A, B), they are
grouped to (1, a, {10,20}). Nested tables (e) through (j) are
constructed similarly. 2

Since the nest operator requires scanning of the entire
set of tuples in a given table, it can be quite expensive. In
addition, as shown in Example 2, there are various ways to

4Here, we only consider single attribute nesting.

nest the given table. Therefore, it is important to find an
efficient way (that uses the nest operator minimum number
of times) of obtaining an acceptable element content model.

First, to find out the total number of ways to nest, let us
use the following two properties [12]:

P1 : nestA(nestB(t)) 6= nestB(nestA(t))
P2 : nestX(nestAllL(t)) = nestAllL(t), if X ∈ L

Here, nestAllL(t) represents performing nesting on a list
of columns as indicated by L. If L =< c1, c2, . . . , cn >, then
nestAllL(t) is given by
nestAllL=<c1,c2,...,cn>(t) = nestc1 (nestc2 (. . . (nestcn (t))))

P1 states that “commutativity” of nesting does not hold in
general and P2 states that nesting along the same column
repeatedly has the property of “idempotency”. Using the
two properties, the number of permutations to nest tables
can be described as follows:

Remark 1 Using the falling factorial power notation “x to
the m falling” as xm in [11], the total number of different
nestings N for a table with n columns is given by: N =∑n

k=1 nk 2

According to Remark 1, there are 15 meaningful ways of
nesting along the columns A, B, C in Table 2. Then, the
next questions are (1) how to decrease N by avoiding unnec-
essary nesting, and (2) which nesting should be chosen as the
translation. To answer these questions, let us first describe
a few useful properties of the nest operator as follows:

Lemma 1. Consider a table t with column set C, and can-
didate keys, K1, K2, . . . , Kn ⊆ C. Applying the nest opera-
tor on a column X /∈ (K1∩K2∩ . . .∩Kn) yields no changes.

Corollary 1. For any nested table nestX(t), X →X holds.
(q.e.d)

Corollary 1 states that after applying the nest operator of
column X, the remaining columns X become a super key.
Fischer et al. [9] have proved that functional dependencies
are preserved against nesting as follows:

Lemma 2. [9] If X, Y , Z are columns of t, then: t : X →
Y =⇒ nestZ(t) : X → Y

Now, we arrive at the following useful property:

Theorem 1. Consider a table t with column set C, candi-
date keys, K1, K2, . . . , Kn ⊆ C, and column set K such that
K = K1 ∩K2 ∩ . . . ∩Kn. Further, let |C| = n and |K| = m
(n ≥ m). Then, the number of necessary nestings, N , is
bounded by N ≤

∑m
k=1 mk

Note that in general m is much smaller than n in Theo-
rem 1, thus reducing the number of necessary nesting sig-
nificantly.

Example 3. Consider a table R in Table 2 again. Sup-
pose attributes A and C constitute a key for R. Since
nesting on the same column repeatedly is not useful by
property P2 there is no need to construct, for instance,
nestA(nestA(R)). Since nesting on a non-key column is not
useful by Lemma 1, nesting along column B (e.g., nestB(R)

A B C
#1 1 a 10
#2 1 a 20
#3 2 a 10
#4 3 a 10
#5 4 b 10
#6 4 b 20
#7 5 b 20

A+ B C
{1,2,3} a 10

1 a 20
4 b 10

{4,5} b 20

A B C
1 a 10
1 a 20
2 a 10
3 a 10
4 b 10
4 b 20
5 b 20

A B C+

1 a {10,20}
2 a 10
3 a 10
4 b {10,20}
5 b 20

A+ B C
{1,2,3} a 10

1 a 20
4 b 10

{4,5} b 20

(a) R (b) nestA(R) (c) nestB(R) = R (d) nestC(R) (e)
nestB(nestA(R))

= nestC(nestA(R))

A+ B C+

1 a {10,20}
{2,3} a 10

4 b {10,20}
5 b 20

A B C+

1 a {10,20}
2 a 10
3 a 10
4 b {10,20}
5 b 20

A+ B C
{1,2,3} a 10

1 a 20
4 b 10

{4,5} b 20

A+ B C+

1 a {10,20}
{2,3} a 10

4 b {10,20}
5 b 20

(f) nestA(nestC(R)) (g) nestB(nestC(R)) (h)
nestC(nestB(nestA(R)))

= nestB(nestC(nestA(R))) (i)
nestB(nestA(nestC(R)))

= nestA(nestB(nestC(R)))

Table 2: A relational table R and its various nested forms. Column names containing a set after nesting (i.e.,
nesting succeeded) are appended by “+” symbol.

at (c)) can be avoided. Furthermore, the functional depen-

dency (i.e., AC
key→ R = AC → AC = AC → B) persists

after nesting on either column A or C by Lemma 2. Con-
sequently, one needs to construct only the following nested
tables: nestA(R) at (b), nestC(R) at (d), nestC(nestA(R))
at (e), nestA(nestC(R)) at (f). 2

As we have shown, when candidate key information is
available, the number of nestings to be performed can be
reduced. However, when such information is not known,
the nest operator must be applied for all possible combina-
tions in Remark 1. After applying the nest operator to the
given table repeatedly, there can be still several nested tables
where nesting succeeded. In general, the choice of the final
schema should take into consideration the semantics and us-
ages of the underlying data or application and this is where
user intervention is beneficial. By default, without further
input from users, NeT chooses as the final schema the nested
table where the most number of nestings succeeded; this is
a schema which provides low “data redundancy”.

Example 4. Using NeT with the element-oriented mode,
R1 in Example 1 would be translated to X4 = (E, A, M, P, r, Σ),
where

E = {student, professor}
A(professor) = {Pname}

M(student) = (Sname, Advisor+, Course+)

M(professor) = (Age?)

P (Pname) = (ID,¬?, ε, ε)

r = {student, professor}

Σ = {{Sname, Advisor, Course} key→ student,

Pname
key→ professor, Advisor ⊆ Pname}

2

We expect that the NeT algorithm will be especially useful
in two scenarios, outlined below.

• The given relation is in 3NF (or BCNF) but not in
4NF. Non-fully normalized relations occur quite com-
monly in legacy databases, and they exhibit data re-
dundancy. The NeT algorithm helps to decrease the

data redundancy in such cases. As an example, con-
sider the relation ctx(Course, Teacher, Text), which
gives the set of teachers and the set of text books
for each course. Assume that the following multi-
valued dependencies hold, Course � Teacher, and
Course�Text. Suppose the relation ctx is represented
as such (i.e., ctx is not in 4NF). The key for this

relation is given by {Course, Teacher, Text}key→ctx.
When we do nesting on ctx, we will get the following
table ctx’(Course, Teacher+, Text+). Thus NeT
helps in removing data redundancies arising from mul-
tivalued dependencies.

• It is sometimes possible to represent the given rela-
tion “more intuitively” as a nested table by perform-
ing grouping on one or more of the attributes. As an
example, consider the relation emp(empNum, branch)

where the key is given by empNum
key→ emp. This rela-

tion gives the employees and the branch where they
work. When NeT is applied on the above relation, we
might get the new nested relation as emp’(empNum+,

branch). This relation has grouped the list of employ-
ees by their branch.

Thus we observe that NeT is useful for decreasing data
redundancy and obtaining a “more intuitive” schema by (1)
removing redundancies caused by multivalued dependencies
and (2) performing grouping on attributes. However NeT
considers tables one by one, and cannot obtain a big picture
of the relational schema where many tables are intercon-
nected with each other through various other dependencies
such as inclusion dependencies. To remedy this problem, we
propose the second conversion algorithm below.

4. TRANSLATION USING INCLUSION DE-
PENDENCIES

In this section, we consider one kind of semantic con-
straints called Inclusion Dependency (IND) in database the-
ory. Considering other constraints such as Functional De-
pendency (FD) or Multi-Valued Dependency (MVD) is also
possible, but we leave it as a future work. General forms

of INDs are difficult to acquire from the database automat-
ically. However, we shall consider the most pervasive form
of INDs – foreign key constraints – which can be queried
through ODBC/JDBC interface. We study the translation
of inclusion dependencies incrementally in three steps. In
the first step, we consider the simplest case – one foreign key
constraint defined between two tables. In the second step,
we consider the case when there exist two foreign key con-
straints among three tables. In the third step, we consider
the general case of any number of inclusion dependencies in
a schema.

4.1 One Foreign Key between two Tables
Foreign key constraints are a special kind of INDs where

the attributes being referenced form the primary key of the
referenced relation. For two distinct tables s and t with lists
of columns X and Y , respectively, suppose we have a foreign
key constraint s[α] ⊆ t[β], where α ⊆ X and β ⊆ Y . Also
suppose that Ks ⊆ X is the key for s. Then, rewriting this
in R notation, we have: T = {s, t}, C(s) = {X}, C(t) =

{Y }, ∆ = {s[α] ⊆ t[β], β
key→ t, Ks

key→ s}.
Different cardinality binary relationships between s and

t can be expressed in the relational model by a combina-
tion of the following: (1) α is unique/not-unique (2) α is
nullable/non-nullable. Then, the translation of two tables
s, t with a foreign key constraint into XSchema, summarized
in Table 3, works as follows:

• If α is non-nullable (i.e., none of the columns of α can
take null values), then:

– If α is unique, then there is a 1 : 1 relationship
between s and t. This can be captured as a sub-
element M(t) = (Y, s?).

– If α is not-unique, then there is a 1 : n relation-
ship between s and t, and this is captured as a
sub-element M(t) = (Y, s∗).

If s is represented as a sub-element of t, then the key
for s will change from Ks to (Ks − α). The key for t
will remain the same.

• If α is nullable, then the IND is represented as such in
XSchema. Here we do flat translation on s, and copy
the IND s[α] ⊆ t[β] to Σ.

Let us study the case when α is nullable more closely with
the following example. Consider the relation t(w1, w2, w3)
with key (w1, w2). Let t have the following tuples: {(1, 1, 1)}.
Now consider s(v1, v2, v3) with key (v2, v3), and IND s[v1, v2] ⊆
t[w1, w2]. Let s have the following tuples: {(null, 1, 1), (null, 1,
2), (null, 2, 1), (1, 1, 3)}. We can observe that we cannot rep-
resent s as s(v3), and obtain the values of (v1, v2) for an s
tuple by representing this s tuple as a child of a t tuple, or
by having an IDREF attribute for the s tuple that refers to
a t tuple. This is because v1 is nullable. In such a case,
we represent the IND as such in XSchema. In this paper,
we are concerned mostly with the usage of sub-elements and
IDREF attribute for translation, and therefore, we will focus
on the case when α is non-nullable, unless stated otherwise.

Example 5. Consider two tables student and professor
of Example 1 again. There is a foreign key Advisor ⊆
Pname and Advisor is not unique. Using the above rules,
the schema will be mapped to the following XML schema in
DTD notation:

α s : t XSchema

υ,
¬?

(1, 1) : (0, 1)

M(t) = (Y, s?),
M(s) = (X − α),

Σ = {(Ks − α)
key→ s, β

key→ t}

υ,
?

(0, 1) : (0, 1)

M(t) = (Y), M(s) = (X),
Σ = {s[α] ⊆ t[β],

Ks
key→ s, β

key→ t}

¬υ,
¬?

(1, 1) : (0, n)

M(t) = (Y, s∗),
M(s) = (X − α),

Σ = {(Ks − α)
key→ s, β

key→ t}

¬υ,
?

(0, 1) : (0, n)

M(t) = (Y), M(s) = (X),
Σ = {s[α] ⊆ t[β],

Ks
key→ s, β

key→ t}

Table 3: Different values taken by α, the corre-
sponding cardinality of the binary relationship be-
tween s and t, and the corresponding translation to
XSchema. υ and ? denote “unique” and “nullable”,
respectively.

<!ELEMENT professor (Pname,Age,student*)>
<!ELEMENT student (Sname,Course)>

Note the usage of * attached to the sub-element student.
Note further that to identify a unique student element for
a given professor, one needs now only Sname and Course
pair (Advisor attribute was removed from the original key
attribute list). 2

4.2 Two Foreign Keys among three Tables
Now consider the case where two foreign key constraints

exist among three tables s, t1, t2 with a list of columns X,
Y1, Y2, respectively, such that s[α] ⊆ t1[β1] and s[γ] ⊆ t2[β2],
where α, γ ⊆ X and are non-nullable, β1 ⊆ Y1 and β2 ⊆ Y2.
If one applies the mapping rules for the case of a foreign
key between two tables in Section 4.1 one at a time, then
one will have a combination of the following depending on
whether α and γ are unique or not: (1) M(t1) = (Y1, s?) or
M(t1) = (Y1, s

∗), (2) M(t2) = (Y2, s?) or M(t2) = (Y2, s
∗).

The above translation has redundancy, and it exhibits the
phenomenon known in database theory as “update anomaly”
for s. That is, when one wants to update data for s, he/she
needs to update s in two different places – fragment of s
data under both t1 and t2. On the contrary, the original
relational schema is “better” because one needs to update
tuples of s in a single place. The same problem occurs for
the case of “delete” as well. To avoid these anomalies, one
of the two foreign key constraints should be captured either
using INDs or using IDREF attributes. For example, let us
assume that the first foreign key constraint s[α] ⊆ t1[β1] is
represented as M(t1) = (Y1, s

∗), M(s) = (X − α). Then
the second foreign key constraint s[γ] ⊆ t2[β2] can be repre-
sented using IDREF attribute as follows:

A(t2) = {ID t2}, P (ID t2) = (ID,¬?, ε, ε)

A(s) = {Ref t2}, P (Ref t2) = (IDREF,¬?, ε, ε)

M(t2) = (Y2), M(s) = (X − α− γ)

Let us denote the old and new keys for s as Ks and K′
s,

respectively. Then, K′
s is determined as follows: (1) if α ∩

Ks = φ, then K′
s = Ks, and (2) if α ∩Ks 6= φ, then K′

s =
(Ks − α) ∪ Ref t2

Example 6. In addition to two tables student and professor
of Example 5, consider a third table class(Cname, Room)

with a second foreign key student[Course] ⊆ class[Cname].
Then, using the above rules, the schema will be mapped to
the following XML schema in DTD notation:

<!ELEMENT professor (Pname,Age,student*)>
<!ELEMENT student (Sname)>
<!ATTLIST student Ref_class IDREF>
<!ELEMENT class (Cname,Room)>
<!ATTLIST class ID_class ID>

Note the addition of two new attributes – Ref class of type
IDREF and ID class of type ID. The new key for student

is given by {Sname, Ref class
key→ student}, which cannot

be represented in DTD. 2

Note that between two foreign keys, deciding which one
is represented as sub-element and which one is represented
as IDREF attribute can best be done based on further se-
mantics.

4.3 A General Relational Schema
Now let us consider the most general case with set of ta-
bles {t1, ..., tn} and INDs ti[αi] ⊆ tj [βj], where i, j ≤ n.
We consider only those INDs where αi is non-nullable. The
relationships among tables can be captured by a graph rep-
resentation, termed as IND-Graph.

Definition 4 (IND-Graph) An IND-Graph G = (V, E)
consists of a node set V and a directed edge set E, such
that for each table ti, there exists a node in V , and for each
distinct IND ti[α] ⊆ tj [β], tj → ti exists in G. 2

Note the edge direction is reversed from the IND direction
for convenience. Given a set of INDs, such IND-Graph can
be easily constructed. Once IND-Graph is constructed, one
needs to decide the starting point to apply translation rules.
For that purpose, we use the notion of top nodes similar
to the one in [20, 13], where an element is a top node if it
cannot be represented as a sub-element of any other element.
Such top nodes can be identified as follows:

1. An element s is a top node, if there exists no other
element t, t 6= s, where there is a IND of the form s[α]
⊆ t[β], and α is non-nullable.

2. Consider a set of elements S = s1, s2, . . . , sk that form
a cyclic set of INDs and none of the elements in S is a
top node by 1. Suppose there exists no element t /∈ S,
such that there is a IND of the form sj [α] ⊆ t[β], and
α is non-nullable. In this case, choose any one of the
elements in S as a top node.

Let T denote the set of top nodes. After identifying the
top nodes, we traverse G, using say Breadth-First Search
(BFS), until we traverse all the nodes and edges, and rep-
resent the INDs as sub-elements or IDREF attributes. The
algorithm for Constraint-based Translation (CoT) is as
follows:

1. CoT: R = (T, C, P, ∆) =⇒ X = (E, A, M, P, r, Σ)

2. Construct IND-Graph G = (V, E) from the given INDs;
Identify T , the set of top nodes. Define S = T to keep
track of top-nodes and nodes that are represented as sub-
elements.

3. For each top-node t ∈ T , do BFS. Suppose we reach a node
w from v (i.e., IND: w[α] ⊆ v[β]); Let C(w) = Cw, and
C(v) = Cv .

student(Sid, Name, Advisor)
emp(Eid, Name, ProjName)
prof(Eid, Name, Teach)
course(Cid, Title, Room)
dept(Dno, Mgr)
proj(Pname, Pmgr)

student(Advisor) ⊆ prof(Eid)
emp(ProjName) ⊆ proj(Pname)
prof(Teach) ⊆ course(Cid)
prof(Eid, Name) ⊆ emp(Eid, Name)
dept(Mgr) ⊆ emp(Eid)
proj(Pmgr) ⊆ emp(Eid)

Table 4: An example schema with associated INDs.

prof

student

dept

proj

emp

course
top node

Figure 2: The IND-Graph representation of the
schema of Table 4.

(a) If w /∈ S (i.e., w is not yet a sub-element of some other
node), translate the IND as in Section 4.1.

i. If α is unique, then M(v) = (Cv , w?).

ii. If α is not-unique, then M(v) = (Cv , w∗).

iii. M(w) = (Cw − α).

iv. S = S ∪ w.

(b) If w ∈ S (i.e., w is already a sub-element of some
other node), translate the IND as IDREF attribute as
in Section 4.2.

i. A(v) = {ID v}, A(w) = {Ref v}, M(v) = (Cv),

M(w) = (Cw − α), Σ = K′
w

key→ w.

4. Copy the remaining integrity constraints in ∆ to Σ. Also
set r = T .

Example 7. Consider an example schema and its associ-
ated INDs in Figure 4. Two top nodes are identified (1)
course: There is no node t, where there is an IND of the
form course [α] ⊆ t[β], and (2) emp: There is a cyclic set of
INDs between emp and proj, and there exists no node t such
that there is an IND of the form emp [α] ⊆ t[β] or proj [α]
⊆ t[β]. Therefore of emp and proj we decided to choose emp

arbitrarily. Following list shows one of the possible orders
in which the different INDs are visited, the choice made to
represent the IND (either sub-element or IDREF attribute),
and the resulting changes in XSchema.

1. prof(Teach) ⊆ course(Cid): M (course) = (Cid,
Title, Room, prof∗), M (prof) = (Eid, Name)

2. student(Advisor) ⊆ prof(Eid): M(prof) = (Eid,
Name, student∗), M(student) = (Sid, Name)

3. dept(Mgr)⊆ emp(Eid): M(emp) = (Eid, Name, ProjName,
dept∗), M(dept) = (Dno)

4. proj(Pmgr)⊆ emp(Eid): M(emp) = (Eid, Name, ProjName,
dept∗, proj∗), M(proj) = (Pname)

5. emp(ProjName)⊆ proj(Pname): M(emp) = (Eid, Name,
dept∗, proj∗), A(proj) = {ID proj}, A(emp) = {Ref proj}

6. prof(Eid, Name) ⊆ emp(Eid, Name): M(prof) =
(student∗), A(emp) = {ID emp}, A(prof) = {Ref emp},
Σ = {Ref emp

key→ prof} 2

It is worthwhile to point out that there are several places
in CoT where human experts can determine better mapping
based on the semantics and usages of the underlying data
or application.

• The CoT algorithm identifies a minimal set of top-
nodes, breaking any ties (when there are cyclic INDs)
arbitrarily. A better mapping might have more top-
nodes than this minimal set, or might choose to break
a tie in a particular manner.

• Given a set of foreign-key constraints on one table,
CoT chooses one foreign-key constraint to be repre-
sented as a sub-element, and represents the remaining
using IDREF attributes. Human experts might be able
to provide better input as to which constraint should
be represented as sub-element, and which as IDREF
attributes.

Examples so far have shown the conversion flow of X →
CoT → DTD. We can also have the conversion flow X →
NeT → CoT → DTD (omitted due to space constraint).
However this imposes a restriction; when NeT followed by
CoT are applied, nesting can be done only on attributes that
do not participate in any IND.

5. DISCUSSION
All three algorithms – FT, NeT, and CoT – are “correct”

in the sense that they all have preserved the original infor-
mation of relational schema. We can show that any valid (or
invalid) update against the original relational schema is valid
(or invalid) against our resulting XML schemas, and these
updates can be translated “easily”. Our algorithms support
schema evolution - addition of new attributes to relations,
addition of new INDs etc can be mapped in a straight for-
ward manner to our XML schemas. Further, using the no-
tion of information capacity [16], a theoretical analysis for
the correctness of our translation procedures is possible; we
can actually show that NeT and CoT algorithms are equiv-
alence preserving transformations. However, we defer this
detailed analysis to a later version.

With respect to the “goodness” of XML schema that the
proposed algorithms generate, it is not obvious to bluntly
state whether or not they are good, since there has not been
any unanimous normalization theory for XML model yet.
Some early work for nested relational model (e.g., [19]) is
related, but more recently a few proposals have been made
for normal forms of XML model (e.g., [6, 24]). To a greater
or lesser extent, the crux of such normal forms is an attempt
to reduce data redundancy so that various anomalies can be
avoided. Although the output schema from NeT or CoT
does not exactly fit into normal forms defined by [6, 24],
they share similar properties. For instance, identifying mul-
tivalued attributes and making them repeating sub-elements
in NeT is essentially a necessary step towards “object class
normal form” in [24]. The use of reference attributes in CoT
for handling multiple foreign key constraints defined on one
table (Section 4.2) can be explained similarly. Therefore, we
would like to point out that although it is early to formally

prove the goodness of our proposals, it is evident that our
proposals lead to less redundant yet correct XML schema.

In the area of data modeling using XML schemas and
for benchmarking, there is a great deal of interest in un-
derstanding the characteristics of XML schemas that occur
in practical scenarios. Our algorithms show practical XML
schemas resulting from translation from relational sources.
The characteristics of the XML schemas generated by NeT
or CoT algorithms are: (1) they belong to local tree gram-
mar [17] and (2) they are free from any recursion.

6. EXPERIMENTAL RESULTS

6.1 NeT Results
We implemented the NeT and CoT algorithms5. For

the NeT implementation, we used two additional optimiza-
tion rules: (1) if nestX(t) = t, then nestX(nestAllL(t)) =
nestAllL(t) for any list of columns, L, and (2) if nestX(nestAllL
(t)) = nestAllL(t) for any column X and all possible list of
columns L of length l, then nestX(nestAllM (t)) = nestAllM (t)
for any column X and all possible list of columns M of length
m, where m ≥ l.

Our preliminary results comparing the goodness of the
XSchema obtained from NeT, and FT with that obtained
from DB2XML v 1.3 [23] appeared in [14]. We further ap-
plied our NeT algorithm on several test sets drawn from
UCI KDD6 / ML7 repositories, which contain a multitude
of single-table relational schemas and data. Sample results
are shown in Table 5. Two metrics are used as follows:

NestRatio =
of successful nesting

of total nesting

ValueRatio =
of original data values

of data values D in the nested table

where D is the number of individual data values present in
the table. For example, the D in the row ({1, 2, 3}, a, 10)
of a nested table is 5. High value for NestRatio shows that
we did not perform unnecessary nesting and high value for
ValueRatio shows that the nesting removed a lot of redun-
dancy.

In our experimentation, we observed that most of the at-
tempted nestings are successful. In Table 5, we see that nest-
ing was useful for all the data sets except for the Bupa data
set. Also nesting was especially useful for the Car data set,
where the size of the nested table is only 6% of the original
data set. Time required for nesting is an important parame-
ter, and it jointly depends on the number of attempted nest-
ings and the number of tuples. The number of attempted
nestings depends on the number of attributes, and increases
drastically as the number of attributes increases. This is ob-
served for the Flare data set, where we have to do nesting
on 13 attributes.

6.2 CoT Results
For testing CoT, we need some well-designed relational

schema where tables are interconnected via inclusion de-
pendencies. For this purpose, we use the TPC-H schema v
1.3.08, which is an ad-hoc, decision support benchmark and

5Available at http://www.cs.ucla.edu/∼mani/xml
6http://kdd.ics.uci.edu/
7http://www.ics.uci.edu/∼mlearn/MLRepository.html
8http://www.tpc.org/tpch/spec/h130.pdf

Test Set # of attr. / # of tuple NestRatio ValueRatio Size before / after # of nested attr. Time (sec.)

Balloons1 5 / 16 42 / 64 80 / 22 0.455 / 0.152 3 1.08
Balloons2 5 / 16 42 / 64 80 / 22 0.455 / 0.150 3 1.07
Balloons3 5 / 16 40 / 64 80 / 42 0.455 / 0.260 3 1.14
Balloons4 5 / 16 42 / 64 80 / 22 0.455 / 0.149 3 1.07

Hayes 6 / 132 1 / 6 792 / 522 1.758 / 1.219 1 1.01
Bupa 7 / 345 0 / 7 2387 / 2387 7.234 / 7.234 0 4.40

Balance 5 / 625 56 / 65 3125 / 1120 6.265 / 2.259 4 21.48
TA Eval 6 / 110 253 / 326 660 / 534 1.559 / 1.281 5 24.83

Car 7 / 1728 1870 / 1957 12096 / 779 51.867 / 3.157 6 469.47
Flare 13 / 365 11651 / 13345 4745 / 2834 9.533 / 5.715 4 6693.41

Table 5: Summary of NeT experimentations.

supplier

lineitem

nation

orders

partsupp

customer

part

region

Figure 3: The IND-Graph representation of the
TPC-H schema.

has 8 tables and 8 inclusion dependencies. The IND-Graph
for the TPC-H schema is shown in Figure 3.

0

50000

100000

150000

200000

250000

0 0.5 1 1.5 2 2.5

of

 d
at

a
va

lu
es

 in
 X

M
L

do
cu

m
en

t

size of TPC-H raw data (MB)

FT
CoT

Figure 4: Comparison of XML documents generated
by FT and CoT algorithms for TPC-H data.

CoT identifies two top-nodes - part and region. Suppose
we start the scan of the top-nodes from region, then, six
of the eight inclusion dependencies are mapped using sub-
element, and the remaining two are mapped using IDREF

attributes. We believe that the XSchema produced by CoT
is “more intuitive” than the relational schema we started
with.

Figure 4 shows a comparison of the number of data values
originally present in the database, and the number of data
values in the XML document generated by FT and CoT.
Because FT is a flat translation, the number of data values
in the XML document generated by FT is the same as the
number of data values in the original data. However, CoT is

able to decrease the number of data values in the generated
XML document by more than 12%.

7. CONCLUSION
We have presented two relational-to-XML conversion al-

gorithms – NeT and CoT. The naive translation algorithm
FT translates the “flat” relational model to “flat” XML
model in a one-to-one manner. Thus FT does not use the
non-flat features of the XML model, possible through reg-
ular expression operators such as “*” and “+”. To remedy
this problem, we first presented NeT, which uses the nest op-
erator to generate a more precise and intuitive XML Schema
from relational inputs. When poorly designed or legacy re-
lational schema needs to be converted to XML format, NeT
can suggest a fairly intuitive XML schema. However NeT
is only applicable to a single table at a time, and cannot
obtain a big picture of a relational schema where many ta-
bles are interconnected with each other. Our next algorithm
CoT addresses this problem; CoT uses semantic constraints
(especially inclusion dependencies) to come up with a more
intuitive XML Schema for the entire relational schema.

Thus our approaches have the following properties: (1)
automatically infer a “good” XML Schema from a given
relational schema, (2) remove redundancies that might be
present in poorly designed or legacy relational schema (3)
maintain semantic constraints during translation. With a
rapid adoption of XML standards among industries and ma-
jority of data still stored in relational databases, the need to
correctly and effectively convert relational data into XML
format is imminent. We believe our proposed methods are
good additions to such a practical problem.

There are several interesting issues to be studied. Imple-
mentation issues (e.g., I/O cost, tagging strategy, nesting
strategy) are very important. Early investigation on these
issues is done in [2]. Since our work in this paper proposes
algorithms which can result in a fairly complex target XML
schema as an output, studying an efficient implementation
of our NeT and CoT algorithms is an important direction.
Another direction of future research is studying the normal-
ization theory of XML schema. By formally defining what is
a “good” XML schema, one can devise better relational-to-
XML conversion algorithms that result in normalized XML
schema. Our resulting XML schemas support data updates
as well as schema evolution by addition of new attributes or
semantic constraints easily. However schema evolution by
deletion of attributes or semantic constraints are more dif-
ficult in the XML model, and should be studied. Also NeT
performed only single attribute nesting. Multiple attribute
nesting is another interesting research direction.

8. REFERENCES
[1] P. V. Biron and A. Malhotra (Eds). “XML Schema

Part 2: Datatypes”. W3C Recommendation, May
2001. http://www.w3.org/TR/xmlschema-2/.

[2] R. Bourret. “Data Transfer Strategies: Transferring
Data between XML Documents and Relational
Databases”. Web page, 2000.
http://www.rpbourret.com/xml/DataTransfer.htm.

[3] T. Bray, J. Paoli, and C. M. Sperberg-McQueen
(Eds). “Extensible Markup Language (XML) 1.0 (2nd
Edition)”. W3C Recommendation, Oct. 2000.
http://www.w3.org/TR/2000/REC-xml-20001006.

[4] M. Carey, D. Florescu, Z. Ives, Y. Lu,
J. Shanmugasundaram, E. Shekita, and
S. Subramanian. “XPERANTO: Publishing
Object-Relational Data as XML”. In Int’l Workshop
on the Web and Databases (WebDB), Dallas, TX,
May 2000.

[5] J. Clark and M. Murata (Eds). “RELAX NG
Tutorial”. OASIS Working Draft, Jun. 2001.
http://www.oasis-open.org/committees/relax-
ng/tutorial.html.

[6] D. W. Embley and W. Y. Mok. “Developing XML
Documents with Guranteed “Good” Properties”. In
Int’l Conf. on Conceptual Modeling (ER), Yokohama,
Japan, Nov. 2001.

[7] W. Fan and J. Siméon. “Integrity Constraints for
XML”. In ACM PODS, Dallas, TX, May 2000.

[8] M. F. Fernandez, W.-C. Tan, and D. Suciu.
“SilkRoute: Trading between Relations and XML”. In
Int’l World Wide Web Conf. (WWW), Amsterdam,
Netherlands, May 2000.

[9] P. C. Fischer, L. V. Saxton, S. J. Thomas, and D. V.
Gucht. “Interactions between Dependencies and
Nested Relational Structures”. J. Computer and
System Sciences (JCSS), 31(3):343–354, Dec. 1985.

[10] M. N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri,
and K. Shim. “XTRACT: A System for Extracting
Document Type Descriptors from XML Documents”.
In ACM SIGMOD, Dallas, TX, May 2000.

[11] R. L. Graham, D. E. Knuth, and O. Patashnik.
“Concrete Mathematics: A Foundation for Computer
Science”. Addison-Wesley Pub., 1994.

[12] G. Jaeschke and H.-J. Schek. “Remarks on the
Algebra of Non First Normal Form Relations”. In
ACM PODS, Los Angeles, CA, Mar. 1982.

[13] D. Lee and W. W. Chu. “CPI: Constraints-Preserving
Inlining Algorithm for Mapping XML DTD to
Relational Schema”. J. Data & Knowledge
Engineering (DKE), 39(1):3–25, Oct. 2001.

[14] D. Lee, M. Mani, F. Chiu, and W. W. Chu.
“Nesting-based Relational-to-XML Schema
Translation”. In Int’l Workshop on the Web and
Databases (WebDB), Santa Barbara, CA, May 2001.

[15] M. Mani, D. Lee, and R. D. Muntz. “Semantic Data
Modeling using XML Schemas”. In Int’l Conf. on
Conceptual Modeling (ER), Yokohama, Japan, Nov.
2001.

[16] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan.
“Schema Equivalence in Heterogeneous Systems:
Bridging Theory and Practice (Extended Abstract)”.
In EDBT, Cambridge, UK, Mar. 1994.

[17] M. Murata, D. Lee, and M. Mani. “Taxonomy of XML
Schema Languages using Formal Language Theory”.
In Extreme Markup Languages, Montreal, Canada,
Aug. 2001. http://www.cs.ucla.edu/∼dongwon/paper/.

[18] C. Nentwich, W. Emmerich, A. Finkelstein, and
A. Zisman. “BOX: Browsing Objects in XML”.
Software Practice and Experience, 30(15):1661–1676,
2000. http://www.cs.ucl.ac.uk/staff/c.nentwich/Box/.

[19] Z. M. Özsoyoglu and L. Y. Yuan. “A New Normal
Form for Nested Relations”. ACM Trans. on Database
Systems (TODS), 12(1):111–136, Mar. 1987.

[20] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,
D. DeWitt, and J. Naughton. “Relational Databases
for Querying XML Documents: Limitations and
Opportunities”. In VLDB, Edinburgh, Scotland, Sep.
1999.

[21] T. Shimura, M. Yoshikawa, and S. Uemura. “Storage
and Retrieval of XML Documents using
Object-Relational Databases”. In Int’l Conf. on
Database and Expert Systems Applications (DEXA),
pages 206–217, Florence, Italy, Aug. 1999.

[22] H. S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn (Eds). “XML Schema Part 1:
Structures”. W3C Recommendation, May 2001.
http://www.w3.org/TR/xmlschema-1/.

[23] V. Turau. “Making Legacy Data Accessible for XML
Applications”. Web page, 1999.
http://www.informatik.fh-
wiesbaden.de/∼turau/veroeff.html.

[24] X. Wu, T. W. Ling, M. L. Lee, and G. Dobbie.
“Designing Semistructured Database Using ORA-SS
Model”. Unpublished Manuscript, 2001.

APPENDIX

A. PROOFS

Proof. (Remark 1) The number of the first nesting along
n columns is the same as the number of 1-element sequences:
n. The number of the second nesting along n columns is
again the same as the number of 2-elements sequences by
P2: n(n− 1). Continuing this, the number of the last nest-
ing along n columns is again the same as the number of n-
elements sequences: n+n(n−1)+· · ·+n(n−1) . . . (2)(1) =
n1 + n2 + · · ·+ nn =

∑n
k=1 nk (q.e.d)

Proof. (Lemma 1) Consider a table t with column set
C, and candidate keys, K1, K2, . . . , Kn ⊆ C. Consider a
column X ∈ C, such that X is not an attribute of at least
one of the candidate keys, say X /∈ Ki. Now X ⊇ Ki, and
hence X is unique. Thus, no two tuples can agree on X.
Therefore, by the definition of the nest operator, nesting on
X will fail. (q.e.d)

Proof. (Theorem 1) The first column to be nested, say
X, is chosen such that X ∈ K by Lemma 1, in one of the m
ways. Now after the first nesting, by Corollary 1, we have
a new candidate key X. The next column to be nested is
chosen from K ∩ X, where |K ∩ X| = m − 1. Thus we
have m− 1 ways of choosing the second column for nesting.
Continuing this, we have total number of nesting is m +
m(m− 1) + . . . + m(m− 1) . . . (2)(1) =

∑m
k=1 mk. (q.e.d)

