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Abstract

A semantic caching scheme suitable for wrappers wrapping
web sources is presented. Since the web sources have typi-
cally weaker querying capabilities than conventional databases,
existing semantic caching schemes cannot be applied directly.
A seamlessly integrated query translation and capability map-
ping between the wrappers and web sources in semantic caching
is described. In addition, an analysis on the match types be-
tween the user's input query and cached queries is presented.
Semantic knowledge acquired from the data can be used to
avoid unnecessary access to the web sources by transforming
the cache miss to the cache hit. A polynomial time algorithm
based on the proposed query matching technique is presented
to �nd the best matched query in the cache. Experimen-
tal results reveal the e�ectiveness of the proposed semantic
caching scheme.

1 Introduction

Web databases allow users to pose queries to distributed
and heterogeneous web sources. Such systems usually con-
sist of three components [2, 14]: 1) mediators to provide
a distributed, heterogeneous data integration, 2) wrappers
to provide a local translation and extraction, and 3) web
sources containing raw data to be queried and extracted. In
the virtual approach [11], the queries are posed to a uni-
form interface and submitted to multiple sources at run-
time. Such querying can be very costly due to run-time
costs. An e�ective way to reduce costs in such an environ-
ment is to cache the results of the prior queries and to reuse
them [1, 10].

Semantic caching (e.g., [9, 16, 20, 21, 22]) exploits the
semantic locality of the queries by caching a set of seman-
tically associated results, instead of tuples or pages which
are used in conventional caching. The semantic caching can
be particularly e�ective in improving performance when a
series of semantically associated queries are asked. Thus,
the results may likely overlap or contain one another. Ap-
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plications such as the cooperative database system [8] and
geographical information system are the examples. Seman-
tic caching can be provided for both mediators and wrappers
to improve the query response time:

1. Wrapper-level caching: The wrapper has a 1-to-1
mapping with the web source. Since the web source typically
has a local view on a \single" relation, queries involve only
selection and projection. However, the querying capability
between the wrapper and web source needs to be considered.

2. Mediator-level caching: The view at mediator con-
sists of multiple views from wrappers. Thus, complex join
operations among multiple views are common at this level.

To a greater or lesser extent, most previous works have
focused on mediator-level caching. We argue that wrapper-
level caching itself can be useful in a variety of applications.
For instance, consider the following example.

Example 1: Let us consider a technical report archive
query interface. The query interface is an IR system with
form-based �elds such as author, title, abstract, organiza-
tion and identi�er, which allow only selection and projec-
tion operations. Now suppose the following query is cached
locally.

SELECT *

FROM TechnicalReport

WHERE title LIKE '%web%'

AND organization IN {UCB, UCI, UCLA, UCSD}

Then, the subsequent query Q1: \�nd all TRs whose ti-
tles contain 'web' and are from the UCLA archive" can be
answered from the cache in its entirety. However, another
query Q2: \�nd all TRs whose titles contain 'web' and are
written by John Smith" cannot be answered from the cache.
Furthermore, if we know that Professor 'John Smith' is only
with the UCB, then Q2 can be answered from the local
cache. �

Most semantic caching schemes in client-server architec-
tures are based on the assumption that all participating
components are full-edged database systems. If a client
gets a query A but its cache contains answers for A ^ B,
then the client has to send a modi�ed query A ^ :B to the
server to retrieve the remaining answers. In web databases,
however, web sources such as plain web pages or form-based
IR systems have very limited querying capabilities and can-
not easily support such complicated (i.e., negation) queries.
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Figure 1 illustrates the di�erence in semantic caching be-
tween client-server and web database architectures.
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Figure 1: Semantic caching in two architectures.

Our proposed semantic caching scheme is based upon
the following three key ideas. 1) With an e�cient method
to locate the best matched query from the set of candidates,
semantic caching at wrappers can signi�cantly improve the
system performance. 2) Since the querying capability of web
sources is weaker than the user's queries, query translation
and capability mapping are necessary in semantic caching.
3) Semantic knowledge can be used to transform a cache
miss in a conventional caching to a cache hit.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce background information for semantic
caching. In Section 3, we describe our proposed wrapper-
level semantic caching. In Section 4, query matching algo-
rithms are presented. Then, experimental results follow in
Section 5. Finally, related works and conclusions are dis-
cussed in Section 6 and 7, respectively.

2 Background

Our caching scheme is implemented in a web database testbed
called CoWeb (Cooperative Web Database) at UCLA. The
architecture consists of a network of mediator and wrap-
per components [2, 14]. The focus of the system is to use
knowledge for providing cooperative capabilities such as con-
ceptual and approximate web query answering, knowledge-
based semantic caching [17], and web triggering with fuzzy
threshold conditions. The input query is expressed in the
SQL1 language based on the mediator schema. The me-
diator decomposes the input SQL into sub-queries for the
wrappers by converting the WHERE clause into disjunc-
tive normal form, DNF (the logical OR of the logical AND
clauses), and disjoining conjunctive predicates. CoWeb han-
dles selection and join predicates with any of the following
operators f>;�;<;�;=g.

Our semantic caching approach is closely related to the
query satis�ability and query containment problems [15, 24].
Given a database D and query Q, applying Q on D is de-
noted as Q(D). Then, hQ(D)i, or hQi for short, is the n-ary
relation obtained by evaluating the query Q on D. Given
two n-ary queries, Q1 and Q2, if hQ1(D)i � hQ2(D)i for any
database D, then the query Q1 is contained in the query Q2,
that is Q1 � Q2. If two queries contain each other, they are
equivalent , that is Q1 � Q2.

The solutions to both problems vary depending on the
exact form of the predicate. If a conjunctive query has only
selection predicates with the �ve operators f>;�; <;�;=g,
the query satis�ability problem can be solved in O(jQj) time
for the query Q and the query containment problem can be
solved in O(jQ1j

2 + jQ2j) for the Q1 � Q2 [15]. When the
operator 6= is added, however, it is shown that the problem
becomes NP -complete [6].

1Current CoWeb implementation supports only SPJ (Select-
Project-Join) type SQL.

3 Wrapper-Level Semantic Caching

3.1 Semantic Caching Model

A semantic cache is essentially a hash table where an entry
consists of a (key, value) pair. The key is the semantic
description based on the previous queries. The value is a set
of answers that satisfy the key. The semantic description
made of prior query is denoted as semantic view , V. An
entry in the semantic cache is denoted as (V; hVi) using the
notation hVi in Section 2.

Queries stored in the cache at the wrapper of the CoWeb
have the form \select * from web source where condition".
By storing all attribute values in the cache, CoWeb com-
pletely avoids the unrecoverability problem which can occur
when query results cannot be recovered from the cache even
if they are found due to the lack of certain logical informa-
tion [12]. For the rationale storing all the attributes instead
of only the projected ones, the interested readers should re-
fer to [18]. Hereafter, user queries are represented by the
conditions in the WHERE clause.

3.2 Query Naturalization

Di�erent web sources use di�erent ontology. Due to secu-
rity or performance concerns [11], web sources often provide
di�erent query processing capabilities. Therefore, wrapper
needs to perform the following pre-processing of the input
query before submitting it to the web source:

1. Translation: To provide a 1-to-1 mapping between the
wrapper and the web source, the wrapper needs to schemat-
ically translate the input query.

2. Generalization & Filtration: If there is no 1-to-
1 mapping between the wrapper and the web source, the
wrapper can generalize the input query to return more re-
sults than requested and �lter out the extra data. For in-
stance, a predicate (name='tom') can be generalized into
the predicate (name LIKE '%tom%') with an additional �l-
ter (name='tom').

3. Specialization: When there is no 1-to-1 mapping be-
tween the wrapper and the web source, the wrapper can spe-
cialize the input query with multiple sub-queries and then
merge the results. For instance, a predicate (1998<year<2001)
can be specialized by a disjunctive predicate (year=1999 _
year=2000) provided that year is an integer type.

The original query from the mediator is called the input
query . The generated query after pre-processing the input
query is called the native query , as it is supported by the
web source in a native manner [4]. Such pre-processing is
called the query naturalization. The query used to �lter out
irrelevant data from the native query results is called the
�lter query [4]. When the translation is not applicable due
to the lack of 1-to-1 mapping, CoWeb applies generaliza-
tion or specialization based on the knowledge regarding the
querying capability of the web source. This information is
pre-determined by a domain expert. For further informa-
tion on such schemes to represent querying capabilities, the
interested readers should refer to [25].

Example 2: Suppose a web source supports queries on
employee(name,age,title) with only = operator. Then,
an input query Q:(20�age�22 ^ title='manager') needs
to be naturalized (i.e., specialized) into a native query
V:((age=20 ^ title='manager') _ (age=21 ^ title=
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'manager') _ (age=22 ^ title='manager')). Further, since
semantic views use only conjunctive predicates, the native
query V is partitioned into three conjunctive parts, V1:(age=20
^ title='manager'), V2:(age=21 ^ title='manager'), and
V3:(age=22 ^ title='manager'). Thus, three entries (V1,
hV1i), (V2, hV2i), and (V3, hV3i) are inserted as semantic
views into the cache. �

3.3 The Control Flow in the Wrapper with Semantic Cache
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Figure 2: The control ow in the wrapper.

The control ow among the mediator, wrapper, and web
source is illustrated in Figure 2. An input query from the
mediator is naturalized in the wrapper and converted to a
native query. A �lter query can be generated. The cache
manager then checks the native query against the semantic
views stored in the cache to �nd a match. If a match is found
but no �lter query was generated for the query, results are
retrieved from the cache and returned to the mediator. If
there was a �lter query generated, then the results need to be
�ltered to remove the extra data. If no match is found, the
native query is submitted to the web source. After obtaining
native results from the web source, the wrapper performs
post-processing and returns the �nal results to the mediator.
Finally the proper form of the native query (i.e., disjunctive
predicates are broken into conjunctive ones) is saved in the
cache for future use.

3.4 Semantic View Overlapping

A semantic view creates a spatial object2 in an n-dimensional
hyper-space, which creates overlapping. For instance, two
queries (10�age�20 ^ 30k�sal�40k) and (15�age�25 ^
35k�sal�45k) create an overlapping (15�age�20 ^ 35k

�sal�40k). Since excessive overlapping of the semantic
views may waste the cache space for duplicate answers, the
overlapped portions can be coalesced to the new semantic
views and the remaining semantic views are modi�ed appro-
priately or can be completely separate semantic views. For
details, refer to [17, 18]. In CoWeb, unlike these approaches,
the overlapping of the semantic views is allowed to retain
the original form of the semantic views. By using a refer-
ence counter to keep track of the references of the answer
tuples in implementing the cache, the problem of storing
redundant answers in the cache is avoided [16, 17].

3.5 Match Types

When a query is compared to a semantic view, there can
be �ve di�erent match types. Consider a semantic view V
in the cache and a user query Q. When V is equivalent to
Q, V is an exact match of Q. When V contains Q, V is a
containing match of Q. In contrast, when V is contained
in Q, V is a contained match of Q. When V does not

2This is called a semantic region in [9] and a semantic segment

in [21].

contain, but intersects with Q, V is an overlapping match
of Q. Finally, when there is no intersection between Q and
V, V is a disjoint match of Q. The exact match and
containing match are complete match since all answers
are in the cache, while the overlapping and contained match
are partial match since some answers need to be retrieved
from the web sources. The detailed properties of each match
type are shown in Table 1. Note that for the contained and
overlapping matches, computing answers requires the union
of the partial answers from the cache and from the web
source.

4 Query Matching Technique

Let us now discuss the process of �nding the best matched
query from the semantic views, called query matching,
which consists of three steps: exact , extended , and knowledge-
based matching .

4.1 Exact Matching

Traditional caching considers only exact match between an
input query and semantic view. If there is a semantic view
that is identical to the input query, then it is a cache hit.
Otherwise, it is a cache miss.

4.2 Extended Matching

In this section, we shall introduce extended matching which
extends the exact matching for those cases when an input
query is not exactly matched with a semantic view. Other
than the exact matching, the containing match is the next
best case since it only contains some extra answers. Then,
between the contained and overlapping matches, the con-
tained match is slightly better. This is because the con-
tained match does not contain extra answers in the cache
although both have only partial answers (see Table 1).

4.2.1 The MatchType Algorithm

First, given a semantic view V and input queryQ, the shown
MatchType algorithm returns the proper match type using
the properties in Table 1. Based on the algorithms devel-
oped for solving the satis�ability and containment prob-
lem [15, 24], the MatchType algorithm can be implemented
with O(jQj2 + jVj2) complexity.

Input: Q, V Output: Type;

Type  null ;
if Q^V is unsatis�able then Type  disjoint match;
else if Q � V then Type  exact match;
else if Q�V ^ Q6�V then Type containing match;
else if Q 6� V ^Q � V then Type contained match;
else Type  overlapping match;
return Type;

Algorithm 1: The MatchType

4.2.2 The BestContainingMatch and BestContainedMatch

Algorithms

Given an input query and many containing match candi-
dates, the BestContainingMatch algorithm �nds a contain-
ing match that incurs minimal e�ort to �lter out the extra
answers. Using query containment lattice concept [18], the
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Answers fromMatch Types Properties
Cache Web source

Exact match V � Q hVi ;
Complete match f

Containing match V 6� Q ^Q � V hQ(hVi)i ;
Contained match V � Q ^Q 6� V hVi hQ ^ :V iPartial match f
Overlapping match V 6� Q ^Q 6� V hQ(hVi)i hQ ^ :Vi
Disjoint match Q^ V is unsatis�able ; ;

Table 1: Query match types and their properties. V is a semantic view and Q is a user query.

algorithm �rst �nds all minimally-containing matches (the
ones that do not contain other containing matches). The
main idea here is to �nd the smallest superset of the input
query. For detail discussion, refer to [18]. The algorithm
then selects the best one from all the minimally-containing
matches. Note that for a given queryQ, there can be several
minimally-containing matches found in the cache. In such
cases, the best minimally-containing match can be selected
based on such heuristics as the number of answers associated
with the semantic view, the number of predicate literals in
the query, etc.

Input : fV1; :::;Vkg

Output: Best  Vi 2 fV1; :::;Vkg

Best  ;, Bucketcontaining  fV1; :::;Vkg;
for Vi  V1 to Vk do

for Vj  V1 to Vk; i 6= j do
if MatchType(Vi, Vj) = containing match then

Bucketcontaining  Bucketcontaining { Vj ;

for Vi 2 Bucketcontaining do
Best  pick one heuristically from Bucketcontaining;

return Best;

Algorithm 2: The BestContainingMatch

Let jVmaxj be the length of the longest containing match
and k be the number of the containing matches. Then, the
computation takes O(k2jVmaxj

2) without any indexing on
the semantic views. Observe that the BestContainingMatch
algorithm is only justi�ed when �nding the best containing
match is better than selecting an arbitrary containing match
followed by �ltering. This occurs often in web databases
with large number of heterogeneous web sources or in multi-
media databases with expensive operations for image pro-
cessing. The BestContainedMatch algorithm is similar to
the case of the BestContainingMatch algorithm.

4.2.3 The BestOverlappingMatch Algorithm

For the overlapping matches, we cannot construct the query
containment lattice. Thus, in choosing the best overlapping
match, we use a simple heuristic: Choose the overlapping
match which overlaps most with the given query. There are
many ways to determine the meaning of overlapping. One
technique is to compute the overlapped region between two
queries in n-dimensional spaces or compare the number of
associated answers and select the one with maximum an-
swers.

4.3 Knowledge-based Matching

According to our experiments, partial matches (i.e., over-
lapping and contained matches) constitute about 40% of all

match types for the given test sets (see Table 3). Interest-
ingly, a partial match can be a complete match in certain
cases. For instance, for the employee(name,gender,addr)

relation, a semantic view V:(gender='m') is the overlapping
match of a query Q:(name='john'). If we know that john
is in fact a male employee, then V is a containing match
of Q since Q � V. Since complete matches (i.e., exact and
containing matches) eliminate the need to access the web
source, transforming a partial match into a complete match
can improve the performance signi�cantly.

4.3.1 Semantic Knowledge Acquisition

Obtaining semantic knowledge from the web source and
maintaining it properly are important issues. In general,
such knowledge can be obtained by human experts from
the application domain. In addition, database constraints
such as inclusion dependencies can be used. Rule induc-
tion also provides a way to acquire such semantic knowl-
edge. For instance, a rule (0201�sonar.class�0215 !
sonar.type='SSN') implying that all sonar objects whose
class values are between 0201 and 0215 must be 'SSN' type
can be automatically acquired [8].

How to manage the obtained knowledge under addition,
deletion, or implications is also an important issue. Since
the focus of this paper is to show how to utilize such knowl-
edge for semantic caching, the knowledge acquisition and
management issues are beyond the scope of this paper. We
assume that the semantic knowledge that we are in need of
was already acquired and was available to the cache man-
ager.

4.3.2 Semantic Knowledge Notation

We use a generic notation derived from [8] to denote the con-
tainment relationship between two fragments of relations. A
fragment inclusion dependency (FIND) assures that values
in the columns of one fragment must also appear as values
in the columns of other fragment. Formally, a FIND has
a form �P 3 �Q where � is a select operation, P and Q
are conjunctive WHERE conditions and 3 2 f�;�g. Often
LHS or RHS is used to denote the left or right hand side of
the FIND. A set of FIND is denoted by � and assumed
to be closed under its consequences (i.e., � = ��).

4.3.3 Transforming Partial Matches to Complete Matches

Our goal is to transform as many partial matches (i.e., over-
lapping and contained matches) to complete matches (i.e.,
exact and containing matches) as possible with the given de-
pendency set �. The overlapping match can be transformed
into four other match types, while the contained match can
only be transformed into the exact match, if possible.

1. Overlapping Match: Given a query Q, its overlapping
match V and a dependency set �,
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� If fLHS � RHSg 2 �;Q � LHS;V � RHS, then V
is the exact match of the Q.

� If fLHS � RHSg 2 �;Q � LHS;RHS � V, then V
is the containing match of the Q.

� If fLHS � RHSg 2 �;V � LHS;RHS � Q, then V
is the contained match of the Q.

� If fLHS � RHSg 2 �;Q � LHS;V ^ RHS is unsat-
is�able, or fLHS � RHSg 2 �;V � RHS;Q ^ LHS

is unsatis�able, then V is the disjoint match of the Q.

Sketch of Proof: Due to limited space, we only show the
proof for the second case of the overlapping match trans-
formation here. For the overlapping match, from Table 1,
we have Q 6� V ^ V 6� Q. If the condition part is satis-
�ed, then we have Q � LHS � RHS � V, thus Q � V
since � is a transitive operator. This overwrites the original
property Q 6� V. As a result, we end up with a property
Q � V ^ V 6� Q, which is the property of the containing
match. �

2. Contained Match: Given a query Q, its contained
match V and a �, if fLHS � RHSg 2 �;Q � LHS;V �
RHS, then V is the exact match of Q.

Example 3: Suppose we have a query Q:(salary=100k)
and a semantic view V:(title='manager'). Given a �:
f�80k�salary�120k � �title=0manager0^age�40g, V becomes a
containing match of Q since Q � LHS;RHS � V and
fLHS � RHSg 2 �. �

4.3.4 The �-MatchType Algorithm

Let us �rst de�ne an augmented containment in the pres-
ence of the dependency set �. Given two n-ary queries, Q1

and Q2, if hQ1(D)i � hQ2(D)i for an arbitrary relation D
obeying the fragment inclusion dependency set �, then the
query Q1 is �-contained in the query Q2 and denoted by
Q1 �� Q2. If two queries �-contain each other, they are
�-equivalent and denoted by Q1 �� Q2.

Then, the �-MatchType algorithm can be implemented
by modifying the MatchType algorithm by adding additional
input, �, and changing all � to �� and � to ��. The
computational complexity ofQ ��0 V where �0 contains the
single FIND = LHS3RHS is thenO(jQj2+jVj2+jLHSj2+
jRHSj2). Let jLmaxj and jRmaxj denote the length of the
longest LHS and RHS in � and let j�j denote the number
of FIND in �, then the total computational complexity of
the �-MatchType algorithm is O(j�j(jQj2+ jVj2+ jLmaxj

2+
jRmaxj

2)) in the worst case when all semantic views in the
cache are either overlapping or contained matches. Since the
gain from transforming partial matches to complete matches
is I/O-bounded and the typical length of the conjunctive
query is relatively short, it is a good performance trade-o�
to pay overhead cost for the CPU-bounded �-MatchType
algorithm in many applications.

4.4 The BestMatch Algorithm: Putting It All Together

The BestMatch algorithm �nds the best semantic view in
the cache for a given input query in the order of the exact
match, containing match, contained match and overlapping
match. If all semantic views turn out to be disjoint matches,
it returns a null answer. It takes into account not only exact
containment relationship but also extended and knowledge-
based containment relationships. Let jVmaxj denote the

length of the longest semantic views. Then the for loop
takes at most O(kj�j(jQj2 + jVmaxj

2 + jLmaxj
2 + jRmaxj

2))
time. Assuming that in general jVmaxj is longer than others,
the complexity can be simpli�ed to O(kj�jjVmaxj

2). In ad-
dition, the BestContainingMatch and BestContainedMatch

takes at most O(k2jVmaxj
2). Therefore, the total computa-

tional complexity of the BestMatch algorithm is O(kj�jjVmaxj
2)+

O(k2jVmaxj
2).

Input : Q, UV  fV1; :::;Vkg, �

Output: Best  Vi 2 UV
Best  null ;
Bucketcontaining, Bucketcontained, Bucketoverlapping  ;;
for Vi  V1 to Vk do

switch �-MatchType(Q, Vi, �) do
case exact match return Vi;
case containing match

Bucketcontaining  Bucketcontaining + Vi;

case contained match

Bucketcontained  Bucketcontained + Vi;

case overlapping match

Bucketoverlapping  Bucketoverlapping + Vi;

otherwise skip;

if Bucketcontaining 6= ; then
Best  BestContainingMatch(Bucketcontaining );

else if Bucketcontained 6= ; then
Best  BestContainedMatch(Bucketcontained);

else if Bucketoverlapping 6= ; then
Best  BestOverlappingMatch(Bucketoverlapping );

return Best;

Algorithm 3: The BestMatch

5 Performance Evaluation via Experiments

The experiments were performed on a Sun Sparc 20 machine
with 64 MB RAM. Each test run was scheduled as a cron
job and executed between midnight and 6am to minimize
the e�ect of the load at the web site. The testbed, CoWeb,
was implemented in Java using jdk1.1.7.

5.1 Experimental Setup

A wrapper was constructed to wrap the USAir3 web site,
which provided the following local view to the mediator:

USAir(org, dst, airline, stp, aircraft, flt, meal)

Among 7 attributes, both org and dst were mandatory at-
tributes, thus they should always be bounded in a query.
Because of di�culties to obtain real-life test queries from
such web source, synthetic test sets with di�erent semantic
localities were generated to evaluate our semantic caching
scheme. Two inputs to the query generator were manip-
ulated to generate di�erent semantic localities in the test
sets:

1. The number of the attributes used in the where
condition (NUM): A test query with a large number of

3Flight schedule site at http://www.usair.com. Experiments were
performed during Oct. and Nov. period in 1998. At the time of
writing, we noticed that the web site has slightly changed its web
interface and schema since then.
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attribute conditions is more speci�c than that of a small
number of attribute conditions (e.g., a query (age=20 ^
40k<sal<50k ^ title='manager') is more speci�c than
another query (age=20)). Therefore, a test set with many
such speci�c queries is likely to perform badly in seman-
tic caching since there are not many exact or containing
matches. Let us denote the number of attributes used in the
WHERE condition as Ni (i.e., N3 means that 3 attributes
are used in the WHERE condition). Then, the following in-
put to the query generator fN0=30%, N1=20%, N2=15%,
N3=3%, N4=2%, N5=6%, N6=3%, N7=1%g can be read
as \Generate more queries with short conditions than ones
with long conditions. The probability distributions are 30%,
20%, 15%, 13%, 12%, 6%, 3%, 1%, respectively".

2. The name of the attributes used in the where
condition (NAME): A test set containing many queries
asking about common attributes is semantically skewed and
is likely to perform well with respect to semantic caching.
Therefore, di�erent semantic localities can be generated by
manipulating the name of the attributes used in theWHERE
condition. For instance, the following input to the query
generator forg=14.3%, dst=14.3%, airline=14.3%, stp=14.3%,
aircraft=14.3%, t=14.3%, meal=14.3%g can be read as
\All 7 attributes are equally likely being used in test set".
For instance, the fact that ight number information is more
frequently asked than meal information can be represented
by assigning a higher probability value to the flt attribute
than the meal attribute.

The four test sets (uni-uni, uni-sem, sem-uni, and sem-sem)
were generated by assigning di�erent values to the two in-
put parameters (NUM and NAME) as shown in Table 2.
uni and sem stand for uniform and semantic distribution,
respectively. Note that org and dst are the two mandatory
attributes. Since there are no queries with no or single at-
tribute conditions, the probabilities for org and dst are not
shown in Table 2 (i.e., they are 100%). The total number of
the possible distinct queries that can be generated was set to
about 32,400. Each test set with 1,000 queries was randomly
picked based on the two inputs. The sem values for the input
NUM are set to mimic the Zipf distribution [26], where it is
shown that humans tend to ask short and simple questions
more often than long and complex ones. The sem values for
the input NAME are set arbitrarily, assuming that airline
or stopover information will be more frequently asked than
others. As long as it is a semantically skewed test set, it
su�ces our purpose to test semantic caching. The following
is an example of a typical test query generated.

SELECT *

FROM USAir

WHERE org='LAX' AND dst='JFK'

AND 87<=flt AND 1<=stp<=2 AND meal='S/S'

AND aircraft='Boeing 757-200'

5.2 Performance Metrics

1. Average Response Time T : T = (total response time
for n queries) / n. To eliminate the initial noise when an
experiment �rst starts, we can use T from the k queries of
the sliding window instead of n queries in the query set.

2. Cache Coverage Ratio Rc: Since the traditional cache
\hit ratio" does not measure the e�ect of partial matching in
semantic caching, we propose to use a cache coverage ratio
as a performance metric. Given a query set consisting of n

queries q1; :::; qn, let Li be the number of answers found in
the cache for the query qi, and letMi be the total number of

answers for the query qi for 1 � i � n. ThenRc =
P

n

i=1
Rqi

n
,

where 1) Rqi =
Li
Mi

if Mi > 0 and 2) Rqi = c for 0 � c � 1

if Mi = 04. The query coverage ratio Rq of the exact match
and containing match is 1 since all answers must come from
the cache. Similarly, Rq of the disjoint match is 0 since all
answers must be retrieved from the web source.

5.3 Experimental Results

In Figure 3, we compared the performance di�erence of three
caching cases: 1) no caching (NC), 2) conventional caching
using exact matching (CC), and 3) semantic caching using
the extended matching (SC). Both cache sizes were set to
200KB. Regardless of the type of test set, NC shows no dif-
ference in performance. Since the number of exact matches
was very small in all the test sets, CC shows only a little
improvement in performance as compared to the NC case.
Due to the randomness of the test sets and large number
of containing matches in our experiments, SC exhibits sig-
ni�cantly better performance than CC. The more semantics
the test set has (thus the more similar queries are found in
the cache), the less time it takes to determine the answers.

����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
ill

is
ec

)

Test Sets
uni-uni uni-sem sem-uni sem-sem

NC
CC
SC

Figure 3: Performance comparison of the semantic caching
with conventional caching.

Next, we studied the behaviour of semantic caching with
respect to cache size. We set the replacement algorithm
as LRU and ran four test sets with cache sizes equal to
50KB, 100KB, 150KB, and unlimited. Because the number
of answers returned from the USAir web site is on average
small, the cache size was set to be small. Each test set
contained 1,000 synthetic queries. Figure 4a and Figure 4b
show the T and the Rc for semantic caching with selected
cache sizes. The graphs show that the T decreases and the
Rc increases proportionally as cache size increases. This
is due to the fact that there are fewer cache replacements.
The degree of the semantic locality in the test set plays an
important role. The more semantics the test set has, the
better it performs. Due to no cache replacements, there is
only a slight di�erence for the unlimited cache size in the
Rc graph. The same behavior occurs in the Rc graph for
the cache size with 150KB for the sem-uni and sem-sem test
sets.

Next, we compared the performance di�erence between
the LRU (least recently used) and MRU (most recently used)

4In our experiments, c was set to 0.5 for the overlapping and con-
tained match when Mi = 0.
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Scheme
Number of the attributes used (NUM)

Scheme
Name of the attributes used (NAME)

2 3 4 5 6 7 airline stp aircraft t meal

uni 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% uni 20% 20% 20% 20% 20%
sem 40% 25% 15% 10% 5% 5% sem 40% 25% 10% 5% 20%

Table 2: Uniform and semantic distribution values used for generating the four test sets.

����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

0

500

1000

1500

2000

2500

3000

3500

4000

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
ill

is
ec

)

Test Sets
uni-uni uni-sem sem-uni sem-sem

size 50KB
size 100KB
size 150KB

size unlimited

������

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 C

ov
er

ag
e 

R
at

io

Test Sets
uni-uni uni-sem sem-uni sem-sem

size 50KB
size 100KB
size 150KB

size unlimited

4a) Average response time T 4b) Cache coverage ratio Rc

Figure 4: Performance comparison of four test sets with selected cache sizes.

replacement algorithms. The low-level memory manage-
ment used the strategy that incorporates a reference counter
developed in [17]. Due to limited space, we only show uni-uni

and sem-sem test set results. For this comparison, 10,000
synthetic queries were generated in each test set and cache
size was �xed to be 150KB. Figure 5a shows the T of the
two replacement algorithms. For both test sets, LRU out-
performed MRU. Further, the di�erence of the T between
LRU and MRU increased as the semantic locality increased.
This is because when there is a higher semantic locality, it
is very likely that there is also a higher temporal locality.
Figure 5b shows the Rc of the two replacement algorithms.
Similar to the T case, LRU outperformed MRU in the Rc

case as well. Note that the sem-sem case in the Rc graph of
the LRU slightly increased as the number of test queries in-
creased while it stayed fairly at in the uni-uni case. This is
because when there is a higher degree of semantic locality in
the test set such as sem-sem case, the replacement algorithm
does not lose its querying pattern (i.e., semantic locality).
That is, the number of exact and containing matches is so
high (i.e., 58.1% combined in Table 3) that most answers
are found in the cache as opposed to a web source. On the
other hand, in the sem-sem case, the Rc graph of the MRU
decreased as the number of test queries increased. This is
true due to the fact that MRU loses its querying pattern by
swapping the most recently used item from the cache.

Table 3 shows the average percentages of the �ve match
types based on 1,000 queries for four test sets. The fact that
partial matches (contained and overlapping matches) consti-
tute about 40% shows the potential usage of the knowledge-
based matching technique. Figure 6a shows an example of
the knowledge-based matching using semantic knowledge.
We used a set of induced rules acquired by techniques de-
veloped in [8] as semantic knowledge. Figure 6b shows

knowledge-based matching ratios (
# knowledge-based matches

# partial matches
)

with selected semantic knowledge sizes. The semantic knowl-
edge size is represented as a percentage against the number

of the semantic views. For instance, a size of 100% means
that the number of the induced rules used as semantic knowl-
edge equals to the number of the semantic views in the cache.
Despite a large number of partial matches in the uni-uni

and uni-sem sets shown in Table 3, it is interesting to ob-
serve that the knowledge-based matching ratios were almost
identical for all test sets. This is due to the fact that many
of the partially matched semantic views in the uni-uni and
uni-sem sets have very long conditions and fail to match the
rules. Predictably, the e�ectiveness of the knowledge-based
matching depends on the size of the semantic knowledge.

6 Related Works

Past research areas related to semantic caching includes con-
ventional caching (e.g., [1, 10]), query satis�ability and con-
tainment problems (e.g., [15, 24]), view materialization (e.g.,
[19, 20]), query folding (e.g., [23]), and semantic query opti-
mization (e.g., [8, 13]). Recently, semantic caching in client-
server or multi-database architecture has received attention
[3, 9, 12, 16, 21]. Deciding whether a query is answerable
or not is closely related to the problem of �nding com-
plete rewritings of a query using views [19, 23]. The main
di�erence is that semantic caching techniques evaluate the
given query against the semantic views, while query rewrit-
ing techniques rewrite a given query based on the views [5].
Further, our proposed technique is also more suitable for
web databases where the querying capability of the sources
is not compatible with that of the clients.

Semantic caching and the corresponding indexing tech-
niques which require that the cached results be exactly matched
with the input query are presented in [22]. In our approach,
the cached results do not have to be exactly matched with
the input query in order to compute answers. [7] approaches
the semantic caching from the query planning and optimiza-
tion point of view. [9] maintains cache space by coalescing
or splitting the semantic regions while we maintain cache
space by reference counters which allows overlapping in the
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Figure 5: Performance comparison of four test sets with LRU and MRU replacement algorithms.

Match types
Test sets

Exact match Containing match Contained match Overlapping match Disjoint match

uni-uni 0.4% 13.5% 7.8% 32.1% 46.2%
uni-sem 0.5% 27.7% 12.8% 36.8% 22.2%
sem-uni 5.1% 44.6% 12.0% 25.1% 13.2%
sem-sem 6.1% 52.0% 15.1% 18.0% 13.6%

Average 3.025% 34.35% 11.925% 28.0% 23.8%

Table 3: Distribution of match types for four test sets.

semantic regions. Further, we provide techniques to �nd
the best matched query under di�erent circumstances via
extended and knowledge-based matching. In [16], predicate
descriptions derived from previous queries are used to match
an input query with the emphasis on updates in the client-
server environment.

In [3], selectively chosen sub-queries are stored in the
cache and are treated as information sources in the do-
main model. To minimize the expensive cost for contain-
ment checking, the number of semantic regions is reduced
by merging them whenever possible. [21] de�nes a semantic
caching formally and addresses query processing techniques
derived from [20]. A comprehensive formal framework for se-
mantic caching is introduced in [12] illustrating issues, such
as when answers are in the cache, when answers in the cache
can be recovered, etc. [2] discusses semantic caching in the
mediator environment with knowledge called invariants. Al-
though invariants are more powerful than FIND due to
their support of arbitrary user-de�ned functions as condi-
tions, they are mainly used for substituting a domain call.
On the contrary, FIND is simpler and easier in expressing
a fragment containment relationship on relations. FIND
can also be acquired (semi)-automatically.

7 Conclusions

Semantic caching via query matching techniques for web
sources is presented. Our scheme utilizes the query natural-
ization to cope with the schematic, semantic, and querying
capability di�erences between the wrapper and web source.
Further, we developed a semantic knowledge-based algo-
rithm to �nd the best matched query from the cache. Even
if the conventional caching scheme yields a cache miss, our

scheme can potentially derive a cache hit via semantic knowl-
edge. Our algorithm is guaranteed to �nd the best matched
query among many candidates based on the algebraic com-
parison of the queries and semantic context of the appli-
cations. To prove the validity of our proposed scheme, a
set of experiments with di�erent test queries and with dif-
ferent degrees of semantic locality were performed. Exper-
imental results con�rm the e�ectiveness of our scheme for
di�erent cache sizes, cache replacement algorithms and se-
mantic localities of test queries. The performance improves
as the cache size increases, as the cache replacement algo-
rithm retains more querying pattern, and as the degree of
the semantic locality increases in the test queries. Finally,
additional 15 to 20 % improvement in performance can be
obtained using knowledge-based matching. Therefore, our
study reveals that our semantic caching technique can sig-
ni�cantly improve the perfmrance of the wrappers wrapping
web sources.

Semantic caching at the mediator-level requires commu-
nication with multiple wrappers and creates horizontal and
vertical partitions as well as joins of input queries [12], which
result in more complicated cache matching. Further research
in this area is needed. Other cache issues that were not cov-
ered in this paper, such as selective materializing, consis-
tency maintainence and indexing, also need to be further in-
vestigated. For instance, due to the autonomous and passive
nature of web sources, wrappers and their semantic caches
are not aware of web source changes. More techniques need
to be developed to incorporate such web source changes into
the cache design in web databases.

Acknowledgment: The authors wish to thank Parke God-
frey (U. Maryland), H. Jean Oh (USC/ISI), Frank Meng
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Q: (org='LAX' ^ dst='JFK' ^ 87�flt�88)
V: (aircraft='Boeing 757-200')

Rules:

1: (70�flt�79) ! (aircraft='Boeing 747-200')

2: (80�flt�89) ! (aircraft='Boeing 757-200')

3: ...

6a) User asks ight schedule from LAX to JFK with a
range-speci�ed ight numbers. Semantic cache has only
overlapping match V. Based on the induced rule 2,
V is transformed into a containing match. 0
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Figure 6: Performance comparison of the knowledge-based matching.
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