
University of California

Los Angeles

Query Relaxation for XML Model

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Dongwon Lee

2002

c© Copyright by

Dongwon Lee

2002

The dissertation of Dongwon Lee is approved.

Jonathan Furner

D. Stott Parker, Jr.

Carlo Zaniolo

Wesley W. Chu, Committee Chair

University of California, Los Angeles

2002

ii

To my parents,

Eung-Ok Lee and Hyang-Dae Kim,

who always believed in me,

even when everyone else was in doubt.

And to my family,

Jean Oh and Sylvie Lee,

who made all of this possible,

for their endless encouragement and patience.

No discovery of mine has made, or is likely to make, directly or indirectly, for

good or ill, the least difference to the amenity of the world.

— G. H. Hardy

iii

Table of Contents

1 Introduction . 1

1.1 Motivation . 2

1.2 Research Problems . 5

1.3 Outline of the Dissertation . 8

2 The XML Model . 10

2.1 The Basics . 10

2.2 XML Schema Languages . 11

2.2.1 Comparison . 13

2.3 XML Query Languages . 15

2.3.1 Comparison . 19

2.4 Summary . 20

3 XML Relaxation Framework . 21

3.1 Background . 21

3.2 Related Work . 22

3.3 A Framework for XML Query Relaxation 25

3.4 Types and Semantics of XML Query Relaxation 29

3.4.1 Value Relaxation . 29

3.4.2 Edge Relaxation . 30

3.4.3 Node Relaxation . 32

3.4.4 Order Relaxation . 33

iv

3.5 Relaxation Control . 34

3.6 Ranking . 36

3.7 Summary . 38

4 Distance Metric for XML Data Trees 40

4.1 Background . 40

4.2 Related Work . 42

4.3 Relaxation Index . 43

4.4 XML Inter-Cluster Distance (dic) 45

4.5 XML Inter-Object Distance (dio) 46

4.5.1 Set Resemblance Method 47

4.5.2 Prefix-Clustered Similarity Method 49

4.5.3 Tree Edit Distance Method 52

4.5.4 Learning Costs via Machine Learning 58

4.6 Summary . 62

5 Selectivity Estimation of Relaxed XML Queries 64

5.1 Background . 64

5.2 Related Work . 68

5.3 Problem Definition . 69

5.4 Method . 70

5.4.1 Computing sel(Ri) . 71

5.4.2 Computing sel(
∑

Ri∈RQ
Ri) 72

5.5 Experimental Results . 84

v

5.5.1 Experimental Setup . 84

5.5.2 Accuracy and Time . 88

5.6 Summary . 93

6 XML to Relational Conversion . 96

6.1 Background . 96

6.2 Related Work . 99

6.3 Transforming DTD to Relational Schema 102

6.3.1 Choice Elimination Algorithm 103

6.3.2 Hybrid Inlining Algorithm 106

6.4 Semantic Constraints in DTDs . 109

6.4.1 Domain Constraints . 109

6.4.2 Cardinality Constraints . 110

6.4.3 Inclusion Dependencies (INDs) 111

6.4.4 Equality-Generating Dependencies (EGDs) 112

6.4.5 Tuple-Generating Dependencies (TGDs) 112

6.5 Constraints-Preserving Inlining Algorithm 113

6.6 Experimental Results . 118

6.7 Summary . 120

7 Relational to XML Conversion . 125

7.1 Background . 125

7.2 Related Work . 129

7.3 Input and Output Models . 130

vi

7.4 Flat Translation and Nesting-based Translation 134

7.4.1 Flat Translation . 135

7.4.2 Nesting-based Translation 136

7.5 Translation using Inclusion Dependencies 145

7.5.1 One Foreign Key between two Tables 146

7.5.2 Two Foreign Key among three Tables 148

7.5.3 A General Relational Schema 150

7.6 Discussion . 155

7.7 Experimental Results . 156

7.7.1 NeT Results . 156

7.7.2 CoT Results . 160

7.8 Summary . 164

8 Conclusion . 168

8.1 Future Work . 169

References . 172

vii

List of Figures

1.1 Representing people in both relational and XML models. 2

1.2 Three similar paper data in XML model. 3

2.1 Feature-based classification of XML schema languages. 14

2.2 Expressive power-based classification of XML schema languages. . 14

2.3 Expressive power-based classification of XML query languages. . 18

3.1 Illustration of query modifications. 26

3.2 XML query representation as a tree. 28

3.3 Example of a relaxed query with value relaxation. 30

3.4 Example of an XML data and its tree representation. 31

3.5 Example of order relaxation. 34

3.6 Example of three query relaxations. 36

3.7 Example of three path query relaxations. 38

4.1 Example of TAH for brain tumor size. 41

4.2 Example of X-TAH. 44

4.3 Example of similar XML data trees. 48

4.4 Example of query answers using equal operator cost scheme. . . . 55

4.5 Example of node level cost adjustment. 56

4.6 Example of node branching with different branching factors. . . . 57

4.7 Example of different semantic interpretation. 58

4.8 Example of a query and two approximate answers. 61

viii

5.1 Example of different query matching semantics. 66

5.2 A portion of CST having the prefix a. 71

5.3 Illustration of query containment and overlap. 72

5.4 Example of XML data tree D. 75

5.5 Distinct matches of queries Q, R1, and R2. 76

5.6 Example of XML data tree E. 82

5.7 Original query Q and its two relaxed queries R1 and R2. 82

5.8 Error as the CST space increases (Dataset=SPROT, Shape=BAL,

Relationship=CHILD, Type=A). 85

5.9 Error as the CST space increases (Dataset=SPROT, Shape=BAL,

Relationship=CHILD, Type=B). 86

5.10 Error as the CST space increases (Dataset=SPROT, Shape=BAL,

Relationship=CHILD, Type=C). 87

5.11 Error as the CST space increases (Dataset=SPROT, Shape=BAL,

Relationship=CHILD, Type=D). 88

5.12 Error as the relaxation types change (Dataset=DBLP, Relation-

ship=CHILD, Shape=PATH). 89

5.13 Error as the relaxation types change (Dataset=DBLP, Relation-

ship=CHILD, Shape=BAL). 90

5.14 Original query Q and its two relaxed queries R1 and R2 for the

DBLP data set. 91

5.15 Percentage of queries for the absolute error (Dataset=SPROT,

Shape=DS, Relationship=CHILD, Type=D). 91

ix

5.16 Percentage of queries for the relative error (Dataset=SPROT, Shape=DS,

Relationship=CHILD, Type=D). 92

5.17 Error with different relationships as the relaxation types change

(Dataset=SPROT, Shape=PATH, Relationship=CHILD). 93

5.18 Error with different relationships as the relaxation types change

(Dataset=SPROT, Shape=PATH, Relationship=CHILD). 94

5.19 Error with different relationships as the relaxation types change

(Dataset=SPROT, Shape=PATH, Relationship=BOTH). 94

5.20 Error with different relationships as the relaxation types change

(Dataset=SPROT, Shape=BAL, Relationship=BOTH). 95

6.1 Overview of CPI algorithm. 98

6.2 A DTD graph for the DTD in Table 6.1. 123

6.3 An Annotated DTD graph for the Conference DTD of Table 6.1. 124

7.1 Overview of NeT and CoT algorithms. 129

7.2 The IND-Graph representation of the schema of Table 7.7. 151

7.3 The TPC-H schema: the arrow → points in the direction of the

1-to-many relationship between tables. 161

7.4 The IND-Graph representation of the TPC-H schema. 161

7.5 Comparison of XML documents generated by FT and CoT algo-

rithms for TPC-H data. 162

x

List of Tables

3.1 Answers to the queries Q, R1, R2, and R3 from XML data in

Figure 3.4. 31

3.2 Answers to the queries Q, S1, S2, and S3 from XML data in Fig-

ure 3.4. 33

5.1 Projected twig matches of Q, R1, R2 and various overlaps against

D of Figure 5.4. 77

5.2 Different shapes of query sets. 84

5.3 Different degrees of relaxations. 84

6.1 Example of a DTD for Conference. 99

6.2 A valid XML document conforming to the DTD for Conference

of Table 6.1. 100

6.3 A relational scheme (S) along with the associated data that are

converted from the DTD of Table 6.1 and XML document of Ta-

ble 6.2 by the hybrid algorithm. 108

6.4 Cardinality relationships and their corresponding semantic con-

straints. 114

6.5 The semantic constraints in relational notation for the Conference

DTD of Table 6.1. 119

6.6 Experimental results of CPI algorithm. 120

7.1 Example of relational schema and data. 132

7.2 NeT algorithm. 138

xi

7.3 A relational table R and its various nested forms. 139

7.4 An XML schema equivalent to a relational schema of Example 9

in XML-Schema notations. 144

7.5 Different values taken by α, the corresponding cardinality of the

binary relationship between s and t, and the corresponding trans-

lation to XSchema. 148

7.6 CoT algorithm. 152

7.7 Example of a relational schema with complex INDs. 153

7.8 DTDs generated by FT algorithm. 157

7.9 DTDs generated by NeT algorithm. 158

7.10 Summary of NeT experimentations. 159

7.11 TPC-H data (populated by DBGEN) published as an XML docu-

ment that conforms to Xtpc. 165

xii

Acknowledgments

Writing this dissertation marks the happy conclusion of the journey that I started

many years ago. Throughout the journey, I greatly benefited from the support

and companionship of many people.

First and foremost, I would like to thank my advisor, Professor Wesley W.

Chu, for providing the guidance and feedback on the research problems and issues

studied in this dissertation. As I retrospect, I realize that I have learned so many

things from him, technical or non-technical, directly or indirectly, that practically

shaped who I am now as a scholar. I would also like to thank the other members

of my Ph.D committee, Professor D. Stott Parker, Professor Carlo Zaniolo, and

Professor Jonathan Further. All the members of my committee have in many

ways shaped my education and have provided insightful feedback concerning this

research. I must also admit that I learned a lot from Professor Carlo Zaniolo’s

classes, despite their offerings in the napping mid-afternoon.

Professor H. V. Jagadish at U. Michigan, Ann Arbor and Dr. Divesh Srivas-

tava at AT&T Labs – Research are responsible for my decision to study Database,

although they would never realize how much influential they were to me when

we worked together at Bell Labs from 1995 to 1997. I especially like to thank

Dr. Divesh Srivastava for showing me how to find research problems, how to

approach them to solve, and how to enjoy life after graduate school. My dear

friends from Korea University, Dr. Sang-Zoo Lee and Sung-Mi Cho, helped me

maintain sanity during the Ph.D program by way of occasional emails and phone

calls. Good friends from Columbia University, Jae-Jun Hwang, Taejin Yoon, and

Chang-Hee Kim, have always been tremendous comforts to me, for which I deeply

appreciate.

xiii

I would also like to thank many colleagues at UCLA, whom I have spent

many hours, maybe too many, together for the last five years. Murali Mani has

been an inspirational source for me in many ways, always asking me provocative

and crucial questions and amazing me for his creative mind. Thanks to Wenlei

Mao and Victor Liu, I was actually able to enjoy being in the crummy office at

Boelter Hall. I have always admired Wenlei’s clean logical thinking and Victor’s

sharp insights and deep understanding on the subjects. I only wish I had learned

Chinese from them. Shanghyun Park and I had much fun together in playing

tennis, eating snacks, chatting over coffees, and most of all, collaborating on

research.

During my Ph.D study, I was fortunate to have chances to work closely with

many bright students in the CoBase research group; Henry Chiu, Giovanni Giuf-

frida, Vivian Cheung, Tony Lee, Laura Chen, Qing Hua Zou, Akiko Nakaniwa.

They all contributed to my dissertation one way or the other. Since early 2001,

I have been exposed to diverse research topics through dbUCLA seminars. For

that, I am indebted to those students who were involved in organizing the events

together with me; Murali Mani, Victor Liu, Andrea Chu, Xia Yi, Fusheng Wang,

Panayiotis Michael, Cindy Chen. I also wish to acknowledge a few names who

had enriched my stay at UCLA; we had had so much fun over numerous lunches,

arguing about virtually everything from politics to entertainment gossips; James

Jinkyu Kim, Scott Seongwook Lee, Kyle Sangho Bae, Chang-Ki Choi, Bo-Kyung

Choi, Yunjung Yi, Sungwook Lee, Heeyeol Yu, Ted Taekyung Kwon, Haejung

Lim, Janghyuk J. Pyon.

Finally, and definitely not least, without the support and patience of my

loving family, I would not be able to come this far. All of them equally deserve

to sign this dissertation.

xiv

Vita

1969 Born, Taegu, Korea.

1990 Summer Intern, Samsung-Hewlett Packard Co., Seoul, Korea.

1992 Consulting Computer Instructor, Hyundai Co., Seoul, Korea.

1993 B.S. (Computer Science), Korea University, Seoul, Korea.

1994 Teaching Assistant, Computer Science Department, Columbia

University, New York. Taught W4118 (Operating System) and

W3824 (Computer Organization).

1995 M.S. (Computer Science), Columbia University, New York, NY.

1995–1996 Programmer, Database Research Department, AT&T Bell

Labs. (Now Lucent Technology), Murray Hill, NJ.

1996–1997 Programmer, Database Research Department, AT&T Labs –

Research, Murray Hill, NJ.

1997–2002 Research Assistant, Computer Science Department, UCLA, Los

Angeles, CA.

2002 PH.D. (Computer Science), UCLA, Los Angeles, CA.

xv

Publications

Murali Mani, Dongwon Lee, “Normal Forms for Regular Tree Grammars”,

Proc. VLDB Workshop on Efficiency and Effectiveness of XML Tools, and Tech-

niques (EEXTT), Hong Kong, China, August 2002

Dongwon Lee, Murali Mani, Wesley W. Chu, “Effective Schema Conversions

between XML and Relational Models”, Proc. European Conf. on Artificial Intel-

ligence (ECAI), Knowledge Transformation Workshop, Lyon, France, July 2002

Dongwon Lee, Murali Mani, Frank Chiu, Wesley W. Chiu, “NeT & CoT: In-

ferring XML Schemas from Relational World”, Proc. 18th IEEE Int’l Conf. on

Data Engineering (ICDE), San Jose, CA, USA, February 2002

Dongwon Lee, Wesley W. Chu, “Towards Intelligent Semantic Caching for Web

Sources”, J. Intelligent Information System (JIIS), Vol. 17, No. 1, p 23–45,

November 2001

Dongwon Lee, Wesley W. Chu, “CPI: Constraints-Preserving Inlining Algo-

rithm for Mapping XML DTD to Relational Schema”, J. Data & Knowledge

Engineering (DKE), Vol. 39, No. 1, p 3–25, October 2001

Angela Bonifati, Dongwon Lee, “Technical Survey of XML Schema and Query

Languages”, Submitted to ACM Computing Survey , September 2001

xvi

Dongwon Lee, Wenlei Mao, Henry Chiu, Wesley W. Chu, “Visual Trigger Rule

Composition via Trigger-By-Example”, Submitted to J. Knowledge and Informa-

tion Systems (KAIS), October 2001

Murali Mani, Dongwon Lee, Richard R. Muntz, “Semantic Data Modeling

using XML Schemas”, Proc. 20th Int’l Conf. on Conceptual Modeling (ER),

Yokohama, Japan, November 2001

Makoto Murata, Dongwon Lee, Murali Mani, “Taxonomy of XML Schema Lan-

guages using Formal Language Theory”, Extreme Markup Languages , Montreal,

Canada, August 2001

Dongwon Lee, Murali Mani, Frank Chiu, Wesley W. Chu, “Nesting-based

Relational-to-XML Schema Translation”, ACM SIGMOD Int’l Workshop on the

Web and Databases (WebDB), Santa Barbara, CA, May 2001

Dongwon Lee, Wesley W. Chu, “Comparative Analysis of Six XML Schema

Languages”, ACM SIGMOD Record , Vol. 29, No. 3, September 2000

Dongwon Lee, Murali Mani, Makoto Murata, “Reasoning about XML Schema

Languages using Formal Language Theory”, IBM Almaden Research Center,

Technical Report , RJ#10197, Log#95071, November 2000

Dongwon Lee, Wesley W. Chu, “Constraints-preserving Transformation from

XML Document Type Definition to Relational Schema”, Proc. 19th Int’l Conf.

on Conceptual Modeling (ER), Salt Lake City, Utah, October 2000

xvii

Dongwon Lee, Wenlei Mao, Wesley W. Chu, “TBE: Trigger-By-Example”,

Proc. 19th Int’l Conf. on Conceptual Modeling (ER), Salt Lake City, Utah,

October 2000

Dongwon Lee, Wenlei Mao, Henry Chiu, Wesley W. Chu, “TBE: A Graphical

Interface for Writing Trigger Rules in Active Databases”, Proc. 5th IFIP 2.6

Working Conf. on Visual Database Systems (VDB), Fukuoka, Japan, May 2000

Sanghyun Park, Dongwon Lee, Wesley W. Chu, “Fast Retrieval of Similar

Subsequences in Long Sequence Databases”, Proc. 3rd IEEE Knowledge and

Data Engineering Exchange Workshop (KDEX), Chicago, IL, November 1999

Dongwon Lee, Wesley W. Chu, “Semantic Caching via Query Matching for

Web Sources”, Proc. 8th ACM Int’l Conf. on Information and Knowledge Man-

agement (CIKM), Kansas City, MO, November 1999

Dongwon Lee, Wesley W. Chu, “Conjunctive Point Predicate-based Semantic

Caching for Wrappers in Web Database”, Proc. ACM CIKM Int’l Workshop

on Web Information and Data Management (WIDM), Washington DC, USA,

November 1998

Dongwon Lee, Divesh Srivastava, Dimitra Vista, “Generating Advanced Query

Interfaces”, Proc. 7th Int’l World Wide Web Conf. (WWW), Australia, April

1998

xviii

Abstract of the Dissertation

Query Relaxation for XML Model

by

Dongwon Lee

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2002

Professor Wesley W. Chu, Chair

This dissertation addresses mainly three issues needed to support query relax-

ation for XML model: framework formalization, extension of existing database

techniques, and data conversion between XML and relational models.

XML (eXtensible Markup Language) is the new universal format for struc-

tured documents and data on the World Wide Web. As the Web becomes a major

means of disseminating and sharing information and as the amount of XML data

increases substantially, there are increased needs to manage and query such XML

data in a novel yet efficient way. Especially, one of the useful query processing

methods is known as Query Relaxation. Unlike relational databases where the

schema is relatively small and fixed, XML model allows varied/missing structures

and values, which make it difficult for users to ask questions precisely and com-

pletely. To address such problems, query relaxation technique enables systems

to automatically weaken, when not satisfactory, the given user query to a less

restricted form to permit approximate answers as well.

Therefore, the goal of our study is to investigate issues involved in support-

ing query relaxation for XML model. (1) We first present a formal framework

where users can express the precise semantics and behaviors of query relaxation.

xix

This framework can also be used as the basis for designing and implementing

the eventual relaxation-enabled query language. (2) We then study a myriad of

issues that are related to support query relaxation using native XML engines.

Especially, we focus on the notion of similarity between XML data trees using

tree edit distance and the issue of selectivity estimation of a set of relaxed XML

queries. (3) Finally, we present issues involved in converting data between XML

and relational models and propose three novel conversion algorithms that not

only capture the original structures and values, but also well preserve the se-

mantic constraints of the original schema. This is a necessary step to support

query relaxation for XML model by way of using the mature relational database

systems.

xx

CHAPTER 1

Introduction

As the World Wide Web (Web) becomes a major means of disseminating and

sharing information, there is an exponential increase in the amount of data in

a web-compliant format such as HTML (HyperText Markup Language) [RHJ99]

and XML (eXtensible Markup Language) [BPS00]. Especially, XML model is a

novel textual representation of hierarchical (tree-like) data where a meaningful

piece of data is bounded by matching starting and ending tags, such as <name>

and </name>. Due to the simplicity of XML compared to SGML (Standard

Generalized Markup Language) [ISO86] and its relatively powerful expressiveness

compared to HTML, XML has become ubiquitous, and XML data has to be

managed in databases.

In storing data in databases, the same data can be correctly captured in dif-

ferent models – relational or XML models. However, as illustrated in Figure 1.1,

there are subtle differences. XML model representation can capture more detailed

structural information (e.g., person) due to its hierarchical model and does not

suffer from unnecessary null information (e.g., there is no apt. branch in the

second person node). In relational model, data are represented in a “flat” struc-

ture where the only entities available are either tables or attributes. However, in

XML model, a tree-like structure replaces the notion of tables, where leaf nodes

are equivalent to the notion of attributes in relational model.

1

people

name address apt.

Tom 3240 Sawtelle Bl. 201

John 2140 Sepulveda Bl. -

(a) Relational model

people

person
ttjjjjjjjjjjjjjjj

name
wwooooooooooo

Tom
��

address
��

3240 Sawtelle Bl.
��

apt.
''OOOOOOOOOOO

201
��

person
''OOOOOOOOOO

name
����

��
��

�

John
��

address
��?

??
??

??

2140 Sawtelle Bl.
��

(b) XML model

Figure 1.1: Representing people in both relational and XML models.

1.1 Motivation

To cope with the tree-like structures in XML model, several XML-specific query

languages have been proposed lately (e.g., [DFF99, HP00, CRF00]). All these

query languages aim at only exact matching of query conditions. That is, answers

are found when those XML documents match the given query condition exactly.

However, this may not be always the case in XML model.

Consider the following motivating example in Figure 1.2 adopted from [GJK02].

All three XML data are similar in that all contain the information about the same

paper published in VLDB. Furthermore, data D1 and D2 are more similar in their

structures, while D3 has a slightly different structure. It might be the case that

D1 and D2 are originated from the same DTD while D3 is an instance of a dif-

ferent DTD. Such case is often found in heterogeneous databases that integrates

2

paper

conf
����

��
��

�

VLDB
��

title
��

XML
��

authors
''OOOOOOOOOO

aut
��

Alice
��

aut
��?

??
??

??

Bob
��

paper

conf
����

��
��

�

VLDB
��

title
��

XML
��

authors
''OOOOOOOOOO

aut
��

Alice
��

(a) D1 (b) D2

paper

type
����

��
��

�

conf
��

VLDB
��

title
��

XML
��

authors
��?

??
??

??

aut
��

Alice
��

authors
**TTTTTTTTTTTTTTT

aut
��

Bob
��

(c) D3

Figure 1.2: Three similar paper data in XML model.

XML data from diverse sources. However, using the proposed XML query lan-

guages and their notion of the “exact matching”, it is not straightforward to find

out that all three data are in fact describing the same paper instance due to their

subtle differences in both structures and values.

To address such difficulties, in this dissertation, we propose to develop a query

relaxation framework for searching answers that match the given query conditions

approximately . Query relaxation enables systems to relax the user query to a less

restricted form to permit approximate answers. Query relaxation technique has

been used in relational databases (e.g., [MSB98, CCH94, CYC96, CG99, Gaa97])

and has proven to be a valuable technique for deriving approximate answers.

3

In XML domain, the need for such query relaxation increases since the flexible

nature of XML model allows varied structures and/or values and the non-rigid

XML tag syntax enables to embed a wealth of meta information in XML doc-

uments. The following points illustrates that query relaxation becomes more

important for XML model than relational model:

1. Unlike in relational model where users are given a relatively small-sized

schema to ask queries, the schema in XML model is substantially bigger

and more complex. Therefore, it is often unrealistic for users to understand

the full schema and compose very complex queries at once. In such a

scenario, it becomes critical to be able to relax the user’s query when the

original query yields null or not sufficient answers.

2. As the number of data sources available on the web increases, it becomes

common to build systems where data are drawn from heterogeneous data

sources, where the structures of the participating data sources are different,

although they employ the same ontologies with the same contents. There-

fore, the capability to query against differently-structured data sources be-

comes more important [KNS99, KS01]. In such a setting, query relaxation

technique allows query to be structurally relaxed and routed to diverse data

sources with different structures.

3. Increased number of textual documents are converted to XML format for

ease in information exchange and web presentation. To provide content-

based retrieval of these documents, approximate matching of content be-

comes essential in order to avoid null answers [CJK00].

Throughout this dissertation, we explore diverse issues needed to support

query relaxation for XML model.

4

1.2 Research Problems

The introduction of query relaxation for XML model brings up a myriad of chal-

lenging technical issues as follows:

• Formal Framework: The notion of query relaxation in XML model ex-

hibits several novel relaxation characteristics because of the hierarchical

nature of XML model. To precisely understand and describe such relax-

ation process in XML model, a well-defined framework that is capable of

expressing most meaningful relaxation requirements in a precise and declar-

ative manner is desired. How to devise such a framework that is both easy

to understand and powerful to express is one interesting research area that

we study.

Such framework can be used as a basis to design and implement a query

language that supports relaxation features in future. Furthermore, methods

for efficiently evaluating relaxed XML queries can also be devised in the

context of such framework.

• Distance between Trees: One of the remaining questions to support

query relaxation is how to rank approximate answers according to their

similarity to the original query conditions. Some of the invariants that we

may think of are:

– Exactly-matched answers should rank higher than approximate an-

swers.

– For three distinct answers A, B, and C, If A is ranked higher than B,

and in turn B is ranked higher than C, then A must be ranked higher

than C (i.e., transitivity)

5

It is relatively straightforward to devise a distance metric in relational model

where each answer is a tuple with a set of attributes. In XML model, how-

ever, it is not clear what the notion of “distance” should be while retaining

the above invariants for the tree-shaped XML data. For instance, in Fig-

ure 1.2, one cannot bluntly conclude that (c) be closer to (a) than to (b). In

general, devising the right notion of distance (or similarity) between tree-

shaped objects is a challenging task due to its inherent subjective nature.

Therefore, our goal is to investigate plausible distance metrics useful for

XML model and query relaxation context.

• Selectivity Estimation: The general form of query relaxation paradigm

works as follows. When a given query Q is not satisfactory by users, system

starts relaxation.

1. While (not Satisfactory(Q))

(a) Q ← Relax(Q)

(b) Evaluate(Q)

The satisfactory condition varies depending on the users and applications.

One of the popular satisfactory conditions is known as at-least k condition

where users request “at least” k number of answers to be returned. This

is a typical query pattern, for instance, when users try to locate a certain

number of apartments meeting certain conditions. In such a setting, if

the initial answer set does not satisfy the threshold k, then system starts

query relaxation. A modified control flow for the “at-least k” scenario is as

follows:

1. Answer ← Evaluate(Q)

2. While (|Answer| < k)

6

(a) Q ← Relax(Q)

(b) Answer ← Evaluate(Q)

The main problem of such execution flow lies in the expensive cost in execut-

ing the Evaluate() function inside of the loop many times. The plausible

solution to such problem is to estimate the selectivity of the query, instead

of evaluating the query, in checking the condition. Since estimating query

selectivity typically costs must cheaper than evaluating the query, the gain

in terms of computational cost is substantial. Assuming the existence of

the function EstimateSelectivity(), the control flow can be simplified as

follows:

1. N ← EstimateSelectivity(Q)

2. While (N < k)

(a) Q ← Relax(Q)

(b) N ← EstimateSelectivity(Q)

Therefore, techniques for accurately estimating selectivity for relaxed queries

play an important role in query relaxation framework and thus part of the

focus of our study. We especially study the problem to find a total selectiv-

ity EstimateSelectivity(R1 + ... + Rn) when a set of relaxed queries R1,

..., Rn are generated from an original query Q.

• Data Conversion: One can envision a whole spectrum of ways to support

XML query relaxation in database systems. In one end of the spectrum,

one may build a native XML database system from the scratch that are

capable of understanding and processing XML queries and their relaxation

features. In the other end of the spectrum, instead of modifying database

engines, one may convert XML data into known data formats and reuse

7

conventional database systems directly. For instance, if all the information

in original XML data can be correctly converted to relational tuples in

a lossless fashion, then query relaxation can be supported via relational

database systems (after XML queries are properly converted to SQL).

Therefore, being able to convert data between XML and relational formats

efficiently and effectively plays an important role in supporting query relax-

ation for XML model. However, transforming a hierarchical XML model to

a flat relational model and vice versa is not a trivial task. There are several

difficulties issues as follows [STH99]:

– Non 1-to-1 mapping

– Set values

– Recursion

– Fragmentation

Therefore, our goal in this study is to devise XML-to-Relational and Relational-

to-XML conversion methods that captures the original information as cor-

rectly as possible in the final results. Especially, we focus on the issues of

capturing semantic constraints of the original data.

1.3 Outline of the Dissertation

The dissertation is organized as follows.

• Chapter 2 gives a brief overview on XML model and a detailed compara-

tive analysis of the XML schema and query languages.

• Chapter 3 discusses on the formal framework to precisely capture and

describe query relaxation process of XML model.

8

• Once the framework has been laid out, we explore various technical issues

that are needed to support query relaxation for XML model. First, a new

notion of distance (or similarity) among XML data is discussed in Chap-

ter 4.

• Second, an extended estimation technique for query selectivity is discussed

in Chapter 5.

• Using mature relational databases is one feasible approach so as to sup-

port query relaxation for XML model. Towards this end, in Chapters 6

and 7, three conversion algorithms between XML and relational models are

introduced.

• Finally, we conclude our work in Chapter 8 with discussion about the

remaining problems in query relaxation in general and our work plan of the

future.

9

CHAPTER 2

The XML Model

The XML (eXtensible Markup Language) [BPS00] is the new universal format

for structured documents and data on the Web, currently being standardized by

the World Wide Web Consortium. XML is designed to improve the functionality

of the Web by providing more flexible and adaptable information identification.

It is called extensible because it is not a fixed format like HTML (HyperText

Markup Language) [RHJ99], which is a pre-defined markup language, primarily

for displaying data on Web. Instead, XML is rather a meta-language that can be

used for defining other languages. That is, with XML as a tool, one can define

his/her own customized markup languages for specific types of documents. In

other words, while HTML is one type of a bread, XML can be viewed as a bread

maker to bake various kinds of breads. XML is a subset of simple conventions

from SGML (Standard Generalized Markup Language), the international stan-

dard meta-language for text markup systems (ISO 8879), without some of the

more esoteric features of SGML. In this Chapter, we briefly present an overview

of XML model and its schema and query languages [BL01].

2.1 The Basics

An XML document typically consists of two major components – schema and

data. The schema is for describing the data and is specified in one of the proposed

10

schema language notations. One of the most popular XML schema languages is

DTD (Document Type Definition) [BPS00].

XML is a textual representation of the hierarchical data model. The mean-

ingful piece of the XML document is bounded by matching starting and ending

tags such as <name> and </name>. The main building blocks of XML model are

element and attribute as follows:

<elem-name attr-name=‘attr-val’> elem-content </elem-name>

In DTD, elements and attributes are defined by the keywords <!ELEMENT> and

<!ATTLIST>, respectively. In general, components in DTD are specified by the

following BNF syntax:

<!ELEMENT> <elem-name> <elem-content-model>

<!ATTLIST> <attr-name> <attr-type> <attr-option>

Element content model is the logical structure of the element contents based on

the regular expressions such as “?” (0 or 1 instance), “*” (0 or many instances),

or “+” (1 or many instances). For instance, in the following example, the element

paper contains only one instance of sub-element title, one or many instances

of sub-element author, and zero or many instances of sub-element citation:

<!ELEMENT paper (title,author+,citation*)>

2.2 XML Schema Languages

Since the requirements of the application vary, one may choose different XML

schema language to describe his/her XML data. Among a dozen XML schema

languages recently proposed, we briefly review the six representative schema lan-

guages and compare their features [LC00a].

11

1. XML DTD (DTD in short), a subset of SGML DTD, is the de facto stan-

dard XML schema language of the past and present and is most likely to

thrive until XML-Schema finally arrives. It has limited capabilities, com-

pared to other schema languages. Its main building block consists of an

element and an attribute. The real world is typically represented by the

use of hierarchical element structures. The 2nd Edition of the language

specification became a W3C Recommendation on October 6, 2000.

2. According to [MM99], XML-Schema language is intended to be more ex-

pressive than DTD while it can be expressed in XML notations and more

usable by a wider variety of applications. It has many novel mechanisms

such as inheritance for attributes and elements, user-defined datatypes, etc.

XML-Schema became W3C Recommendation on May 2, 2001. The speci-

fication is stable and has been reviewed by the W3C Members, who favors

its adoption by academic, industry, and research communities.

3. SOX (Schema for Object-Oriented XML) is an alternative schema language

for defining the syntactic structure and partial semantics of XML document

types. SOX leverages on the object-oriented relationships between data

structures to allow the easy management of a component library, and the use

of type relationships within schema-based e-commerce applications. The

current version, 2.0, is developed by Commerce One. The xCBL (XML

Common Business Library) 3.0 is implemented using SOX version 2.0.

4. Schematron, created by Rick Jelliffe, is quite unique among the others, since

it focuses on validating schemas using patterns instead of defining schemas.

Its schema definition is simple enough to be defined in a single page, and

it still provides powerful constraint specification via XPath [CD99]. The

latest version is 1.5.

12

5. DSD 1.0 was co-developed by AT&T Labs and BRICS with the goals of

context-dependent description of elements and attributes, flexible default

insertion mechanisms, expressive power close to XSLT [Cla00], etc. Like

Schematron, DSD puts a strong emphasis on schema constraints. DSD has

been used in an AT&T application, named XPML. A revised specification,

DSD 1.1, is under development.

6. RELAX (REgular LAnguage description for XML) is a novel XML schema

language developed by Makoto Murata. RELAX has been standardized by

JSA (Japanese Standard Association) and was submitted to ISO (Interna-

tional Standard Organization) as a fast track procedure document for DTR

processing and recently has been approved by the ISO/CS ballot [ISO00].

RELAX is based on clean principles of hedge automata [Mur00a] and has

the capability of expressing context-sensitive schema rules by means of non-

terminal symbols. At the time of writing, RELAX and TREX [Cla01] are

being merged into RELAX-NG [CM01] under OASIS Technical Committee.

2.2.1 Comparison

XML schema languages can be classified as shown in Figure 2.1. Clearly, some

has constraints-oriented features while others have structure-oriented features.

Furthermore, the six XML schema languages can be organized into the following

three classes based on their expressive powers, as depicted in Figure 2.2.

1. Class 1: DTD is a representative of Class 1 of core schema language

for XML, with a restricted expressive power. It does minimally support

the basic schema abstractions and severely lacks datatypes and constraints

definition. Since the expressive power of DTD is strictly weaker than other

13

 pattern-based grammar-based
 constraints-oriented structure-oriented

definition
 oriented

 usage
 oriented

Schematron

DSD

DTD

SOXXML Schema

XDR

Figure 2.1: Feature-based classification of XML schema languages.

SOX

CLASS 3

DTD
has basic support

for structure

CLASS 2

W.r.t. RELAX IT HAS:
inheritance
W.r.t. DTD IT HAS:
more types

W.r.t. DTD IT HAS:
more types,
context-sensitivity rules

RELAX

W.r.t. SOX IT HAS:
more structure, datatyping,
inheritance, uniqueness
and keyness

XML Schema

W.r.t. SOX IT HAS:
constraint, more structure,
documentation, version

DSD Schematron
W.r.t. SOX IT HAS:
constraint, uniqueness and
keyness, documentation

CLASS 1

Figure 2.2: Expressive power-based classification of XML schema languages.

14

schema languages, the translation from other schema languages to DTD is

straightforward while the reverse translation is likely to be lossy.

2. Class 2: Both RELAX and SOX belong to the middle tier and can be

considered as representatives of Class 2 of extended schema language

for XML. Their support for datatypes is not enough (e.g., lack of explicit

null and user-defined type) although basic schema abstractions can be sup-

ported rather sufficiently. In addition, they lack the support for the full

range of content models and database-oriented features such as uniqueness

and keyness. Like DTD they mostly fail to fully handle constraint specifi-

cations.

3. Class 3: XML-Schema, Schematron and DSD are the most expressive

languages and are representatives of Class 3 of expressive schema lan-

guages for XML. Whereas XML-Schema fully supports features for schema

datatype and structure, Schematron provides a flexible pattern language

that can describe the detailed semantics of the schema. DSD tries to

support common features supported by XML-Schema (e.g, structure) and

Schematron (e.g., constraint) along with some additional features.

2.3 XML Query Languages

As the amount of XML data on the Web increases, the ability to access and query

the data becomes increasingly important. Towards this goal, several XML query

languages have been proposed. Similar to XML schema languages, let us briefly

review the six representative query languages and compare their features [BC00].

15

1. Lorel1 was originally designed for querying semistructured data [AGM97]

and has now been extended to XML data [AGM97]; it was conceived and

implemented at Stanford University. It is a user-friendly language in the

SQL/OQL style, it includes a strong mechanism for type coercion and per-

mits powerful path expressions, useful when the structure of a document is

not known in advance [AQM97].

2. XML-QL2 was designed at AT&T Labs; it has been developed as part of

Strudel Project. XML-QL language extends SQL with an explicit CONSTRUCT

clause for building the document resulting from the query and uses the el-

ement patterns (patterns built on top of XML syntax) to match data in an

XML document. XML-QL can express queries as well as transformations,

for integrating XML data from different sources [DFF99].

3. XML-GL is a graphical query language, relying on a graphical representa-

tion of XML documents and DTDs by means of labeled XML graphs. It

was designed at Politecnico di Milano; an implementation is ongoing and a

web site is under construction3. All the elements of XML-GL are displayed

visually; therefore, XML-GL is suitable for supporting a user-friendly in-

terface (similar to QBE) [CCD99]. The last specification of the language

can be found in [CDF01].

4. The Extensible Stylesheet Language (XSL) has facilities that could serve as

a basis for an XML query language, XSLT (Extensible Stylesheet Language

Transformations). An XSLT stylesheet consists of a collection of template

rules; each template rule has two parts: a pattern which is matched against

nodes in the source tree and a template which is instantiated to form part

1http://www-db.stanford.edu/lore
2http://www.research.att.com/sw/tools/xmlql
3http://xerox.polimi.it/Xml-gl

16

of the result tree. XSLT makes use of the expression language defined by

XPath [CD99] for selecting elements for processing, for conditional process-

ing and for generating text. It was designed by the W3C XSLT working

group [Cla00, SLR98, Gro98]. XSLT is still under development at the time

of writing. XSLT 1.1 is a working draft [Cla00]. Future developments are

described in the requirements specification of XSLT 2.0 [MS01].

5. XQL is a notation for selecting and extracting XML data. XQL can be

considered a natural extension to the XSLT pattern syntax; it is designed

with the goal of being syntactically simple and compact (a query could be

part of a URL), with a reduced expressive power [RLS98, Rob99, SLR98].

The language has been reviewed in 1999 [Rob99].

6. XQuery is the first W3C proposal for a standard query language, pub-

lished in February 2001 and revised in June 2001 [CFR01]. The current

proposal of XQuery version 1.0 is mostly drawn from Quilt [CRF00], a

newly-conceived query language for XML, which inherits the experiences of

several past query languages and attempts to unify them. XQuery assem-

bles many features from previously defined languages, such as the syntax

for navigation in hierarchical documents from XPath and XQL, the notion

of binding variables from XML-QL, the combination of clauses a-la SQL

and the notion of a functional language from OQL; it is designed with the

goal of being expressive, of exploiting the full versatility of XML and of

combining information from diverse data sources [CFR01].

17

IT LACKS:

definition of views
update language

complete function support
reduction

XQUERY

result construction
ordering the result

XQL

universal quantification

XSLT

IT LACKS:

aggregates
Skolem functions

type coercion

XML−QL

XML−GL

dereferencing IDREFs
negation
grouping
aggregates
update language

Skolem functions
tag variables

CLASS 3: EXPRESSIVE
 QUERY LANGUAGES

IT LACKS:
querying the order of elements

support of functions
filtering

CLASS 2:

CLASS 1:

reduction
filtering
nested queries
querying numbered instances

LOREL

GRAPHIC QUERY INTERFACES

 QUERY LANGUAGES CORE

W.r.t. XSLT IT LACKS:

W.r.t. XML−GL IT LACKS:

W.r.t. LOREL AND XQUERY

support of datatypes

W.r.t. XML−QL IT LACKS:

support of functions

DM compatibility with W3C stds

Figure 2.3: Expressive power-based classification of XML query languages.

18

2.3.1 Comparison

The six XML query languages can be organized into the following three classes

as depicted in Figure 2.3.

1. Class 1: The new XQL and XML-QL are representatives of Class 1 of

core query languages for XML, playing the same role as core SQL stan-

dards and languages (e.g., the SQL supported by ODBC) in the relational

world. Their expressive power is included within the expressive power of

XSLT.

2. Class 2: XML-GL can be considered a representative of Class 2 of graph-

ical query interfaces to XML, playing the same role as graphical query

interfaces (e.g., QBE) in the relational world. The queries being supported

by XML-GL are the most relevant queries supported by XSLT. It can suit-

ably be adopted as a front-end to any of these query languages (more or

less powerful), to express a comprehensive class of queries (a subset of them

in case of more powerful languages).

3. Class 3: XQuery, Lorel and XSLT are representatives of Class 3 of ex-

pressive query languages for XML, playing the same role as high-level

SQL standards and languages (e.g., SQL2) in the relational world. XQuery

and Lorel are quite different in their syntax and semantics, due to their com-

pletely distinct nature (the semi-structured approach of Lorel as opposed

to the XML-inspired mainstream of XQuery). Moreover, Lorel is strongly

object-oriented, while XQuery can be considered value-oriented. XQuery

is a promising expressive query language, that realizes its potentiality by

incorporating the experience of XPath and XQL on one side, of SQL, OQL

and XML-QL on the other side. The third language of this class, XSLT,

19

covers a lower position in the taxonomy being less powerful than the pre-

vious two. It is a stylesheet language with a fairly procedural tendency, as

opposed to Lorel, which can be considered completely declarative, and to

XQuery, which blends a declarative and procedural flavor.

2.4 Summary

As more data are stored natively in XML format or converted to XML format

from legacy formats, the importance of understanding XML data model from

the perspective of database becomes evident. In fact, the arrival of XML model

brings abundant interesting research opportunities to the conventional database

research: XML storage system, XML data conversion, XML data indexing, XML

query language, XML query evaluation, etc. To be better positioned to cope with

such challenging issues, in this Chapter, we presented an overview of XML model

and distinctive features of various XML schema/query language proposals.

20

CHAPTER 3

XML Relaxation Framework

Query relaxation enables systems to weaken the given query constraints to a less

restricted form to accommodate user’s needs and has been extensively investi-

gated and used in both IR and DB areas. With the arrival of XML model, its

importance becomes even more evident; due to the heterogeneity of XML data,

it is often more useful to permit approximate matching of XML queries than to

return only exact answers. In this Chapter, we discuss some of the basic technical

issues that have emerged in an initial exploration of the topic.

3.1 Background

Traditionally, queries submitted by users are modified in various aspects and ways

to cope with different situations. The importance of such techniques that enable

automatic query modification stems from the fact that this behavior is very com-

mon activity in human discourse. For instance, if a customer asks a travel agent

asking the flight from the city X to the city Y on the date of Z, then when no sat-

isfactory flights are found, the agent is very likely to respond with alternatives by

“changing” one or many of X, Y , and Z of the initial query [GGM90]. In general,

query modification broadly describes the process of changing a query when the

answer to the query does not meet the expectations of the user. In the relational

database jargon, this “change” to a query can occur in two different places – con-

21

dition (i.e., FROM and WHERE clauses) and projection (i.e., SELECT clause)

parts. Intuitively, changing the condition part aims to find some meaningful an-

swers related to what the user specified, while changing the projection part aims

to find additional aspects of answers than the user specified. In the travel agent

example, for instance, changing condition part corresponds to the case of chang-

ing any of X, Y , or Z in the query. On the other hand, changing projection part

may correspond to the case of finding hotel and weather information in addition

to the flight schedule.

In XML domain, the need for such query relaxation increases since the flexible

nature of XML model allows varied structures and/or values and the non-rigid

XML tag syntax enables to embed a wealth of meta information in XML docu-

ments. There are several important differences that make the query relaxation

for XML model more important than that for the relational model, as discussed

in Chapter 1.1.

3.2 Related Work

Query relaxation and its related techniques (e.g., cooperative information sys-

tems, query expansion, etc.) have been extensively investigated in both IR and

DB areas (e.g., [Kap82, Mot84, Mot86, Gal88, Mot90, CLC91, CYC94, CCH94,

CYC96, CCH96, God97, CG99]). In this Section, we briefly review those related

works.

When a query fails, it is more cooperative to identify the causes of failure,

rather than just to report the empty answer set [God97]. Information system with

such capability is known as Cooperative Information System. Kaplan [Kap82] is

probably the first to observe the relevance of false “presuppositions” to databases

22

and studied a method to find the minimal failing sub-queries. Also, he introduced

the notion of generalizing a failing query into a successful query by removing some

of the failing sub-queries from the original query.

Motro [Mot84, Mot86, Mot90] extended the Kaplan’s notion of query general-

ization into the case where a degree of query condition is relaxed . Thus, Kaplan’s

query generalization where some sub-queries may be removed can be viewed as

a special case of Motro’s extended framework.

CoBase system [CLC91, CCH94, CYC96, CCH96] supports query generaliza-

tion (also known as query relaxation) for relational data model by automatically

mining conceptual hierarchies (i.e., TAH) of predicates and terms over data.

Their query relaxation technique has also been applied to medical image search

via approximate feature (e.g., size, location) and contents matching [CHC98],

logistic planning application for searching objects with similar characteristics in

the neighboring desired locations [CYC94], etc.

Cooperativeness of the information system with the focus on the integrity con-

straints was studied in [Gal88]. In [GGM90, Gaa97], Gaasterland et al introduced

query relaxation as a platform of cooperative answering from the perspective of

deductive database and logic programming. Godfrey [God97] presents the the-

oretical complexity results of minimal failing sub-query and maximal succeeding

sub-query problems, which are important issues in, for instance, relaxing the

failing query to the successful one with smallest gap in answer space.

In terms of the formal framework, Chaudhuri [Cha90] proposed an elegant

one to describe query modification, and especially query generalization, for the

relational model. In this Chapter, using his framework, (1) we investigate the

types and semantics of relaxations in the XML model, (2) by converting XML

model appropriately, we show that Chaudhuri’s model can capture the variety

23

of query relaxations for XML model, and (3) by extending Chaudhuri’s model

slightly, we present a new framework, termed as QAC, where one can control the

way query relaxation is processed in further details.

In IR field, much research can be found on Query Expansion which is the

technique to (semi-)automatically add (thus expansion) related keywords to the

original user query (i.e., keyword list) to yield better precision and recall [BR99].

Techniques typically consider either lexical similarities between keywords (e.g.,

“phenemenon” is changed to “phenomenon”) or human-built structures such as

WordNet [Fel98] to find similar concepts (e.g., “surname” is a synonym of “fam-

ilyname”). Although query expansion in IR is related to query relaxation in

this dissertation, the focus of query relaxation for XML model is substantially

different. That is, unlike expansion in IR which focuses on “which” keywords

to add, we focus on relaxing both structures (i.e., edge relationship) and values

(i.e., contents). Furthermore, we investigate related techniques such as distance

metric or selectivity estimation to support query relaxation for XML model.

From Web perspective, several authors have proposed a language/system that

supports approximate pattern matching and answer ranking. In [TW00], a sim-

ilarity operator “∼” for XML is presented. In their work, “∼” measures the

similarity between the value of element/attribute and the given constant helped

by underlying thesaurus. In [FG01], authors describe XIRQL, an extension of

XQL [RLS98], that integrates IR features by supporting weighting and ranking,

relevance-oriented search, and data types with vague predicates.

More recently, query relaxation techniques relevant to XML model start to

appear. For instance, [ACS02] proposes three relaxation schemes – generalizing

nodes, deleting nodes, and relaxing edges – and investigates their evaluation

issues. Also, [KS01] proposes another kind of relaxation based on the order

24

of nodes and presents various complexity results on query evaluation. However,

neither of [ACS02, KS01] deal with the issues such as distance metric or selectivity

estimation for relaxed queries. In this Chapter, we consider three relaxation

primitives for XML model proposed in [ACS02].

3.3 A Framework for XML Query Relaxation

Let us precisely define what the query modification and query relaxation are.

First, we review some terminologies. We borrow the following notations from [Cha90].

A query is an an open formula, denoted Q(~x), where ~x is the set of free variables .

For the simplicity of exposition, in this Chapter, we will restrict ourselves to only

conjunctive queries , Q(~x) ≡ ∃~z
∧

i Pi(~xi) where ~xi ⊆ (~x∪ ~z) and Pi-s are relation

symbols. The answer relation represented by Q(~x) against a database D is de-

noted by 〈Q(D)〉, or simply 〈Q〉 when context is clear. Set relationships between

two answer relations, 〈Q〉 and 〈R〉, can be straightforwardly defined. Then, the

query modification is formally defined as follows:

Definition 1 (Query Modification) A query Q is said modified to R if the

following holds:

〈Q〉 ∩ 〈R〉 6= ∅ 2

That is, we are only interested in the query modification as long as the query

is changed such that the modified query still shares some common answers with

the original query. Now, when a query Q is modified to a query R, the change can

be categorized into one of the four notions: (1) Query Rewrite: Q is re-written

to R that generates the same set of answers with different characteristics such

as faster computation (e.g., query rewrite in the semantic query optimization

problem [JK84]), (2) Query Restriction: the scope of Q is restricted so that

25

Q

Q’ Q

Q’

Q Q’

 Query Query Query
Restriction Shift Relaxation

Q Q’

 Query
Modification

Figure 3.1: Illustration of query modifications.

less number of or smaller-scoped answers will be returned (e.g., top-k selection

problem [CG99]), (3) Query Relaxation: the scope of Q is relaxed so that more

number of or bigger-scoped answers will be returned, and (4) Query Shift : the

scope of Q is shifted to generate partially-overlapping, but different set of answers.

Their corresponding properties are as follows:

Query Rewrite : 〈Q〉 ≡ 〈R〉 (3.1)

Query Restriction : 〈Q〉 ⊇ 〈R〉 (3.2)

Query Relaxation : 〈Q〉 ⊆ 〈R〉 (3.3)

Query Shift : 〈Q〉 6⊇ 〈R〉 ∧ 〈Q〉 6⊆ 〈R〉 (3.4)

Our focus, in this Chapter, is especially the Query Relaxation. As the above

property implies, query relaxation enables systems to relax the given query con-

straints to a less restricted form such that new answer set is the “superset” of the

original answer set. Pictorial illustration of different types of query modification

is given in Figure 3.1.

26

Chaudhuri’s framework [Cha90] captures query modifications for the rela-

tional model. Due to the characteristics of XML model, however, new kinds of

query relaxations appear in XML model. Also, Chaudhuri’s model does not allow

fine tunings of the relaxation process. To remedy these shortcomings, we propose

a framework, termed as QAC, where one can precisely control the way query

relaxation is processed.

Definition 2 (QAC Framework) A query S is represented by triple: S ≡

(Q,A, C), where:

• Q is a (labeled) conjunctive relational query,
∧

i Li : Pi, where Li is an

optional unique label to identify the conjunctive term Pi.

• A is a boolean function, called Acceptance Test, that takes as input the

answer generated by executing the query Q over a database D, and returns

{True, False}.

• C is a statement, called Control Statement, that guides the relaxation pro-

cess as the user specifies. 2

The intuitive procedure of the query relaxation in QAC framework is as fol-

lows: After the query Q is executed, its acceptance is tested using A. If it is

acceptable (i.e., A(〈Q〉) = True), then the answer is returned to the user. Oth-

erwise, Q is relaxed guided by C to a relaxed query Q′.

XML document is, in this Chapter, represented as a tree, where each element

(regardless of being tag, CDATA, etc.) becomes a node and an element and its

sub-element (or attribute) relationship becomes an edge. To simplify discussion,

let us assume that each node in a tree has two values: the id that uniquely

27

<a>
<d>

</d>
<c/>

1, a

2, d
����

��
��

3, b
��

4, c
��?

??
??

?

$1 = a

$2 = b
��

��
��

��
��

��

$3 = c

??
??

??

(a) An XML document (b) Tree representation (c) An XML query

Figure 3.2: XML query representation as a tree.

identifies the node and the v of the label of the node. Similarly, an XML query

against such tree can be naturally represented as a tree, where each node has a

form “variable = value” and each edge is a constraint of either parent-child or

ancestor-descendent relationship, denoted as single or double edges, respectively.

Each variable is denoted $i, for integer i. More importantly, this XML query can

be equivalently represented by using three relations – node(id,v), pc edge(v,w),

ad edge(v,w) – in a conjunctive query notation. These notations are inspired

by [JLS01]. We will use both notations interchangeably in the rest of the Chapter.

An example is illustrated in Figure 3.2.

As an example of query relaxation in QAC framework, consider the following

scenario. Suppose one wants to find at-least k answers for the given query in

Figure 3.2(c), that finds all occurrences of the tag <a> that has a descendant

and a child <c>. Then, this can be captured as S ≡ (Q,A, ε), where

Q($1, $2, $3) ≡ node($1, a) ∧ node($2, b) ∧ node($3, c) ∧

ad edge($1, $2) ∧ pc edge($1, $3)

A(〈Q〉) ≡ count(〈Q〉) ≥ k

After an evaluation of Q returns only 1 answer ($1, $2, $3) = (1, 3, 4) as in Fig-

ure 3.2(b), the query Q will be relaxed further to satisfy the acceptance test of

at-least k.

28

In the subsequent Section, we will describe, using QAC framework, various

forms of XML query relaxations; some relaxations appeared in the relational

model as well while other relaxations are novel and due to the characteristics of

XML model.

3.4 Types and Semantics of XML Query Relaxation

Query relaxation in the relational databases typically focuses on the “value”

aspect (e.g., [CYC96]). For instance, a relational query “find persons with a

salary range 50K – 55K”, if there is no answer or not sufficient answer, may

be relaxed to a query “find persons with a salary range 45K – 60K”. In XML

model, in addition to the value relaxation, new types of query relaxation, known

as structural relaxation and order relaxation, are introduced as follows.

3.4.1 Value Relaxation

In XML context, value relaxation is expanding the value scope of certain nodes to

allow matching additional answers. A value can be relaxed to a range of numeric

values or a set of non-numeric values. In general, such relationship can be induced

by the natural hierarchies or partial order among domain values [Cha90]. For

instance, if person is a super-type of types student, TA, or RA, then a partial

order “{student, TA, RA} ≤ person” exists. Then, with the following query

rewrite rule on the conjunctive term P ,

∀~x∀a∀b((a ≤ b)→ (P (~x, a)→ P (~x, b))

a value “student” can be relaxed to “person”, allowing the relaxed query match-

ing. Figure 3.3 illustrates a value relaxation applied to the query of Figure 3.2(c),

where “CC” is a supertype of “C”. After the value relaxation, the new relaxed

29

$1 = a

$2 = b
��

��
��

��
��

��

$3 = CC

??
??

?? ≡
node($1,a) ∧ node($2,b) ∧ node($3,CC) ∧

ad edge($1,$2) ∧ pc edge($1,$3)

Figure 3.3: Example of a relaxed query with value relaxation.

query of Figure 3.3 may match additional answers, e.g., <a><CC/>. The

query relaxation developed in [CYC96, CG99] can be extended to support the

value relaxation in XML model.

3.4.2 Edge Relaxation

In this relaxation type, a parent-child edge can be relaxed to an ancestor-descendent

edge. That is, the semantics of the relaxation is that while the original query

finds answers with only a parent-child relationship, the new query will be able to

find answers with an ancestor-descendent relationship which is, by definition, a

superset of a parent-child relationship. Consider a simple path expression /a/b/c

in XPath notation (i.e., find answer that has a as a root that in turn has b as a

child that in turn has c as a child). This can be captured in QAC framework as

follows: S ≡ (Q, ε, ε), where

Q($1, $2, $3) ≡ node($1, a) ∧ node($2, b) ∧ node($3, c) ∧

pc edge($1, $2) ∧ pc edge($2, $3)

Then, the possible edge relaxations that can occur are, in XPath notation,

r1 :/a//b/c, r2 :/a/b//c, and r3 :/a//b//c and can be captured as follows:

R1($1, $2, $3) ≡ node($1, a) ∧ node($2, b) ∧ node($3, c) ∧

ad edge($1, $2) ∧ pc edge($2, $3)

R2($1, $2, $3) ≡ node($1, a) ∧ node($2, b) ∧ node($3, c) ∧

pc edge($1, $2) ∧ ad edge($2, $3)

30

<a>

<d/>

<d> <c/> </d>

<c/>

<d>

 <c/>
</d>
<d>

 <d> <c/> </d>
</d>

1, a

2, b
wwoooooooooooo

3, d
��

4, b
����

��
��

5, d
��

6, c
��

7, b
��

8, c
��

9, d
��?

??
??

?

10, b
��

11, c
��

12, d
''OOOOOOOOOOO

13, b
��

14, d
��

15, c
��

(a) An XML document (b) Tree representation

Figure 3.4: Example of an XML data and its tree representation.

Q $1 $2 $3

1 7 8

R1 $1 $2 $3

1 7 8

1 10 11

R2 $1 $2 $3

1 7 8

1 4 6

R3 $1 $2 $3

1 7 8

1 10 11

1 4 6

1 13 15

Table 3.1: Answers to the queries Q, R1, R2, and R3 from XML data in Figure 3.4.

R3($1, $2, $3) ≡ node($1, a) ∧ node($2, b) ∧ node($3, c) ∧

ad edge($1, $2) ∧ ad edge($2, $3)

The three new queries yield additional answers than the original query Q. For

instance, consider an XML document in Figure 3.4. The id values of the nodes

in (b) are assigned in pre-ordering. The different set of answers for the nodes

$1, $2, and $3 for queries Q, R1, R2, and R3 are shown in Table 3.1, where the

numbers represent the id of matching nodes. Clearly, R1, R2 and R3 contain all

the answers of Q, and also include their corresponding approximate answers.

Another type of edge relaxation, also known as subtree promotion, was intro-

31

duced in [ACS02]. This relaxation permits a query subtree to be promoted so

that the subtree is directly connected to its former grandparent by an ancestor-

descendent edge. Therefore, in QAC framework, this will result in replacing

“pc edge(a, b) ∧ pc edge(b, c)” with “pc edge(a, b) ∧ ad edge(a, c)”. For instance,

the relaxed query R4 with subtree promotion from Q is the following:

R4($1, $2, $3) ≡ node($1, a) ∧ node($2, b) ∧ node($3, c) ∧

pc edge($1, $2) ∧ ad edge($1, $3)

3.4.3 Node Relaxation

In this type of relaxation, certain constraints related to nodes in a query tree can

be relaxed in several ways: (1) value attached to the node n can be “don’t care”

(i.e., “ ”), permitting to match any non-null values. In QAC framework, then,

all the conjuncts involving the variable n will have the form: node($n,). (2) the

node n can be removed while ensuring the “superset” property. That is, if n is

a leaf node, it can be simply removed. However, if n is an internal node, the

children of n nodes become grand-children of n [ACS02]. This case corresponds

to the change to the projection part of the query and is equivalent to removing

all the conjuncts, in QAC framework, involving the variable n accordingly.

Consider the simple path expression Q : /a/b/c again. A few possible node

relaxations are S1 : /a/b/ (i.e., node c becomes don’t care), S2 : /a/b (i.e., node

c is removed) and S3 : /a//c (i.e., node b is removed). These relaxations can be

captured as follows:

S1($1, $2, $3) ≡ node($1, a) ∧ node($2, b) ∧ node($3,) ∧

pc edge($1, $2) ∧ pc edge($2, $3)

S2($1, $2) ≡ node($1, a) ∧ node($2, b) ∧ pc edge($1, $2)

32

Q $1 $2 $3

1 7 8

S1 $1 $2 $3

1 2 ε

1 4 ε

1 7 8

S2 $1 $2

1 2

1 4

1 7

S3 $1 $3

1 6

1 8

1 11

1 15

Table 3.2: Answers to the queries Q, S1, S2, and S3 from XML data in Figure 3.4.

S3($1, $3) ≡ node($1, a) ∧ node($3, c) ∧ ad edge($1, $3)

Table 3.2 illustrates a set of matching answers of queries Q, S1, S2, and S3 for

XML data in Figure 3.4. Note that the relaxed queries S2 and S3 have different

set of free variables from those of Q and S1. To ensure the “superset” property

of query relaxation, thus, the notion of set containment needs to be extended

properly to allow comparison between relations with different arity. We omit the

details in the interest of the space and readers may refer to [LS02].

3.4.4 Order Relaxation

So far, we have ignored the effects of “order” in XML model. In the ordered

XML model where the order among siblings is significant, an XML query carries

another constraint on the order. Then, one can also relax the order among the

siblings of the given query tree. For instance, in the ordered XML model, the

query Q of Figure 3.5(c) is to find all occurrences of the tag <a> that has a

descendant first and a child <c> second . The added symbol “<” in the

middle emphasizes the ordered semantics. Therefore, in Figure 3.5, the XML

data D1 can be an answer for Q, but not D2 since the order is reversed. However,

relaxing the order between tags and <c> as in the query O of Figure 3.5(d),

D2 can be an approximate answer to Q. In QAC framework, using the function

33

<a>
<d>

</d>
<c/>

<a>
<c/>
<d>

</d>

(a) XML data D1 (b) XML data D2

$1 = a

$2 = b
��

��
��

��
��

��

< $3 = c

??
??

??
$1 = a

$2 = b
��

��
��

��
��

��

$3 = c

??
??

??

(c) Original query Q (d) Order-relaxed query O

Figure 3.5: Example of order relaxation.

id($v) that returns the id of the variable $v, the original and relaxed queries can

be expressed as follows:

Q($1, $2, $3) ≡ node($1, a) ∧ node($2, b) ∧ node($3, c) ∧

ad edge($1, $2) ∧ pc edge($1, $3) ∧ id($2) < id($3)

O($1, $2, $3) ≡ node($1, a) ∧ node($2, b) ∧ node($3, c) ∧

ad edge($1, $2) ∧ pc edge($1, $3)

More extended notion of order relaxation, where the order of nodes in the

hierarchy can be reversed in a vertical direction, appears in [KS01]. This too can

be easily captured in QAC framework and is omitted.

3.5 Relaxation Control

Given an original query Q, there are many ways to relax the Q. Previous works

in [Cha90, KS01, ACS02] propose some evaluation algorithms, but does not pro-

vide a way to tune the relaxation process in a very detailed manner. Ideally,

34

one wants to control the way/order of relaxation process. In QAC framework,

the 3rd component, control statement, is provided to serve such purposes. For

instance, consider an original query Q of Figure 3.6. Suppose one wants to con-

trol the relaxation process such that Q is relaxed in the order of R1, R2 and R3.

Furthermore, the user wants to make sure to have at least 1 answer tuple having

“10” and “30” bound to variables $1 and $3, respectively. Then, the original

query Q can be captured as follows in the QAC framework: Q ≡ (Q1,A1, C1),

where

Q1($1, $2, $3, $4, $5) ≡ N1 :node($1, a) ∧N2 :node($2, b) ∧N3 :node($3, c) ∧

N4 :node($4, d) ∧N5 :node($5, e) ∧

E1 :pc edge($1, $2) ∧ E2 :pc edge($2, $3) ∧

E3 :pc edge($3, $4) ∧ E4 :pc edge($1, $5)

A1(〈Q1〉) ≡ 〈Q1〉 3 (10, , 30, ,)

C1 ≡ ¬N1 ∧ [(E1E4N1N2N3N4)(E3)(E2)]

The control statement C1 states that the root node of the query should not be

relaxed and when the relaxation occurs, the conjuncts labeled E1, E4, N1, N2, N3,

and N4 must be relaxed prior to the conjuncts labeled E3, which in turn must be

relaxed prior to the conjuncts labeled E2 (assuming that the execution seman-

tics inside of “()” construct is concurrent while that between “()” constructs is

sequential). According to this rule, R1 (i.e., edge relaxed query) of Figure 3.6

is the preferred relaxed query to users than R2 or R3 (i.e., subtree promotioned

queries).

35

$1 = a

$2 = b
��

��
��

$3 = c

$4 = d

$5 = e

??
??

??
$1 = a

$2 = b
��

��
��

��
��

��

$3 = c

$4 = e

??
??

??

??
??

??

(a) Original query Q (b) Relaxed query R1

$1 = a

$2 = b
��

��
��

$3 = c
��

��
��

$4 = d

??
??

??

??
??

??
$5 = e

??
??

??
$1 = a

$2 = b
oooooooooo

$3 = c

$4 = d

$5 = e
OOOOOOOOOO

(c) Relaxed query R2 (d) Relaxed query R3

Figure 3.6: Example of three query relaxations.

3.6 Ranking

In returning a set of approximate answer set to users, it is important to rank

answers based on their similarities to the original query so that more similar

(thus better) answers are ranked higher than others. Therefore, given a query Q

and its relaxed answer A, devising a useful ranking measure important.

In its abstract notion, consider a query Q : /A/B that looks for a B that is a

child of A. Suppose the following 3 answers are returned:

(1): <A>

(2): <A>

(3): <A><C></C>

Answer (1) is the exact match, while answers (2) and (3) are the relaxed matches.

36

It is clear that the match score of the answer (1) should be “1” due to its exact

match with Q. However, exact score values for answers (2) and (3) are not clear

and inherently arbitrary. If application semantics prefer answers with “optional”

nodes to answers with “descendent” edges, for instance, then answers (2) will

have a higher match score. Since devising a generic match score and a ranking

scheme are closely related to the problem of distance measure between two XML

data trees, this issue will be further covered in Chapter 4.

As one approach to ranking problem, one may assume that user’s query pro-

vide tips regarding scores. For instance, imagine an XML query in terms of an

abstract tree where (1) every node has XML tag name, and (2) every node and

edge have a 3-tuple vector vi = (maxi, mini, methodi), where

• maxi: The highest match score for an node/edge. This is the score for an

exact match.

• mini: The lowest match score for an node/edge. This is the lower bound

for an relaxed match.

• methodi: User-defined method that decides how to assign a match score in

the range of maxi and mini: m(vi) = methodi(maxi, mini).

and (3) a normalization factor ∆ that enables the distance between 0 and 1 range.

By default, ∆ is the sum of all maxi values in Q. Therefore, for each node or

edge, there is a match score calculated according to the methodi and denoted as

m(vi). Overall match score M for Q, M(Q), is then defined as follows:

M(Q) =
1

∆

∑
∀vi

m(vi)

Match scores for the above three relaxation answers are thus calculated eas-

ily and illustrated in Figure 3.7. Assume that b refers to a “binary function”

37

A

B

(5,1,b)

(4,2,b)

(10,1,b)

A

B

(5)

(4)

(10)

A(5) A

B

(5)

(4)

C(1)

Q (1) (2) (3)

Figure 3.7: Example of three path query relaxations.

which chooses max or min value for an exact or relaxed match, respectively.

Then, corresponding match scores for three cases in Figure 3.7 are following: (1)

M1(Q) = 1
19

(5 + 10 + 4) = 1.0, (2) M2(Q) = 1
19

(5) = 0.26, and (3) M3(Q) =

1
19

(5 + 1 + 4) = 0.53. As a conclusion, the final ranking among three answers

would be as follows (similarity value is shown at first):

1.00: <A>

0.53: <A><C></C>

0.26: <A>

3.7 Summary

In this Chapter, we have proposed a framework, QAC, to describe the exact

semantics and behavior of query relaxation for XML model. The benefits of such

formalism are that it is both precise and concise. We also presented a variety

of novel query relaxations of the XML model that have been proposed recently

in [Cha90, CYC96, CG99, KS01, ACS02] and showed that QAC can not only

capture their semantics precisely, but also describe their relaxation behavior.

Many interesting directions are ahead. First, designing and implementing

38

an XML query language that is capable of expressing the aforementioned query

relaxations is an important task in future. Second, QAC framework currently

lacks the fine control to dictate which relaxation is to occur in certain steps.

Third, devising an efficient algorithm to evaluate a given set of relaxed queries

in the context of QAC framework is also an interesting problem.

39

CHAPTER 4

Distance Metric for XML Data Trees

To systematically enlarge query scope, a knowledge structure generated from the

database can be used as a guidance. The benefits of such structure-based query

relaxation, compared to a mechanical process of dropping certain sub-queries from

the original query, is that it tends to be more intuitive for the given application

domain. The fundamental issue to build such a knowledge structure is to devise

a good distance metric (or similarity metric) that is used in the underlying data

clustering process. Unlike in relational databases where atomic objects are tuples,

in XML model, distance metric must be defined on the new type of atomic objects,

tree-shaped XML data. Due to the inherent structural complexity and ill-defined

“closeness” in XML model, however, devising an intuitive metric is not a trivial

task, if at all possible. In this Chapter, we discuss some of the preliminary results

on devising a good distance metric between tree-shaped XML data.

4.1 Background

Query relaxation is a process to enlarge the search scope for finding more rel-

evant answers. Enlarging a query scope can be accomplished by viewing the

queried object at different conceptual levels. Towards this problem, one tech-

nique, called TAH (Type Abstraction Hierarchy), has been developed in CoBase

project [CYC96, CCH96] and successfully used in many applications [CYC94,

40

all

small
jjjjjjjjjjjjjjjjjj

0
��

��
��

�

... 3mm
??

??
??

? medium

3mm
��

��
��

�

4mm 10mm
??

??
??

? large
TTTTTTTTTTTTTTTTTT

10mm
��

��
��

... 50mm
??

??
??

Figure 4.1: Example of TAH for brain tumor size.

CHC98].

TAH is a hierarchical (tree-like) data structure that can be automatically

generated from database. Based on the values and frequencies information, data

are clustered into a tree-like structure of TAH based on minimizing the average

pairwise distance of instances among clusters. A problem of relaxing a query

condition can then be reduced to that of finding the right range value that is

represented by an appropriate cluster in the TAH. For instance, the query “Find

medical image (e.g., MRI) with tumor size = 5 mm” can be relaxed to “Find

medical image with tumor size between 3 mm and 10 mm”, when the value range

3 mm to 10 mm is derived from the TAH of Figure 4.1. That is, a cluster called

“medium” is the one appropriate for “4 mm” tumor size.

The fundamental building block needed to build such a TAH from databases

is measuring the distance between two atomic objects and group the similar

objects into the same cluster. Therefore, devising a good distance metric between

objects plays a major role. In CoBase system, Relaxation Error is used to serve

that purpose. Relaxation error is defined as the average difference between the

requested values in the query and the returned values in the answer. Thus,

from the query relaxation perspective, two objects are similar if relaxation error

between them is small.

41

4.2 Related Work

General survey on data clustering and classification can be found in [AHD96].

Here, we focus on works related to distance metrics for non-traditional data

types such as trees. The most well-known distance measure for trees is Tree Edit

Distance and has been extensively studied (e.g., [Tai79, ZS89, CRG96, BCD95,

WDC01, CAM02, GJK02, CTZ01]). In tree edit distance problem, a distance

between two trees is defined as the summation of the costs needed to convert

the source tree to target tree using the pre-defined set of edit operations such as

insert or delete.

Since general tree edit distance problem (also known as Tree-to-Tree editing

problem or Tree-to-Tree Correction problem) for unordered trees is known as NP -

hard, works in [Tai79, ZS89, CRG96, WDC01] instead try to find an efficient

algorithm for limited cases such as ordered/binary trees or trees with additional

constraints. The best known algorithm for computing tree edit distance between

two “ordered” trees is by Zhang and Shasha [ZS89] and has the time complexity of

roughly O(n4), where n is the number of the nodes in a tree. Using the Zhang and

Shasha’s algorithm or other its variants (e.g., [Tai79, CRG96, BCD95, WDC01,

CAM02, GJK02, CTZ01]), one can define the distance between two trees as its

tree edit distance. Since XML model can be easily captured as trees, results

developed for tree edit distance can be naturally adopted for distances for XML

models. For instance, in a more recent work, [NJ02] presents a tree edit distance

based measure with an application for clustering XML documents. Their focus is

to group XML documents generated from different XML schemas by clustering.

As an another approach, one may transform non-traditional data types into

traditional ones (e.g., set or bag model, vector-space model) and compute dis-

tances on the new types. For instance, in [GGW01], new measures that exploit a

42

hierarchical domain structure in order to produce more intuitive similarity scores

are presented. In the same spirit as [GGW01], we investigate several such mea-

sures for XML model in this Chapter.

4.3 Relaxation Index

To support query relaxation in XML model, we need a knowledge representation

similar to TAH that guides the XML query relaxation process. Due to the hier-

archical nature of XML data, it is more complex and difficult in automatically

generating such structures for XML model.

We propose to develop a technique to generate relaxation index structures,

XML Type Abstraction Hierarchy (X-TAH). X-TAH is a hierarchical tree-like

knowledge structure that contains a summary of XML data trees. Intuitively,

X-TAH has a hierarchical cluster where objects in the same cluster are closer to

each other. Much like that objects are tuples in relational model, objects are

trees in XML model. X-TAH has two node types – internal and leaf nodes – as

shown in Figure 4.2.

• An internal node has a representative tree that summarizes the character-

istics of the all data trees in that cluster. For instance, in Figure 4.2, the

representative tree R1 represents all the data trees of their descendants. In

the query relaxation process, the system examines all the representative

trees to find the one that contains the exact or the most similarly matching

target.

• A leaf node has a representative tree as well as a set of data trees that

are similar to each other with respect to their values and structures. For

instance, in Figure 4.2, the three data trees with ids 1, 2, and 21 are closer

43

21

21

710

15 30

2754

734

45 31

684

9

...

id data tree with id

R1 R2 R3

R9

Ri representative tree i

R5 R7 R14

R11R10

R0

Figure 4.2: Example of X-TAH.

to each other than the trees with id 4 or 73. Hence, for a given query q,

the system finds a data tree td in a representation tree cluster c that best

matches q. The query q can then be relaxed to the neighbors of td which

are candidates for the “next-best” answers.

X-TAH can be constructed using either agglomerative or divisive clustering

algorithms. CoBase system has developed a family of efficient and effective ag-

glomerative (e.g., ICE [ZC00]) as well as divisive (e.g., DISC [CCH96, CYC96])

clustering algorithms. For instance, for the DISC algorithm, initially, all n ob-

jects (i.e., a tuple in the relational model and a tree in XML model) belong to a

single cluster. The number of clusters is increased at each step of the algorithm,

by dividing one of the existing clusters into two offspring clusters. For the ICE

44

algorithm, given n data trees, or n initial clusters which each containing one data

tree, the algorithm merges the two closest clusters at each step, and a binary-tree

can be constructed after the (n− 1)-th iteration.

These algorithms perform clustering based on two distance metrics, inter-

object distance (dio) and inter-cluster distance (dic). Since the inter-cluster dis-

tance is orthogonal to the characteristics of the underlying data model, the main

difficulty lies in devising a plausible inter-object distance metrics between XML

data trees. This is not a straightforward task since objects involved are not

flat, but hierarchical. Such metrics need to be designed judiciously so that final

X-TAH makes sense for the given XML data and application.

4.4 XML Inter-Cluster Distance (dic)

Let us defer the discuss of inter-object distance to Section 4.5 and assume such

a distance metric is given in this Section. Once an inter-object distance metric,

dio, for XML model is developed, inter-cluster distance metric can be used, for

instance, to group the similar objects based on dio and generate a hierarchical

cluster. Since the data type can be a mix of numerical and categorical, the fol-

lowing inter-cluster error measure [ZC00] can be used as an inter-cluster distance

to calculate the distance between two clusters C1 and C2

dic(C1, C2) =
∑

(oi)∈C1

∑
(oj)∈C2

P (oi|C1) P (oj|C2) dio(oi, oj) (4.1)

where P (oi|Ck) is the conditional probability of the object oi in Ck (k = 1, 2),

ie., P (oi|Ck) = oi

|Ck|
, |Ck| =

∑
(oi)∈Ck

oi and dio(oi, oj) is an inter-object distance

metric between two objects oi and oj.

The algorithm will generate a binary tree hierarchy, X-TAH, based on min-

imizing the inter-cluster distances between C1 and C2. Computing inter-cluster

45

distance involves the vast number of initial clusters. For instance, the DISC al-

gorithm has a time complexity of O(n log n), where n is the number of initial

objects to cluster. Now, in next Section, we focus on the core of the problem of

this Chapter – inter-object distance for XML model.

4.5 XML Inter-Object Distance (dio)

The distance metrics between two “tuples” in relation data are well defined

whether or not they are numeric, categorical, or mixed types. However, be-

cause of the hierarchical structure of XML data, such distance metrics are rather

complex and should have the following properties:

• The metric should capture distance among XML data trees with such as-

pects as values and/or structures of data trees, orders of siblings, depths of

sub-elements, types of nodes (e.g., element, attribute, CDATA), etc.

• The metric should be adjustable by users to compute distances based on a

selected set of aspects for a specific application domain.

Towards this goal, we consider two types of methods. First, in Set Based

Metrics, each XML data tree is transformed into a set of objects that capture

the main characteristics of the original XML data trees and two such sets are

compared to compute distance afterwards. Second, in Tree Edit Distance

Based Metrics, a distance is the cost of converting the source tree to the target

tree. A traditional string edit distance is a metric between two strings, possi-

ble of unequal lengths, given by the minimum number of symbol insertions and

deletions required to transform one string into the other. Tree edit distance is a

generalization of the traditional string edit distance.

46

Let us consider a few proposals. For a simpler discussion, let us assume that

there is a straightforward relationship between similarity s and distance d (e.g.,

s + d = constant) [AHD96] so that once one value is computed, the other value

can be also computed easily.

4.5.1 Set Resemblance Method

In this scheme, the similarity is defined in terms of the ratio of intersection over

union of the sets. First, consider the following definition.

Definition 3 (Edge Constraint) u
l−→ v is an edge constraint from node u

to v with a label l. Two edge constraints u
l−→ v and u′

l′−→ v′ are matched if

u = u′, l = l′, and v = v′. Given two trees X and Y , eX and eY are the set of

edge constraints in X and Y , respectively. 2

Then, one may view the tree as a set of edge constraints and define the

similarity between two trees with respect to their edge constraints. That is, two

trees become more similar as they share more common edge constraints.

sim(X,Y) =
|eX ∩ eY |
|eX ∪ eY |

(4.2)

Example 1. Consider three trees A, B, and C in Figure 4.3. Edge constraint

set for them are the following:

eA = {1 course−→ 2, 1
lab−→ 3, 2

name−→ 4, 2
teacher−→ 5, 3

name−→ 6, 5
fname−→ 7, 5

lname−→ 8}

eB = {1 course−→ 2, 1
lab−→ 3, 2

name−→ 4, 3
instructor−→ 5, 3

name−→ 6, 5
fname−→ 7, 5

lname−→ 8}

eC = {1 course−→ 2, 1
lab−→ 3, 2

name−→ 4, 2
teacher−→ 5, 3

name−→ 6, 5
lname−→ 8}

Using Equation 4.2, similarities among them can be defined as follows:

sim(A, B) =
|eA ∩ eB|
|eA ∪ eB|

=
6

7

47

1

2 3

54

7 8

6

labcourse

name teacher name

fname lname

1

2 3

54

7 8

6

labcourse

name instructor name

fname lname

1

2 3

54

8

6

labcourse

name teacher name

lname

(a) Tree A (b) Tree B (c) Tree C

Figure 4.3: Example of similar XML data trees.

sim(A, C) =
|eA ∩ eC |
|eA ∪ eC |

=
6

7 2

Clearly, Equation 4.2 exhibits some problems; it cannot differentiate sim(A, B)

and sim(A, C). This is because Equation 4.2 does not consider the structural

characteristics of the trees. To remedy this problem, one needs to take a notion

of path (i.e., root to leaf path) into consideration as follows.

Definition 4 (Path Constraint) A path constraint is a unique concatenation

of edge constraints x1
l1−→ x2, x2

l2−→ x3, ... xn−1
ln−1−→ xn, where x1 is a root node

and xn is a leaf node, and denoted as x1
l1−→ x2

l2−→ ...
ln−1−→ xn. Given two trees

X and Y , pX and pY are the set of path constraints in X and Y , respectively. 2

Based on the definition of path constraint, instead of edge constraint, one can

define the similarity metric as follows:

sim(X, Y) =
|pX ∩ pY |
|pX ∪ pY |

(4.3)

Example 2. Consider three trees A, B, and C in Figure 4.3 again. Path con-

48

straint sets for them are the following:

pA = {1 course−→ 2
name−→ 4, 1

course−→ 2
teacher−→ 5

fname−→ 7, 1
course−→ 2

teacher−→ 5
lname−→ 8,

1
lab−→ 3

name−→ 6}

pB = {1 course−→ 2
name−→ 4, 1

lab−→ 3
instructor−→ 5

fname−→ 7, 1
lab−→ 3

instructor−→ 5
lname−→ 8,

1
lab−→ 3

name−→ 6}

pC = {1 course−→ 2
name−→ 4, 1

course−→ 2
teacher−→ 5

lname−→ 8, 1
lab−→ 3

name−→ 6}

Using Equation 4.3, similarities among them can be defined as follows:

sim(A, B) =
|pA ∩ pB|
|pA ∪ pB|

=
2

6

sim(A, C) =
|pA ∩ pC |
|pA ∪ pC |

=
3

5 2

Path-constraint based set scheme in Equation 4.2 is superior to the edge-

constraint based set scheme in Equation 4.3 in that it retains one kind of struc-

tural constraint (i.e., parent-child relationship) of the tree through path con-

straints. However, since path-constraint based set scheme treats only the whole

root-to-leaf path as an atomic unit, it cannot handle subtle difference between

two similar paths when one is a prefix of the other. That is, the scheme will find

two paths a.b.c.d and a.b as simply “different” despite their similarities from the

root a upto the second node b. Next scheme aims at overcoming this shortcoming.

4.5.2 Prefix-Clustered Similarity Method

Let us consider other metric that takes the “depth” of tree structure into consid-

eration. People have developed a technique that maps strings to a linear space

in a manner that ensures strings that are extensions of a particular prefix are

clustered, while preserving lexicographic ordering [JKS00]. One can use such a

49

technique to convert string values (i.e., node label) of tree into some numeric

values and use conventional similarity metric comparing the values.

Let us briefly describe the technique in [JKS00].

“... Let the size of the alphabet be α, with an established lexicographic

order on the symbols in the alphabet. Choose an integer β > 2α. Let

a string of length n be s1s2...sn, with each symbol si mapped to an

integer ti between 1 and α. The string as a whole is then mapped to

t1/β + t2/β
2 + ... + tn/β

n. Let us look at what is going on with an

example, choosing β to be 2α + 1. In this case, let [i; j] be the interval

between two strings of some (equal) length that are adjacent to each

other in the lexicographic ordering. Then, extensions of the first string

by one character are equally placed in the open interval [i; (i + j)/2].

Thus, all extensions of the first string are still closer to i than to j in

value. The role of β is to determine the “margin of victory”. While

it is technically sufficient to set β to be marginally greater than 2α,

[JKS00] suggests that a value of β = 2α + 1 be sufficient...”

By viewing a path that consists of an array of concatenated node labels as a

string that consists of alphabets, one can utilize the above technique to map the

path string into numeric space with little modification as follows:

1. Given a tree X, gather all unique node labels into sets TX . Assume that

there is function tX(l) that returns an established order of node label l.

2. Map a path constraint pi = a1a2...an into some rationale number

M(pi) = tX(a1)/β + tX(a2)/β
2 + ... + tX(an)/βn

50

After each path of trees is mapped to numeric space, one can define the

similarity of two trees X and Y in terms of average pair-wise Euclidean distance

as follows:

sim(X, Y) = 1− (
m∑

k,l=1

(|MA(pk)−MB(pl)|)2)
1
2 (4.4)

Example 3. Consider trees A and B in Figure 4.3 again. Then, we have the

alphabet space of T = {course, fname, instructor, lab, lname, name, r, teacher}

with r being the root node label and with a lexicographic order among them (e.g,

t(course) = 1, t(fname) = 2, etc). α = 8 and β = 2α + 1 = 17. Each tree has

the following paths, respectively.

pA = {r.course.name, r.course.teacher.fname, r.course.teacher.lname,

r.lab.name}

pB = {r.course.name, r.lab.instructor.fname, r.lab.instructor.lname,

r.lab.name}

Based on these, the path can be mapped to numeric values as follows:

MA(r.course.name) = t(r)/β + t(course)/β2 + t(name)/β3

= 7/17 + 1/172 + 6/173

MA(r.course.teacher.fname) = t(r)/β + t(course)/β2 + t(teacher)/β3

+ t(fname)/β4

= 7/17 + 1/172 + 8/173 + 2/174

MA(r.course.teacher.lname) = t(r)/β + t(course)/β2 + t(teacher)/β3

+ t(lname)/β4

= 7/17 + 1/172 + 8/173 + 5/174

MA(r.lab.name) = t(r)/β + t(lab)/β2 + t(name)/β3

51

= 7/17 + 4/172 + 6/173

Similarly,

MB(r.course.name) = t(r)/β + t(course)/β2 + t(name)/β3

= 7/17 + 1/172 + 6/173

MB(r.lab.instructor.fname) = t(r)/β + t(lab)/β2 + t(instructor)/β3

+ t(fname)/β4

= 7/17 + 4/172 + 3/173 + 2/174

MB(r.lab.instructor.lname) = t(r)/β + t(lab)/β2 + t(instructor)/β3

+ t(lname)/β4

= 7/17 + 4/172 + 3/173 + 5/174

MB(r.lab.name) = t(r)/β + t(lab)/β2 + t(name)/β3

= 7/17 + 4/172 + 6/173

Now, using Equation 4.4, similarities between trees A and B can be defined

accordingly. 2

So far, we have considered three set-based metrics for XML model – edge con-

straint, path constraint, and prefix clustered similarity metrics. In the subsequent

Section, we consider a variation based on tree edit distance.

4.5.3 Tree Edit Distance Method

The problem of computing the distance between two trees is a generalization of

the problem of computing the distance between two strings to labeled trees. When

dealing with unordered trees, this problem is known to be NP -complete [ZS89].

Thus, people have focused on finding restricted cases such as ordered or degree-

52

2 trees with which a notion of distance is meaningful for an application under

consideration.

The traditional edit distance between two strings, of unequal lengths, is the

minimum number of symbol edit operations (e.g., insert, delete, or update) re-

quired to transform from one string to the other. One can view the distance

between two trees as a generalization of computing the distance between the two

strings (e.g., [Tai79, ZS89]). By applying such a tree distance metric to XML

model, the similarity between the specified query and approximate answer can

be computed as the distance between the query tree and data tree. Similarly,

relaxing a query q to the best approximate query q′ is equivalent to mapping a

tree tq (a tree representation of the query q) to another tree tq′ with minimum

edit operation cost.

To use the edit distance based metric for query relaxation, one needs to

incorporate domain specific semantics into the distance metric. Edit distance

based algorithms such as Z&S algorithm [ZS89] does not consider the cost as-

signed to each operator. Whether assigning equal costs to all the operators

(i.e., cost(insert) = cost(delete) = cost(update) = σ) or variable costs (i.e.,

cost(insert) = α, cost(delete) = β, and cost(update) = γ) to the operators does

not affect the correctness of the algorithms. Equal cost method, however, does

not work well because of the semantics that may be present in the tree structure.

For instance, in XML model, “inserting” a node near the root node may be more

significant than “deleting” a node near the leaf nodes. Therefore, we develop a

methodology to assign variable cost to the operator based on the context of a

given application domain. Using a variable cost edit distance metrics is more

intuitive, but greatly increases the complexity. There has been very little work,

if any, done in this area.

53

In short, inter-object distance, dio, between two tree objects A and B is

defined as the summation of the minimal operation costs that are needed in

order to convert the source tree A to the target tree B:

dio(A, B) =
∑
i,j

cost(opi(vj)) (4.5)

where the operator opi is applied to the node vj of the source tree A. Further,

let Λ(opi) and Λ(vj) be the characteristics of the operator opi and node vj, re-

spectively. Then, cost() in Equation 4.5 can be rephrased to:

cost(opi(vj)) =
1

∆
(
∑
∀i

WiΛi(opi) +
∑
∀j

WjΛj(vj)) (4.6)

where Wi and Wj are weight factors to reflect the relative importance of the

characteristics of operators and nodes in the formula, respectively and ∆ is a

normalization factor. Most of the existing works using tree edit distance assume

the cost of operations to be a constant α. On the contrary, The formula for

cost(opi(vj)) provides a generic method to assign arbitrary costs to operators dif-

ferently using their characteristics. There are various types of operators and node

characteristics that may affect the cost assignment. We review a few examples

below:

1. Operator Type: The basic Z&S algorithm [ZS89] assigns equal cost to

all the operators. We shall assign costs based on the operator. For ex-

ample, using equal cost scheme in Figure 4.4, both data trees d1 and d2

will return approximate answers with equal distances σ, even for the two

different types of operations. In this example, the distances between q and

d1, dist(q, d1), and the distance between q and d2, dist(q, d2), are identi-

cal; that is, dist(q, d1) = cost(update(xml → html)) = σ and dist(q, d2)

= cost(insert(fn)) = σ. Variable cost assignment allows us to differenti-

54

paper

title
��

��
��

�

xml

author
??

??
??

?

Tom

paper

title
����

��
��

�

html
��

author
��?

??
??

??

Tom
��

paper

title
����

��
��

�

xml
��

author
��?

??
??

??

fn
��

Tom
��

(a) Query q (b) Data tree d1 (c) Data tree d2

Figure 4.4: Example of query answers using equal operator cost scheme.

ate one data tree from the other and mark one as a “better” approximate

answer.

2. Node Level: The costs for an operator can be dependent on the level of the

node that the operator is applied. The intuitive idea of this variation is that

editing the root node and editing leaf node may yield significantly different

impact. Assuming the operation near the root node is more important (thus

more expensive to modify) than the ones further down from the root node,

the following formula, for instance, can be used to assign a variable cost:

cost(v) =
1

level(v)k

where k(≥ 1) is a relevant factor. This formula assigns cost=1 when the root

node is modified and 0 when the leaf node with infinite depth is modified.

The example in Figure 4.5 illustrates how variable costs are assigned to

nodes at the different level. In this example, assuming the relevant factor

k = 2, then cost(cite) = 1
22 = 0.25 in (b). Similarly, cost(cite) = 1

32 = 0.11

in (c). Therefore, the data tree d2 is a “better” answer than the data tree d1.

Data mining techniques may be adopted using a training set to determine

the parameter k for a given application domain.

55

paper

sigmod

paper

cite
��

sigmod
��

paper

sigmod
��

cite
��

(a) Query q (b) Data tree d1 (c) Data tree d2

Figure 4.5: Example of node level cost adjustment.

3. Node Branching: We shall use the branching factor b (i.e., number of

children) of node v to differentiate their operation costs as follows:

cost(v) = b(v) =
number of children of v

base of v

where base of v is either the number of maximum possible children of v that

can be obtained from the XML schema [TBM01, BM01], or the average

number of children of v obtained by mining the XML documents a priori.

For instance, consider the following XML DTD describing a dept element:

<!ELEMENT dept (code?,(div|(title,manager?))>

<!ELEMENT div (title,location?)>

Note that the dept element has either div sub-element or a pair of title

and manager sub-elements. Further, the div element has a mandatory title

sub-element and an optional location sub-element. Thus the number of

maximum possible children of dept and div are 3 and 2, respectively. In

Figure 4.6, if the base case = 2, then b(div) = 2
2

= 1 for (b) (i.e., div in

d1 has 2 children) and b(div) = 1
2

= 0.5 for (c) (i.e., div in d2 has 1 child).

Thus modifying the div node in d1 may be considered as more expensive

than one in d2.

56

dept

title
��

��
��

location
??

??
??

dept

div
��

title
����

��
��

�

location
��?

??
??

??

dept

div
����

��
��

title
��

location
��?

??
??

?

(a) Query q (b) Data tree d1 (c) Data tree d2

Figure 4.6: Example of node branching with different branching factors.

4. Semantic Interpretation: The semantics of the node in the context may

affect the cost of the operation. For instance, consider the example in

Figure 4.7, where two data trees yield the same cost based on node type,

node level, and node branching. In this example, the title in d1 may have

a value (i.e., child node) “professor” while the title in d2 may have a value

“XML Tutorial”. The problem stems from the ambiguous usage of the same

term title under different semantics.

However, based on the context, one may know that the node “title” in

tree d1 describes the “job” title of the author such as professor or research

scientist, while the node “title” in tree d2 is similar to the node “title” in

the query q that describes the “paper” title of the document, whether it is a

short or long title of the document. To identify such semantic subtlety, one

may use a training set to derive semantic sensitive operation rules via data

mining. A list of rules such as “when title is used with author, its semantics

are different from the case when it is used with doc (confidence=90%)” may

be learned from the training set to adjust the cost assignments. Then, based

on such rules, the node author will be assigned a higher cost than the node

short. As a result, d2 will be a better answer than d1 against the query q.

57

doc

title

doc

author
��

title
��

doc

short
��

title
��

(a) Query q (b) Data tree d1 (c) Data tree d2

Figure 4.7: Example of different semantic interpretation.

4.5.4 Learning Costs via Machine Learning

Suppose a tree edit distance algorithm such as Z&S algorithm found the distance

of two XML trees, A and B, as the cost for a single operation of insert(x).

Furthermore, suppose the following four types of characteristics are considered

in Equation 4.6.

1. Λ1: the type of operator

2. Λ2: the level of the node

3. Λ3: the number of the children

4. Λ4: the semantics of node

Assuming Λ1(insert) = 0.8, Λ2(x) = 0.5, Λ3(x) = 0.3, and Λ4(x) = 0, W1 =

W2 = W3 = W4 = 1 (i.e., equal weighting) and ∆ = 4, the distance between A

and B can be computed as follows:

dio(A, B) = cost(insert(x))

=
1

∆
(
∑
i=1

WiΛi(insert) +
∑

j=2,3,4

WjΛj(x)) (4.7)

=
1

4
(1× 0.8) +

1

4
(1× 0.5 + 1× 0.3 + 1× 0)

= 0.4

58

That is, the distance between two trees is 0.4. Note that if one used uniform costs

assigned to each operations in Equation 4.5 (i.e., cost(insert) = cost(delete) =

cost(update) = 1), then dio(A, B) = cost(insert(x)) = 1, which is quite far

from 0.4. This, this example demonstrates the importance of non-uniform cost

assignment in the tree edit distance based metrics.

Thus, to be able to learn the most appropriate costs for the given application

domain, we propose to use Machine Learning techniques [Mit97]. Specifically,

we re-cast our cost assignment problem in Equation 4.6 to a machine learning

program as follows:

1. First, assume that there be n training set instances I1, ... In. Each instance

Ii (1 ≤ i ≤ n) contains 3-tuple:

• Qi: the query asked.

• Ai: the approximate answer found.

• Li: a label {Yes, No}, which is “Yes” if Ai is “relevant” to Qi, and

“No” otherwise.

2. There is a some ideal target function V and its approximation function V̂ ,

which will be calculated as a linear combination of the features extracted

from XML data and application domains. For instance,

• Λ1: the difference of the number of branches in Qi and Ai.

• Λ2: the difference of the height in Qi and Ai.

• Λ3: the difference of the number of nodes in Qi and Ai.

• ...

• Λk

59

Then, the approximation function V̂ for each training set instance can be

calculated as follows:

V̂ (Ii) = W1Λ1 + W2Λ2 + ... + WkΛk

Since Λi (1 ≤ i ≤ k) can be obtained from the Qi and Ai in Ii, this

essentially amounts to the problem of learning values for the coefficients

W1 through Wk in the target function representation.

3. Assign an arbitrary start value as the ideal target value of V (Ii). For

instance,

V (Ii) =

 +1 if Ii has a label “Yes”

−1 if Ii has a label “No”

4. For all training set instances I1, ... In, update weights W1, ... Wk iteratively

using LMS (Least Mean Square) algorithm [WH60, Lin95] as follows:

(a) Initialize each Wi to some small random value like 0.05.

(b) For each Ii,

i. Use the current Wi to calculate V̂ (Ii) as

V̂ (Ii) = W1Λ1 + W2Λ2 + ... + WkΛk

ii. For each weight Wi, update it as

Wi ← Wi + η × (V (Ii)− V̂ (Ii))× Λi

where η is a small constant (e.g., 0.1) that moderates the size of

the weight update.

Note that when the error V (Ii)− V̂ (Ii) is zero, no weights are changed. When

V (Ii)−V̂ (Ii) is positive (i.e., when V̂ (Ii) is too low), then each weight is increased

60

paper

title
��

��
��

�

XML

author
??

??
??

?

Tom

paper

title
����

��
��

�

XML
��

year
��

2000
��

author
��?

??
??

??

fn
��

Tom
��

paper

title
����

��
��

�

HTML
��

editor
��?

??
??

??

fn
��

Tom
��

(a) Query Q (b) Answer A1 (c) Answer A2

Figure 4.8: Example of a query and two approximate answers.

in proportion to the value of its corresponding feature. This will raise the value

of V̂ (Ii), reducing the error.

Example 4. Consider Figure 4.8. Suppose one obtained the following training

set examples from Figure 4.4.

• I1 = (Q,A1, Y es)

• I2 = (Q,A2, No)

That is, the data A1 in Figure 4.4 is found “relevant” to the query Q, while the

data A2 in Figure 4.4 is found “non-relevant” by some human experts. Further,

let us assume that we consider the following three features extracted from the

training set examples:

• Λ1: the difference of the number of branches.

• Λ2: the difference of the height.

• Λ3: the difference of the number of nodes.

Also, assign either “+10” or “-10” as the starting value of V (Ii). Then, the

following initial training set instances can be obtained.

61

• I1 = (〈Λ1 = 1, Λ2 = 1, Λ3 = 3〉, +10)

• I2 = (〈Λ1 = 0, Λ2 = 1, Λ3 = 1〉,−10)

Now, initially we set all Wi = 1 and η = 0.1. Then,

• Iteration 1 for I1:

V̂ (I1) = W1Λ1 + W2Λ2 + W3Λ3 = 1× 1 + 1× 1 + 1× 3 = 5

W1 = W1 + η × (V (I1)− V̂ (I1))× Λ1 = 1 + 0.1× (10− 5)× 1 = 1.5

W2 = W2 + η × (V (I2)− V̂ (I2))× Λ2 = 1 + 0.1× (10− 5)× 1 = 1.5

W3 = W3 + η × (V (I3)− V̂ (I3))× Λ3 = 1 + 0.1× (10− 5)× 3 = 2.5

• Iteration 2 for I2:

V̂ (I1) = W1Λ1 + W2Λ2 + W3Λ3 = 1.5× 0 + 1.5× 1 + 2.5× 1 = 4

W1 = W1 + η × (V (I1)− V̂ (I1))× Λ1 = 1.5 + 0.1× (−10− 4)× 0 = 1.5

W2 = W2 + η × (V (I2)− V̂ (I2))× Λ2 = 1.5 + 0.1× (−10− 4)× 1 = 1.1

W3 = W3 + η × (V (I3)− V̂ (I3))× Λ3 = 2.5 + 0.1× (−10− 4)× 1 = 2.1

When enough training set instances are provided, weights Wi will continue to

be changed and eventually be converged. Once the weights Wi are converged,

finally, they may be fed into Equation 4.7 to provide non-uniform cost effect. 2

4.6 Summary

Fundamental issue in supporting query relaxation for XML model is how to as-

sess the distance (or equivalently similarity) between the original user query and

answer candidates. It is essential to filter out all those answers that are approx-

imate answers quickly. Furthermore, it is also important to identify the most

62

closest answers to the query as the best answer, and next one as the second

best one, and so on. In this Chapter, towards these issues, we discussed how to

measure the similarity between two trees, where one is the user query and the

other is the answer candidate. We especially studied two notions of distance (or

similarity) metrics: set-based and tree edit distance-based ones. Our study is

only preliminary and requires more extensive investigation on the subject.

63

CHAPTER 5

Selectivity Estimation of Relaxed XML Queries

Due to the heterogeneity of XML data, it is often more useful to permit approx-

imate matching of XML queries, in the spirit of Information Retrieval, than to

return only exact answers. Query relaxation provides a natural basis for approx-

imate matching of XML queries, where relaxed queries are obtained by struc-

tural transformations and type generalizations on the original query, such that

all matches to the original query are included in the matches to any relaxed

query. Estimating the number of relaxed twig matches is of use in providing user

feedback, and in query optimization.

In this Chapter, we consider the problem of accurately estimating the number

of answer matches, based on a given set of relaxed queries. Towards this problem,

we propose an efficient method that (1) accurately computes selectivity estimates

for each relaxed XML query, using a natural generalization of the correlated sub-

path tree (CST) summary structure, and (2) carefully combines these estimates

by analyzing the nature of overlap between the different relaxed XML queries.

5.1 Background

We view the hierarchically organized data (e.g., XML documents) as node-labeled

trees following [CJK01]. Then, a natural way to query such data is by using small

node-labeled trees, referred to as twigs, that match portions of the hierarchical

64

data. To see the motivation of the application that we deal with, suppose users

are interested in finding: (1) all answers that approximately match the given twig

beyond some threshold, or (2) top k answers ranked according to the similarity

to the twig. A fundamental problem in this context is to accurately and quickly

estimate the number of approximate matches of a twig query against the node-

labeled data tree. This problem is relevant for providing users with quick feedback

about their query, either before or along with returning query answers. Another

use is in the cost-based optimization for efficiently evaluating such queries. In

this Chapter, we do not consider issues of semantics of a relaxed twig or of

efficiently finding approximate matches of a twig and refer interested readers to

the papers [KS01, ACS02] for details. Our technical contributions in this Chapter

are as follows:

• We extend a twig selectivity problem [CJK01] into a notion of relaxed twig

selectivity problem. This is achieved by (1) determining the selectivity es-

timates of the involved relaxed twigs using the auxiliary data structure,

and (2) carefully combining all those estimates such that matches over-

lapped among the relaxed twigs are not counted more than once to avoid

over-estimation.

• We also propose generic projection-based query semantics that encompass

several different semantics supported by different query languages (e.g.,

XPath [CD99], XQuery [CFR01]). Although we focus on the total semantics

in this Chapter, since our technique is based on this generic notion, it can

be readily adapted to the leaf or root semantics (see Figure 5.1).

• We show extensive experimental results that show the accuracy and robust-

ness of our proposal for real XML data sets.

65

a1

b1

����
��

��
�

c1
����

��
��

�

d1

��

b2

��?
??

??
??

c2
����

��
��

�

c3
��

d2

��?
??

??
?

76540123b

c

(a) Data tree (b) Root semantics

b

/.-,()*+c

76540123b

76540123d

(c) Leaf semantics (d) Total semantics

Figure 5.1: Example of different query matching semantics.

Definition 5 (Twig Match) The twig match of a twig query Q = (VQ, EQ) in

a node-labeled data tree T = (VT , ET), denoted as 〈Q(T)〉 or simply 〈Q〉 when

context is clear, is defined by a 1-1 mapping:

f : VQ → VT

such that if f(u) = v for u ∈ VQ and v ∈ VT , then (1) Label(u) = Label(v), and

(2) if (u, u′) ∈ EQ, then (f(u), f(u′)) ∈ ET , where (u, u′) is either a parent-child

or ancestor-descendent edge and (f(u), f(u′)) preserves the same relationship. 2

Note that the above twig match definition is essentially of a total match, where

all the nodes of a twig query must be matched to non-null values. We observe that

by relaxing this constraint, one can flexibly express a variety of match semantics

that different XML query languages support. That is, by specifying only a subset

of nodes in T , termed as the projected nodes , as significant, partial match can be

supported. To illustrate this point, let us consider three most common semantics

using an XML data tree in Figure 5.1, where projected nodes are circled.

66

• Root Semantics: Only root node is a projected node. For instance, an

XPath [CD99] query “//b[c]” depicted in Figure 5.1.(b) returns {(b1), (b2)}

as a twig match. That is, users are only interested in the matching values

of the node b, not c, so long as b has a child node c.

• Leaf Semantics: Only leaf node is a projected node. Similarly, an XPath

query “//b/c” depicted in Figure 5.1.(c) returns {(c1), (c2), (c3)} as a twig

match. For instance, a twig match in [AAN01] has the leaf semantics.

• Total Semantics: All nodes in a twig are projected nodes. An XQuery [CFR01]

query “FOR $b IN //b, $c IN $b/c RETURN $b,$c” depicted in Figure 5.1.(d)

returns {(b1, c1), (b2, c2), (b2, c3)} as a twig match. As an another example,

a twig match proposed in [CJK01] has a total semantics as well.

Throughout the rest of the Chapter, projected nodes in a twig are underlined

for distinction (e.g., /a/b/c). A twig query P with projected nodes PQ is denoted

by a triple P = (VQ, EQ, PQ), where PQ ⊆ VQ.

Definition 6 (Projected Twig Match) The projected twig match of a twig

query Q = (VQ, EQ, PQ) in a node-labeled data tree T = (VT , ET) is a twig match,

where only mapping involving the projected nodes f : PQ → VT is significant. 2

Note that in the projected twig matches, all the mappings, whether projected

or not, are relevant, but only the projected matches remain in the final result.

In other words, we do not ignore the mapping for non-projected nodes during

processing.

In order to explore the set of approximate matches of a query, one must be

able to relax the query that gurantees that the set of answers to be returned is

a superset of the set of exact query matches (i.e., no false dismissal). One may

67

think of many ways to relax the given twig query: weakening condition values,

swaping order of nodes, or deleting some nodes in a twig, etc. In this Chapter,

we focus on the following two primitive relaxations, proposed in [ACS02]1:

• Node deletion: A non-root node v in a twig can be deleted as follows: (1)

if v is a leaf, simply v is deleted, and (2) if v is an internal node, then v

is deleted and children of the node v become grand-children of v’s parent

node.

• Edge relaxation: A child edge (denoted by single edge “/”) in a twig can be

relaxed to a descendant edge (denoted by double edge “//”). Descendant

edges cannot be relaxed further.

Definition 7 (Relaxed Twig) A relaxed twig query R = (VR, ER) is a twig ob-

tained by applying one or many of the above relaxations to a twig Q = (VQ, EQ).

2

If the function sel(Q) returns a selectivity estimate of a twig Q, then, by

definition, 〈Q〉 ⊆ 〈R〉2 and sel(Q) ≤ sel(R).

5.2 Related Work

Two areas in literature – query relaxation and selectivity estimation – are in-

evidently relevant to our work in this Chapter. Since works related to query

relaxation are already surveyed in Chapter 3.2, here we only review works re-

lated to selectivity estimation in XML context.

1In fact, [ACS02] achieves deletion of non-leaf nodes using a combination of subtree promo-
tion and leaf node deletion.

2The precise semantics of ⊆ operator under the “projected” model will be precisely defined
in Section 5.4.2.1.

68

Selectivity estimation for strings have been studied in literature: 1-dimensional

string estimation [KVI96] and its evaluation [JNS99], multi-dimensional substring

estimation [JKN99], etc. In general, selectivity estimation for XML query is more

complicated due to the fact that in a tree-shaped query, one needs to take the

correlation between paths of the query into consideration.

Therefore, an array of specially-designed selectivity estimation methods are

developed recently. For instance, selectivity estimation for path expressions, more

restricted than twigs, has been investigated in Lore [MW99] and Niagara [AAN01]

projects. More recently, the state-of-the-art technique for tree-shaped query case

was proposed in [CJK01]. It proposes an estimation method that, given a twig

query, first creates a set of query twiglets and estimates the number of matches

of each query twiglet using set hashing and combines the query twiglet estimates

into an estimate for the twig query using maximal overlap. Our work directly

improves upon it by extending the framework to support selectivity estimation

for relaxed twigs case.

Other selectivity estimation methods in query relaxation context (e.g., selec-

tivity for the relaxed queries based on the order as proposed in [KS01]) are also

interesting direction to pursue.

5.3 Problem Definition

We consider a problem of selectivity estimation in the context of query relaxation

in XML model. Let us denote a set of relaxed twig queries of a twig query Q as

RQ = {Ri | Ri is a relaxed twig of Q}. Then, formally, we consider the following

problem:

69

Given a small summary data structure3 T ′ corresponding to an XML

data tree T , and a twig query Q and a set of Q’s relaxed twig queries

RQ, estimate the total number N of the combined twig matches of

RQ, i.e., N = sel(
∑

Ri∈RQ
Ri).

One can give a very loose lower and upper bounds of N as follows:

MAXRi∈RQ
{sel(Ri)} ≤ N ≤

∑
Ri∈RQ

sel(Ri) (5.1)

That is, when a particular relaxed query Ri contains the rest of the relaxed queries

Rj (i 6= j, Ri, Rj ∈ RQ), N becomes sel(Ri) at its lower bound. On the other

hand, if all the relaxed queries in RQ are disjoint each other without any overlap,

then N becomes
∑

Ri∈RQ
sel(Ri) at its upper bound. Therefore, our goal in this

study is to be able to get a good estimation when neither of these conditions is

satisfied (i.e., when there are some overlaps among relaxed queries).

5.4 Method

To solve the problem, two sub-issues are needed to be addressed:

1. Computing sel(Ri): Conventional selectivity estimation techniques (e.g., [CJK01,

AAN01]) work well to compute sel(Q). We need to find out if this can be

readily applicable to compute sel(Ri), where Ri is a relaxed query of Q.

2. Computing sel(
∑

Ri∈RQ
Ri): Given a set of relaxed queries R1, ..., Rn and

their corresponding selectivity estimates, i.e., sel(R1), ..., sel(Rn), how to

combine them to get the total number of answers N without counting the

same answer multiple times?

3For instance, CST in [CJK01] or Markov table in [AAN01].

70

a

...�� ∗
��?

??
??

??

cd
����

��
��

�

bcd
��

d
��?

??
??

??b
wwoooooooooooooo

c
����

��
��

��

d
����

��
��

�

∗d
��

∗
��?

??
??

??

d
����

��
��

�

cd
��

...��?
??

??
??

?

Figure 5.2: A portion of CST having the prefix a.

Our proposal here is inspired by the approach proposed in [CJK01]. Therefore,

as a summary data structure, we use the CST, an augmented pruned suffix trie

that represents frequency information of small twigs in the data tree. Details of

the CST are omitted in the interest of space and interested readers are referred

to [CJK01].

5.4.1 Computing sel(Ri)

To correctly estimate the selectivity of relaxed twig queries, one must support

the case of estimating selectivity of twigs with wildcards (“*”). Toward this end,

for each root-to-leaf paths in the data tree, all *-extended paths are generated

and inserted into the CST. For instance, for the path a.b.c.d, new paths a.∗.b.c.d,

a.b.∗.c.d, a.b.c.∗.d, a.∗.c.d, a.b.∗.d, and a.∗.d are inserted. In addition, all their

suffixes are inserted. To keep the CST space manageable, however, we allow at

most one “*” in the *-extended paths in the CST A portion of the CST for this

scenario is illustrated in Figure 5.2.

Note that relaxed twigs from the original twig query would typically contain

“*” symbol when the node deletion or edge relaxation occurred. Then, selectivity

estimates of relaxed twigs can be directly obtained using maximal parsing strate-

71

a

b

c
a

b

c

(a) Fully contained (b) Partially contained

Figure 5.3: Illustration of query containment and overlap.

gies on the twig query paths to include the “*”s appearing in the query. For

instance, the selectivity of a relaxed twig /a//b/c//d (i.e., two parent-child edges,

a/b and c/d, are relaxed to descendent edges, a//b and c//d) can be obtained by

locating the path a.∗.b.c.∗.d from the CST, which would be in turn split into two

paths a.∗.b.c and c.∗.d according to the maximal overlapping strategy. Finally,

sel(a.∗.b.c.∗.d) = sel(a.∗.b.c)×sel(c.∗.d)
sel(c)

by, for instance, Pure MO method in [CJK01].

5.4.2 Computing sel(
∑

Ri∈RQ
Ri)

Consider two cases of the three relaxed queries Ra, Rb and Rc depicted in Fig-

ure 5.3. Three estimates sel(Ra), sel(Rb), and sel(Rc) have been already ob-

tained by the method described in Section 5.4.1. Now, the goal is to com-

pute sel(Ra + Rb + Rc). In (a), matches a or b can be ignored since they are

fully contained by c. Thus, sel(Ra + Rb + Rc) = sel(Rc). However, in (b),

there is no complete containment relationship among three matches and thus

sel(Ra + Rb + Rc) = sel(Ra) + sel(Rb) + sel(Rc)− sel(overlap). Hence, the criti-

cal issues are (1) to understand the precise meaning of the overlap and (2) express

the overlap in some form that can be understood by a summary structure like

the CST.

72

5.4.2.1 Semantics of the Overlap

The basic set theory suggests that sel(Ra + Rb + Rc) = sel(Ra) + sel(Rb) +

sel(Rc)− sel(Ra ∩ Rb)− sel(Rb ∩ Rc)− sel(Rc ∩ Ra) + sel(Ra ∩ Rb ∩ Rc). This

formula holds insofar as nodes involved are of the same degree and on the same

domain. However, in our case, due to the various relaxations, a relaxed twig has

a different set of (projected) nodes than another one (e.g., /a/b and /a/c//b). To

resolve this issue, we introduce the notion of extension-compatibility:

Definition 8 (Extension Compatibility) Given two sets of projected nodes,

Pa and Pb, for relaxed twig queries a and b, if Pa ⊆ Pb or Pa ⊇ Pb, then, a and b

are said extension-compatible. Otherwise, extension-incompatible. 2

Definition 9 (Redundancy) Given two twig matches x and y, if x� y holds,

where� is a partial order over a cross-product space of values where ε (i.e., null)

≤ any value, then x is said a redundant match of y, but not vice versa. When a

match x has no redundant match, x is said irredundant. 2

Lemma 1. If twigs a and b are extension-incompatible, then there is no redun-

dant matches between a and b.

Proof. According to the definition of extension-incompatible twigs, the pro-

jected nodes, Pa and Pb, of twigs a and b can be represented as: Pa = Pc + X,

and Pb = Pc + Y , where Pc = Pa ∩ Pb. Suppose there is redundancy between

a and b. Then, there must be some partial order. However, this is impossible;

Against the schema [Pc, X, Y], for instance, a and b will have matches in forms

[Pc, X, ε] and [Pc, ε, Y], respectively and there is no partial order between these

two matches. Thus, proof by contradiction. (q.e.d)

73

Definition 10 (Projected Set Operators) For two projected twig queries a

and b, (1) au b (projected intersection) is a set of redundant matches in a and b,

and (2) a t b (projected union) is a set of irredundant matches in a or b. 2

Lemma 2. a t b = a + b− a u b

Proof. Prove both directions:

⇒ Take x in a t b. Then, x is either in a or b.

1. If x is in a: (1) If x is irredundant, then x cannot be in b by the definition

of redundancy. Therefore, x is in a + b, and in turn in a + b− a u b. (2) If

x has a redundant match y in b, then au b would choose y over x. Thus, x

will remain in a + b− a u b.

2. If x is in b: symmetric.

⇐ Take x in a + b− a u b. Then, x is either in a or b, but must not be in a u b.

The fact that x is not in au b implies that x has no redundant match. Therefore,

x will certainly survive through t filtering and will be in a t b. (q.e.d)

Corollary 1. If twig queries a and b are extension-incompatible, au b = ∅ and

a t b = a + b. (q.e.d)

Proof. Follows from Lemmas 1 and 2. (q.e.d)

Example 5. Overlap between twigs /a/b and /a/c//b is always empty since two

twigs are extension-incompatible. On the other hand, overlap between /a//d/b

and /a/c//b can be computed by /a//d/bu/a/c//b and its selectivity can be non-

zero if there happens to be a branch in an XML data that satisfies the constraint

/a/c//d/b. 2

74

a1

b1
wwooooooooooooo

c1
��

d1

��

d2

��

d3

��

b2

����
��

��
�

c2
��

b3

��

c3
��

d4

��

b4

��?
??

??
??

b5
''OOOOOOOOOOOOO

d5

��

b6
**TTTTTTTTTTTTTTTTTTTT

c4
��

c5
��

d6

��

Figure 5.4: Example of XML data tree D.

Let us check if the semantics that we have described so far is consistent

with the intuitive meaning of overlap. Figure 5.4 depicts an example XML tree.

Suppose that users ask a simple twig query Q : /a/b/c/d with a weight threshold

θ. Furthermore, suppose only two relaxed queries satisfy the given θ – R1 :

/a/b//c (i.e., edge between b and c is relaxed and node d is removed) and R2 :

/a/b//d (i.e., node c is removed). Users are interested in quickly finding out “the

number N of approximate answers that satisfy θ”, that is N = sel(Q+R1 +R2).

Corresponding matches when these queries are evaluated against D of Fig-

ure 5.4 are shown in Table 5.1. Note that queries R1 and R2 are extension-

incompatible due to their projected nodes, {a, b, c} and {a, b, d}, resulting in no

overlaps in-between. Then, N = sel(Q)+sel(R1)+sel(R2)−sel(QuR1)−sel(Qu

R2) − sel(R1 u R2) + sel(Q u R1 u R2) = 2 + 5 + 6 − 2 − 2 − 0 + 0 = 9. When

we closely examine the tree D of Figure 5.4, it is not difficult to see that in fact

there are 9 distinct approximate matches for queries Q, R1, and R2. Figure 5.5

illustrates this point; Single and double lines represent child and descendant re-

lationships, respectively, and dotted lines represent overlapped match. Note that

75

a1

b1

��
��

��
�

c1

d1

b3

??
??

??
?

c3

d4

a1

b1

c1

b2

��
��

��
�

c2

b3

c3

b6

??
??

??
?

c4

b6

OOOOOOOOOOOOO

c5

(a) Q (b) R1

a1

b1

d1

b1
ooooooooooooo

d2

b1

��
��

��
�

d3

b3

d4

b5

??
??

??
?

d5

b6

OOOOOOOOOOOOO

d6

(c) R2

Figure 5.5: Distinct matches of queries Q, R1, and R2.

there are a total of 9 solid lines (i.e., matches) in three trees of (a), (b), and (c).

The general formula involving n such relaxed twig queries is as follows:

sel(
n∑

i=1

Ri) =

(n
i)∑

i=1

(−1)i−1sel(ui
j=1Rj)

In order for the formula to hold under the notion of projected intersection

and union, the basic laws such as idempotency, commutativity, associativity, or

distributivity must hold. Here, we simply state that they in fact hold and a proof

for the case of distributive law is shown below.

Lemma 3. Distributive law holds for u and t. For relaxed twigs a, b, and c:

• a t (b u c) = (a t b) u (a t c)

• a u (b t c) = (a u b) t (a u c)

76

$a $b $c $d

a1 b1 c1 d1

a1 b3 c3 d4

$a $b $c

a1 b1 c1

a1 b2 c2

a1 b3 c3

a1 b6 c4

a1 b6 c5

(a) sel(Q) = 2 (b) sel(R1) = 5

$a $b $d

a1 b1 d1

a1 b1 d2

a1 b1 d3

a1 b3 d4

a1 b5 d5

a1 b6 d6

$a $b $c d

a1 b1 c1 ε

a1 b3 c3 ε

(c) sel(R2) = 6 (d) sel(Q uR1) = 2

$a $b c $d

a1 b1 ε d1

a1 b3 ε d4

R1 uR2 =

Q uR1 uR2 = ∅

(e) sel(Q uR2) = 2 (f)
sel(R1 uR2) =

sel(Q uR1 uR2) = 0

Table 5.1: Projected twig matches of Q, R1, R2 and various overlaps against D

of Figure 5.4.

77

Proof. Let us prove the former. The latter can be proved similarly.

⇒ Suppose x is in a t (b u c). Then, x is either in a or in (b u c).

• If x is in a, then x is also in (a t b) as well as (a t c). Therefore, x is in

(a t b) u (a t c).

• If x is in (bu c), then x is in (at b) because x is in b, and x is also in (at c),

because x is in c. Hence, again x is in (a t b) u (a t c).

⇐ Take x in (a t b) u (a t c). Then x is in (a t b) as well as in (a t c).

• If x is in a, then x is trivially in a t (b u c).

• If x is in b, then it must also be in c because x is in (a t b) as well as in

(a t c). Hence, x is in b u c, and therefore it is in a t (b u c).

• If x is in c, then it must also be in b similarly. Hence, x is in b u c, and in

a t (b u c). (q.e.d)

5.4.2.2 Overlap Formula

One remaining problem is that existing summary data structures proposed in [CJK01,

AAN01] are unable to handle twigs having the “intersection” operator that are

found in sel(RiuRj) in Lemma 2. Therefore, we need to find an alternative twig

expression (i.e., overlap formula) that captures the twigs involving intersection

operator. For instance, observe that any twig matches satisfying the expression

/a//d/b u /a/c//b must also satisfy /a/c//d/b, and further sel(/a/c//d/b) can be

directly obtained from the CST. Therefore, in this sense, /a/c//d/b is the overlap

formula.

One possible way to find the overlap formula is using the algorithm to compute

the intersection of two regular expressions in automata theory. That is, given two

78

relaxed twigs a and b, one can do: (1) convert them into corresponding regular

expressions ra and rb with sizes n and m, respectively, (2) convert ra and rb to

non-deterministic finite automata (NFA) whose number of states is linear in n

and m, (3) convert the two NFAs to an NFA for the intersection whose size is

nm using the property ra ∩ rb = ra ∪ rb, and (4) finally convert the NFA back to

a regular expression, from which the final overlap formula can be inferred easily.

However, this method is not suitable for our application since in the last step, the

size of the regular expression can blow up (i.e., O((nm)3 ∗ 4nm)) and the output

regular expression is typically very long and complicated (Chapter 4.3 [HMU01]).

Therefore, instead, we propose a simple rewriting-based algorithm to compose

the overlap formula. The meta characteristic of the overlap formula of two relaxed

twigs is that the formula would take whatever “tighter” condition of two twigs.

Consider two extension-compatible4 twigs R = (VR, ER, PR) and S = (VS, ES, PS)

that are relaxed from a query Q, where common projected nodes are denoted as:

PO = PR∩PS. Now, let us describe an algorithm to compute the overlap formula

F informally.

1. Imagine R and S as a list of alphabets (ignoring edges / or // for now).

Then, comparing R and S can be viewed as follows:

(a) R = α, S = αβ (e.g., R = /a/b, S = /a/b/c, where α = ab, β = c)

(b) R = αβ1, S = αβ2 (e.g., R = /a/b//c, S = /a/b//d, where α = ab, β1 =

c, β2 = d)

(c) R = αγ, S = αβγ (e.g., R = /a//c, S = /a/b//c, where α = a, β =

b, γ = c)

4If two are extension-incompatible, then the overlap formula would be simply F = ∅.

79

(d) R = αβ1γ, S = αβ2γ (e.g., R = /a/b//c, S = /a//d/c, where α =

a, β1 = b, β2 = d, γ = c)

2. Now, let us denote an edge / or // that precedes an alphabet α in a query

R as eR
α . Further, between two such edges proceeding the same alphabet ,

let us denote the more restricting edge as eα (i.e., between edges / and //,

the more restricting edge eα is /). Then, for each case, the overlap formula

F can be stated as follows:

(a) If R = eR
αα, S = eS

ααeS
ββ, then F = eααeS

ββ

(b) If R = eR
ααeR

β β1, S = eS
ααeS

ββ2, then

F =

eαα if eR
β = eS

β = /

eαα/β1//β2 if eR
β = /, eS

β = //

eαα/β2//β1 if eR
β = //, eS

β = /

eαα//β1//β2 t eαα//β2//β1 if eR
β = eS

β = //

(c) If R = eR
ααeR

γ γ, S = eS
ααeS

ββeS
γ γ, then

F =

∅ if eR
γ = eS

β = /

eαα/γ//βeS
γ γ if eR

γ = /, eS
β = //

eααeS
ββeS

γ γ if eR
γ = //, eS

β = /

S if eR
γ = eS

β = //

(d) If R = eR
ααeR

β β1e
R
γ γ, S = eS

ααeS
ββ2e

S
γ γ, then

F =

eαα//eγγ if eR

β = eS
β

eαα/β1//β2eγγ if eR
β = /, eS

β = //

eαα/β2//β1eγγ if eR
β = //, eS

β = /

3. Mark remaining alphabets that belong to PO as projected nodes of F . Re-

peatedly apply above two steps into blocks of two queries.

80

For instance, imagine various forms of relaxed queries from a query Q :

/a/b/c/d.

• Step 2.(a): /a//b u /a/b//d ≡ /a/b//d

• Step 2.(b): /a/b/c u /a//b//d ≡ /a/b/c//d

• Step 2.(c): /a/c u /a/b//c ≡ ∅

• Step 2.(d): /a//b/c u /a/d//c ≡ /a/d//b/c

More complex cases can be similarly computed by somewhat like a divide-and-

conquer manner. For instance, /a/b//c/d u /a//c can be treated as if R/d u S,

where R = /a/b//c and S = /a//c. Computing RuS is the case of 2.(c) and thus

results in R u S ≡ O, where O = /a/b//c. Then, computing O/d uO is the case

of 2.(a), resulting in O/d u O = O/d. Therefore, the final query that captures

the given projected intersection is /a/b//c/d.

By using the described algorithm, one can find a formula that captures the

overlap of two projected queries. The only problem in the algorithm is the

forth case of 2.(b) which results in a formula with the projected union operator.

For instance, the overlap formula of two relaxed twigs /a//b/c/d and /a/b//d is

/a/b/c/dt/a/b//b/c/d. This case is problematic since like the projected intersec-

tion operator, the projected union operator cannot be handled by the summary

data structures. If this occurs, we assume that the selectivity of the overlap

between two relaxed twigs be the maximum of the selectivities of two twigs:

sel(/a//b/c/d u /a/b//d) = MAX{sel(/a/b/c/d), sel(/a/b//b/c/d)}.

Finally, let us go through a relatively complex example having relaxed twigs

to illustrate what we have discussed so far. Consider a data tree in Figure 5.6

and queries in Figure 5.7. Assume the ordered model. Both relaxed queries R1

81

a1

b1
wwooooooooooooo

c1
��

d1

��

d2

��

d3

��

b2

����
��

��
�

d4

��

d5

��

c2
��

c3
��

b3

��

c4
��

d6

��

b4

��?
??

??
??

d7

��

b5
''OOOOOOOOOOOOO

c5
��

c6
��

d8

��

c7
��

Figure 5.6: Example of XML data tree E.

a

b
��

��
��

��

c

d

b
??

??
??

??

d

d

a

b
��

��
��

��

c

b

d

a

b
��

��
��

��

c

b

d

(a) Q (b) R1 (c) R2

Figure 5.7: Original query Q and its two relaxed queries R1 and R2.

and R2 have two relaxations occurred from the original query Q. This example

is peculiar since multiple bindings of a node is possible. That is, the node d in

the right branch of R1 can be bound to any of the two ds in the right branch

of Q. This also applies to the case of R2. To differentiate the different bindings

of the node d, let us assume the following answer schema for the original query

Q: (A, B1, C,D1, B2, D2, D3), where the columns 1,2,3,4 correspond to the left

branch and the column 1,5,6,7 correspond to the right branch of Q.

82

First, in the total semantics, each answer set is shown below:

Q = {(a1, b1, c1, d1, b2, d4, d5), (a1, b3, c4, d6, b2, d4, d5)}

R1 = {(a1, b1, c1, ε, b2, d4, ε), (a1, b1, c1, ε, b4, d7, ε), (a1, b2, c2, ε, b2, d4, ε),

(a1, b2, c2, ε, b4, d7, ε), (a1, b2, c3, ε, b2, d4, ε), (a1, b2, c3, ε, b4, d7, ε),

(a1, b3, c4, ε, b2, d4, ε), (a1, b3, c4, ε, b4, d7, ε), (a1, b5, c5, ε, b2, d4, ε),

(a1, b5, c5, ε, b4, d7, ε), (a1, b5, c6, ε, b2, d4, ε), (a1, b5, c6, ε, b4, d7, ε),

(a1, b5, c7, ε, b2, d4, ε), (a1, b5, c7, ε, b4, d7, ε)}

R2 = {(a1, b1, c1, ε, b1, d1, ε), (a1, b1, c1, ε, b1, d2, ε), (a1, b1, c1, ε, b1, d3, ε),

(a1, b1, c1, ε, b2, d4, ε), (a1, b1, c1, ε, b2, d5, ε), (a1, b1, c1, ε, b3, d6, ε),

(a1, b1, c1, ε, b4, d7, ε), (a1, b1, c1, ε, b5, d8, ε), (a1, b3, c4, ε, b1, d1, ε),

(a1, b3, c4, ε, b1, d2, ε), (a1, b3, c4, ε, b1, d3, ε), (a1, b3, c4, ε, b2, d4, ε),

(a1, b3, c4, ε, b2, d5, ε), (a1, b3, c4, ε, b3, d6, ε), (a1, b3, c4, ε, b4, d7, ε),

(a1, b3, c4, ε, b5, d8, ε), (a1, b5, c5, ε, b1, d1, ε), (a1, b5, c5, ε, b1, d2, ε),

(a1, b5, c5, ε, b1, d3, ε), (a1, b5, c5, ε, b2, d4, ε), (a1, b5, c5, ε, b2, d5, ε),

(a1, b5, c5, ε, b3, d6, ε), (a1, b5, c5, ε, b4, d7, ε), (a1, b5, c5, ε, b5, d8, ε)}

Q uR1 = {(a1, b1, c1, ε, b2, d4, ε), (a1, b3, c4, ε, b2, d4, ε)}

Q uR2 = {(a1, b1, c1, ε, b2, d4, ε), (a1, b3, c4, ε, b2, d4, ε)}

R1 uR2 = {(a1, b1, c1, ε, b2, d4, ε), (a1, b3, c4, ε, b2, d4, ε)

(a1, b5, c5, ε, b2, d4, ε)(a1, b1, c1, ε, b4, d7, ε),

(a1, b3, c4, ε, b4, d7, ε)(a1, b5, c5, ε, b4, d7, ε)}
Q uR1 uR2 = {(a1, b1, c1, ε, b2, d4, ε), (a1, b3, c4, ε, b2, d4, ε)}

Therefore, sel(Q + R1 + R2) = sel(Q) + sel(R1) + sel(R2) − sel(Q u R1) −

sel(QuR2)− sel(R1 uR2) + sel(QuR1 uR2) = 2 + 14 + 24− 2− 2− 6 + 2 = 32.

One can easily verify that there are in fact only 32 irredundant answers of Q,

83

DBLP SPROT
Shape

NumBranch n, Height h

PATH n = 1, 2 ≤ h ≤ 4 n = 1, 2 ≤ h ≤ 6

BS 3 ≤ n ≤ 5, 2 ≤ h ≤ 3 3 ≤ n ≤ 5, 2 ≤ h ≤ 4

DS N/A 1 ≤ n ≤ 3, 4 ≤ h ≤ 6

BAL 1 ≤ n ≤ 5, 2 ≤ h ≤ 4 1 ≤ n ≤ 5, 2 ≤ h ≤ 6

Table 5.2: Different shapes of query sets.

DBLP SPROT
Type

NumRlxQry q, NumRlx r

A 1 ≤ q ≤ 3, 1 ≤ r ≤ 2 1 ≤ q ≤ 3, 1 ≤ r ≤ 2

B 1 ≤ q ≤ 3, 2 ≤ r ≤ 3 1 ≤ q ≤ 3, 2 ≤ r ≤ 5

C 3 ≤ q ≤ 5, 1 ≤ r ≤ 2 3 ≤ q ≤ 5, 1 ≤ r ≤ 2

D 3 ≤ q ≤ 5, 2 ≤ r ≤ 3 3 ≤ q ≤ 5, 2 ≤ r ≤ 5

Table 5.3: Different degrees of relaxations.

R1 and R2. That is, both R1 and R2 have the following two redundant an-

swer sets: {(a1, b1, c1, ε, b2, d4, ε), (a1, b3, c4, ε, b2, d4, ε)}, and {(a1, b1, c1, ε, b2, d4, ε),

(a1, b1, c1, ε, b4, d7, ε), (a1, b3, c4, ε, b2, d4, ε), (a1, b3, c4, ε, b4, d7, ε), (a1, b5, c5, ε, b2, d4, ε),

(a1, b5, c5, ε, b4, d7, ε)}, respectively. Therefore, the correct number of irredun-

dant selectivity would be: sel(Q) + sel(R1) + sel(R2) − sel(redundancy) =

2 + 14 + 24− 6 = 32, which is precisely identical to our calculation.

5.5 Experimental Results

5.5.1 Experimental Setup

Data set: We used two real XML data sets in our experiments.

84

1

1.5

2

2.5

3

3.5

4

1 2.5 4 5.5

lo
g

10
 (

er
ro

r)

CST size (%)

Our Methd
Upper Bound
Lower Bound

Figure 5.8: Error as the CST space increases (Dataset=SPROT, Shape=BAL,

Relationship=CHILD, Type=A).

• DBLP5: The data size is about 10MB, and consists of a forest with children

such as book and incollection that in turn have a variable number of

children such as author, publisher, etc. This data set is relatively flat

(i.e., most instances have at most depth 2 or 3) and regular (i.e., the types

of sub-elements that every root nodes have are very similar).

• SPROT6: This contains annotated protein sequences, including the se-

quences, annotations, authors, places, citations, etc. The size that we tested

is about 5MB, but its schema is far more complex than the DBLP dat set.

Its structure is rather irregular in that the types of sub-elements under the

same element vary greatly.

Algorithm: We implemented three methods (i.e., lowerbound, upperbound, and

5ftp://ftp.informatik.uni-trier.de/pub/users/Ley/bib/records.tar.gz
6http://www.expasy.ch/sprot

85

1

1.5

2

2.5

3

3.5

4

1 2.5 4 5.5

lo
g

10
 (

er
ro

r)

CST size (%)

Our Methd
Upper Bound
Lower Bound

Figure 5.9: Error as the CST space increases (Dataset=SPROT, Shape=BAL,

Relationship=CHILD, Type=B).

our proposed methods) in Equation 5.1 of Section 5.3. Our implementation is

the extension of the MSH algorithm (selectivity estimation method for twigs) and

CST summary structure (correlated subpath tree) in [CJK01], which was shown

the best among the proposed methods.

Query set: We experimented with various forms of query sets with 1,000 queries

each in it using two factors: NumBranch (# of branches in a twig) and Height

(# of nodes in the path). By combination, we generated four different shapes

of query sets – PATH (trivial path), BS (bushy & shallow), DS (deep & skinny)

and BAL (balanced) – shown in Table 5.2. Since the DBLP data set is rather

flat, we did not tested the DS shape.

Another factor that affects to the query shapes is that of how relaxation

occurs. For this purpose, we manipulated two parameters: NumRlxQry (# of

relaxed queries per original query) and NumRlx (# of relaxations occurred for

86

1

1.5

2

2.5

3

3.5

4

1 2.5 4 5.5

lo
g

10
 (

er
ro

r)

CST size (%)

Our Methd
Upper Bound
Lower Bound

Figure 5.10: Error as the CST space increases (Dataset=SPROT, Shape=BAL,

Relationship=CHILD, Type=C).

each relaxed query). By combination, we again generated four sets – A, B, C,

D – shown in Table 5.3. These four types roughly correspond to the degrees

of relaxations with A being the lightest relaxations and D being the heaviest

relaxations.

Finally, we differentiated two sets of queries – one with only parent-child

relationship, and the other with both parent-child and ancestor-descendant rela-

tionships and denote them by CHILD and BOTH, respectively.

In total, we have generated query sets: |data set| × |shape| × |type| ×

|relationship| = 2 × 4 × 4 × 2 = 64. In the interest of the space, therefore,

we will discuss only representative results for the rest of the Chapter.

Error metric: Following [CJK01], we used Average Relative Squared Error,

87

1

1.5

2

2.5

3

3.5

4

1 2.5 4 5.5

lo
g

10
 (

er
ro

r)

CST size (%)

Our Methd
Upper Bound
Lower Bound

Figure 5.11: Error as the CST space increases (Dataset=SPROT, Shape=BAL,

Relationship=CHILD, Type=D).

defined as:

Error =
1

|Q|
∑
i∈Q

(Qi −Q′
i)

2

Q′
i

(5.2)

where Q is a workload of test queries, Qi is the true selectivity to a query and

Q′
i is our estimate.

5.5.2 Accuracy and Time

Figures 5.8, 5.9, 5.10, and 5.11 show the average relative squared error of all

methods for the SPROT data set and the BAL query set as the CST size increases.

The results for the DBLP data set exhibit similar patterns (except it requires less

space than the SPROT due to its simpler structure) and omitted. As the space

increases, the performance of all three methods improves steadily regardless of

the types of relaxations. Further, one can notice that the patterns between the

88

1

1.5

2

2.5

3

3.5

4

A B C D

lo
g

10
 (

er
ro

r)

Relaxation Type

Our Methd
Upper Bound
Lower Bound

Figure 5.12: Error as the relaxation types change (Dataset=DBLP, Relation-

ship=CHILD, Shape=PATH).

relaxation types A and B and the relaxation types C and D are more similar,

suggesting the NumRlxQry parameter plays more major role than the NumRlx

parameter.

Figures 5.12 and 5.13 show the average relative squared error of the three

methods for the DBLP data set as the relaxation types change. It again has

the similar trends as the case for the SPROT data set in Figures 5.8, 5.9, 5.10,

and 5.11; that is, our proposal outperforms the other two, where the lowerbound

method is the second. For the most experiments that we have conducted for

the DBLP set, we found that lowerbound method typically closely follows the

curve of our proposal while upperbound method is rather far apart. This can be

explained as follows. Since the DBLP data set has a relatively shallow and flat

schema, even the relaxed queries could not find much more new answers. For

instance, Figure 5.14 shows a typical original query and its two relaxed queries

89

1

1.5

2

2.5

3

3.5

4

A B C D

lo
g

10
 (

er
ro

r)

Relaxation Type

Our Methd
Upper Bound
Lower Bound

Figure 5.13: Error as the relaxation types change (Dataset=DBLP, Relation-

ship=CHILD, Shape=BAL).

during the actual run of the DBLP test set, which has the following schema:

<!ELEMENT dblp (article|incollection|...)*>

<!ELEMENT incollection (author|title|...)*>

Note that there are no recursive elements. Further, between incollection and

its sub-elements, no other sub-elements are permitted. Therefore, for instance,

both queries //incollection/author and //incollection//author will most

likely have the same selectivity for the DBLP data set. Therefore, sel(Q+R1+R2)

is essentially the same as sel(Q) once redundant answers are pruned. In such a

case when overlaps among queries constitute a major portion of the answer space,

lowerbound method does comparably a good job.

Figures 5.15 and 5.16 shows the different percentages of queries in terms of

the distribution of error ratios among three methods. In Figure 5.15, the abso-

lute error ratio for our proposed method is the best among three methods and

90

incollection

title
��

��
��

�

authorbooktitle
??

??
??

?

incollection

∗
��

��
��

�

title

author ∗
??

??
??

?

booktitle

incollection

∗

author

∗
??

??
??

?

booktitle
??

??
??

?

(a) Q (b) R1 (c) R2

Figure 5.14: Original query Q and its two relaxed queries R1 and R2 for the

DBLP data set.

� �� �� �� �

� �� �� �� � � � �� � �� � �� � �
� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 	

� �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �
� � �� � �� � �� � �

� � � � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

0

10

20

30

40

50

60

70

80

%
 o

f
qu

er
ie

s

Error
< 1.471725 < 2.14375 < 2.815775 >= 2.815775

Our Method
Upper Bound
Lower Bound

Figure 5.15: Percentage of queries for the absolute error (Dataset=SPROT,

Shape=DS, Relationship=CHILD, Type=D).

is the direct reason why our proposal outperforms the other two methods. More

importantly, as shown in Figure 5.16, upperbound method tends to over-estimate

and lowerbound method tends to under-estimate. This is no surprise since they

do not consider “overlap” in their estimation. As the original query tends to

have more number of relaxed queries (3 ≤NumRlxQry≤ 5) and more number

of relaxations occurred in each case (2 ≤NumRlx≤ 5), new relaxed queries will

inevidently contain more new answers, creating more disjoint answer space. How-

ever, the fact that the degree of over-estimation of the upperbound method is

91

� �� �� �� �

� � � � � � � �

� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� � �� � �� � �� � �� � �
	 		 		 		 	

� �

� � �

� � �

� �

� � � � � � �
0

10

20

30

40

50

60

%
 o

f
qu

er
ie

s

Estimate / Real count
< 0.5 < 1 < 2 < 5 >= 5

Our Method
Upper Bound
Lower Bound

Figure 5.16: Percentage of queries for the relative error (Dataset=SPROT,

Shape=DS, Relationship=CHILD, Type=D).

far severe than that of the under-estimation of lowerbound method suggests that

this particular query set (Dataset=SPROT, Shape=DS, Relationship=CHILD,

Type=D) has less number of “disjoint” answers than “overlapped” answers.

Figures 5.17, 5.18, 5.19, and 5.20 show the average relative squared error

of the three methods for the query sets with different relationships against the

SPROT data set. Note that the patterns remain largely intact between two

query sets with the CHILD and BOTH relationships. This phenomenon can be

also witnessed in query sets with different configurations. As a conclusion, our

proposal consistently delivers a good estimate regardless of the factors affecting

the query characteristics.

All our experiments were performed on a Sun Sparc Ultra-4 machine with

256MB of memory. It takes about 15 minutes to construct and prune the CSTs

for all cases and data sets. Estimations for 1,000 queries in each set take about

2 minutes. In all, construction and estimation are fast.

92

1

1.5

2

2.5

3

3.5

4

A B C D

lo
g

10
 (

er
ro

r)

Relaxation Type

Our Methd
Upper Bound
Lower Bound

Figure 5.17: Error with different relationships as the relaxation types change

(Dataset=SPROT, Shape=PATH, Relationship=CHILD).

5.6 Summary

In this Chapter, we look at the problem of estimating the number of answers of

an XML twig query, when certain query relaxations are permitted. We show that

this problem can be effectively addressed by enhancing the techniques used for

estimating the selectivity of the unrelaxed query, in two ways.

• Augment the CST to include paths with the ‘*’ wildcard character, to

permit individual relaxed queries to be accurately estimated.

• Estimate the overlaps between different relaxed queries, by approximating

this overlap by a relaxed query itself; often, this approximation is loss-

less. This permits the union of individual relaxed queries to be accurately

estimated.

93

1

1.5

2

2.5

3

3.5

4

A B C D

lo
g

10
 (

er
ro

r)

Relaxation Type

Our Methd
Upper Bound
Lower Bound

Figure 5.18: Error with different relationships as the relaxation types change

(Dataset=SPROT, Shape=PATH, Relationship=CHILD).

1

1.5

2

2.5

3

3.5

4

A B C D

lo
g

10
 (

er
ro

r)

Relaxation Type

Our Methd
Upper Bound
Lower Bound

Figure 5.19: Error with different relationships as the relaxation types change

(Dataset=SPROT, Shape=PATH, Relationship=BOTH).

94

1

1.5

2

2.5

3

3.5

4

A B C D

lo
g

10
 (

er
ro

r)

Relaxation Type

Our Methd
Upper Bound
Lower Bound

Figure 5.20: Error with different relationships as the relaxation types change

(Dataset=SPROT, Shape=BAL, Relationship=BOTH).

We experimentally demonstrate that our techniques are much better than

competing techniques using the real DBLP and SPROT datasets.

Our work is the first to explore the problem of selectivity estimation of tree

pattern relaxations, and opens up many interesting directions of future work.

How does one optimize the evaluation of relaxed twig pattern queries taking our

estimates into account? How can one quickly identify the dominant (i.e., the

ones contributing most of the answers) relaxed queries? We have established the

foundations for a lot of interesting work in the area of approximate XML query

processing.

95

CHAPTER 6

XML to Relational Conversion

As XML is emerging as the data format of the Internet era, there are increas-

ing needs to efficiently store and query XML data. One path to this goal is

transforming XML data into relational format in order to use relational database

technology. Although several transformation algorithms exist, they are incom-

plete in the sense that they focus only on structural aspects and ignore semantic

aspects. In this Chapter, we present the semantic knowledge that needs to be

captured during transformation to ensure a correct relational schema. Further-

more, we develop an algorithm that can (1) derive such semantic knowledge from a

given XML Document Type Definition (DTD) and (2) preserve the knowledge by

representing it as semantic constraints in relational database terms. By combin-

ing existing transformation algorithms and our constraints-preserving algorithm,

one can transform XML DTD to relational schema where correct semantics and

behaviors are guaranteed by the preserved constraints.

6.1 Background

As the World-Wide Web becomes a major means of disseminating and sharing

information, Extensible Markup Language (XML) [BPS00] is emerging as a pos-

sible candidate data format because it is simpler than SGML, and more powerful

than HTML. One way to query XML data is to reuse the established relational

96

database techniques by converting and storing XML data in relational storage.

Since the hierarchical XML and the flat relational data models are not fully

compatible, the transformation is not a straightforward task.

To this end, several XML-to-relational transformation algorithms have been

proposed [DFS98, FK99, STH99]. For instance, [STH99] presents 3 algorithms

that focus on the table level of the schema while [FK99] studies different per-

formance issues among 8 algorithms that focus on the attribute and value level

of the schema. They all transform the given XML Document Type Definition

(DTD) to relational schema. Similarly, [DFS98] presents a data mining-based

algorithm that instead uses XML documents directly without a DTD.

Although they work well for the given applications, they miss one important

point. That is, the transformation algorithms only capture the structure of a DTD

and ignore the hidden semantic constraints. Consider the following example.

Example 6. Consider a DTD modeling conference publications:

<!ELEMENT conf (title,society,year,mon?,paper+)>

<!ELEMENT paper (pid,title,abstract?)>

Suppose the combination of title and year uniquely identifies the conf. Us-

ing the hybrid inlining algorithm (explained in Section 6.3), the DTD would be

transformed to the following relational schema:

conf (title,society,year,mon)

paper (pid,title,conf_title,conf_year,abstract)

While the relational schema correctly captures the structural aspect for the DTD,

it does not force correct semantics. For instance, it cannot prevent a tuple

t1: paper(100,’DTD...’,’ER’,3000,’...’) from being inserted. However,

97

DTD
Relational Scheme

Integrity Constraint

hybrid()

 FindConstraints()

CPI Relational Schema

2

1

3

Figure 6.1: Overview of CPI algorithm.

tuple t1 is inconsistent with semantics of the given DTD since the DTD im-

plies that the paper cannot exist without being associated with a conference

and there is apparently no conference “ER-3000” yet. In database terms, this

kind of violation can be easily prevented by an inclusion dependency saying

“paper[conf title,conf year] ⊆ conf[title,year]”. 2

The reason for this inconsistency between the DTD and the transformed rela-

tional schema is that transformation algorithms only capture the structure of the

DTD and ignore the hidden semantic constraints. Via our constraints-preserving

inlining (CPI) algorithm, we show the kinds of semantic constraints that can be

derived from DTDs during transformation, and illustrate how to preserve them

by rewriting them in an output schema notation. Since our algorithm to capture

and preserve semantic constraints from DTDs is independent of the transforma-

tion algorithms, our algorithm can be applied to various transformation processes

such as [DFS98, FK99, STH99] with little change. Figure 6.1 presents an overview

of our approach. First, given a DTD, we transform it to a corresponding rela-

tional scheme using an existing algorithm. Second, during the transformation,

we discover various semantic constraints in XML notation. Third, we rewrite the

discovered constraints to conform to relational notation.

For the rest of the Chapter, we will use the example DTD and XML document

in Tables 6.1 and 6.2.

98

<!ELEMENT conf (title,date,editor?,paper*)>
<!ATTLIST conf id ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT date EMPTY>
<!ATTLIST date year CDATA #REQUIRED

mon CDATA #REQUIRED
day CDATA #IMPLIED>

<!ELEMENT editor (person*)>
<!ATTLIST editor eids IDREFS #IMPLIED>
<!ELEMENT paper (title,contact?,author,cite?)>
<!ATTLIST paper id ID #REQUIRED>
<!ELEMENT contact EMPTY>
<!ATTLIST contact aid IDREF #REQUIRED>
<!ELEMENT author (person+)>
<!ATTLIST author id ID #REQUIRED>
<!ELEMENT person (name,(email|phone)?)>
<!ATTLIST person id ID #REQUIRED>
<!ELEMENT name EMPTY>
<!ATTLIST name fn CDATA #IMPLIED

ln CDATA #REQUIRED>
<!ELEMENT email (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT cite (paper*)>
<!ATTLIST cite id ID #REQUIRED

format (ACM|IEEE) #IMPLIED>

Table 6.1: Example of a DTD for Conference.

6.2 Related Work

Conversion between different models has been extensively investigated [ZCF97].

For instance, [CAC94] deals with transformation problems in the OODB area;

since OODB is a richer environment than RDB, their work is not readily applica-

ble to our application. The logical database design methods and their associated

transformation techniques to other data models have been extensively studied

in ER research. For instance, [BCN92] presents an overview of such techniques.

However, due to the differences between ER and XML models, those transfor-

mation techniques need to be modified substantially. More recently, [BHP00]

studies a generic mapping between arbitrary models with the focus of develop-

ing a framework for model management. Apart from conversion approaches, it

is worthwhile to note that there have been also recent investigations on native

XML storage systems such as [KM00].

99

<conf id="er05">
<title>Int’l Conference on Conceptual Modeling (ER)</title>
<date>

<year>2005</year> <mon>May</mon> <day>20</day>
</date>
<editor eids="sheth bossy">

<person id="klavans">
<name fn="Judith" ln="Klavans"/>
<email>klavans@cs.columbia.edu</email>

</person> </editor>
<paper id="p1">

<title>Indexing Model for Structured...</title>
<contact aid="dao"/>
<author>

<person id="dao"><name fn="Tuong" ln="Dao"/></person>
</author>

</paper>
<paper id="p2">

<title>Logical Information Modeling of...</title>
<contact aid="shah"/>
<author>

<person id="shah">
<name fn="Kshitij" ln="Shah"/>

</person>
<person id="sheth">

<name fn="Amit" ln="Sheth"/>
<email>amit@cs.uga.edu</email>

</person>
</author>
<cite id="c100" format="ACM">

<paper id="p3">
<title>Making Sense of Scientific...</title>
<author>

<person id="bossy">
<name fn="Marcia" ln="Bossy"/>
<phone>391.4337</phone>

</person>
</author> </paper> </cite> </paper>

</conf>
<paper id="p7">
<title>Constraints-preserving Transformation from...</title>
<contact aid="lee"/>
<author>

<person id="lee">
<name fn="Dongwon" ln="Lee"/>
<email>dongwon@cs.ucla.edu</email>

</person> </author>
<cite id="c200" format="IEEE"/>

</paper>...

Table 6.2: A valid XML document conforming to the DTD for Conference of

Table 6.1.

100

Towards conversion between XML and relational models, an array of research

has addressed the particular issues lately. On the commercial side, database

vendors are busily extending their databases to adopt XML types. Typically,

they can handle XML data using BLOB/CLOB formats along with a limited

keyword searching or using some object-relational features [CX00, BKK00], but

not many details have been revealed. On the research side, following works are

related to our work:

• Structure-oriented XML to Relational conversion: Work done in

STORED [DFS98] is one of the first significant and concrete attempts to

this end and deals with non-valid XML documents. STORED uses a data

mining technique to find a representative DTD whose support exceeds the

pre-defined threshold and convert XML documents to relational format us-

ing the DTD. [Bou99] discusses template language-based transformation

from DTD to relational schema which requires human experts to write an

XML-based transformation rule. [STH99] presents three inlining algorithms

that focus on the table level of the schema conversions. On the contrary,

[FK99] studies different performance issues among eight algorithms that

focus on the attribute and value level of the schema. [SYU99] proposes

a DTD-independent mapping algorithm. While ignoring specific charac-

teristics hidden in each DTD, [SYU99] decomposes XML documents into

element, attribute, text and path tables, so that the changes of DTDs of the

XML documents do not necessarily result in invalid mapping as found in

examples [DFS98, STH99]. Since our CPI algorithm provides a systematic

way of finding and preserving constraints from a DTD, ours is an improve-

ment to the existing transformation algorithms. Recent work in [KKR00]

attempts a conversion approach based on the notion of meta schema be-

101

tween XML and relational models, but mainly focuses on the structural

mapping unlike ours.

More recently, [BFR02] attacks the XML to relational conversion prob-

lem from the cost-based approach, where the best conversion configura-

tion among many candidates are chosen based on the cost estimates ob-

tained through XML data statistics and XQuery [CFR01] workload. Unlike

other algorithms, the converted relational schemas from the identical XML

schema vary depending on the applications. However, this approach still

focuses only on the structural conversion aspect.

• Constraints-oriented XML to Relational conversion: [LC00b] pro-

poses a method where the hidden semantic constraints in DTD are sys-

tematically found and translated into relational formats. Since the method

is orthogonal to the structure-oriented conversion methods, it can be used

along with algorithms [DFS98, Bou99, STH99, FK99] with little change.

We are not aware of any other work on this problem. This Chapter is an

extended work of [LC00b].

6.3 Transforming DTD to Relational Schema

Transforming a hierarchical XML model to a flat relational model is not a trivial

task. There are several difficulties including non 1-to-1 mapping, set values, recur-

sion, and fragmentation issues [STH99]. For a better presentation, we chose one

particular transformation algorithm, called the hybrid inlining algorithm [STH99]

among many algorithms [Bou99, DFS98, FK99, STH99]. It is chosen since it ex-

hibits the pros of the other two competing algorithms in [STH99] without severe

side effects and it is a more generic algorithm than those in [Bou99, DFS98].

102

Since issues of discovering and preserving semantic constraints in this Chapter is

independent of that of transformation algorithms, our technique can be applied

to other transformation algorithms easily.

6.3.1 Choice Elimination Algorithm

Before describing the hybrid algorithm, let us first discuss an algorithm that

eliminates the choice operators (|) from the content models of a DTD while

trying to maintain the same semantics. [STH99] does not provide any details on

this subtle but important issue and simply assumes that such pre-processing has

been already done.

The choice operators are heavily used in XML model, but are not natively

supported in relational model. For instance <!ELEMENT r (a|b)> in XML model

implies that “r can have either a or b but not both at the same time”. Translating

this to relational model, the closest mapping with the same semantics would be

having a table “r” with two nullable columns “a” and “b”, (i.e., (a?,b?)) with a

constraint enforcing one of the two columns must be null at all times as follows:

CREATE TABLE r (

a VARCHAR(20),

b VARCHAR(20),

CHECK ((a is NOT NULL AND b is NULL) OR (a is NULL AND b is NOT NULL))

);

Hence, when there is no nested content models, any arbitrary long content

models with | operators <!ELEMENT r (a1 | . . . | an)> can be treated as if

it were <!ELEMENT r (a1?, . . ., an?)> with an additional constraint like CHECK

((a1 is NOT NULL AND a2 is NULL AND . . . an is NULL) OR . . . OR (a1 is NULL

AND a2 is NULL AND . . . an is NOT NULL)). Let us call this mapping heuristics

103

Input : Regular expression r

Output: Regular expression (r1|r2| . . . |rn) equivalent to r

switch r do

case r does not contain “|” operator

return r;

case r = (r1)
∗

migrateChoice(r1) = (a1|a2| . . . |an);

return (a∗1, a
∗
2, . . . , a

∗
n)∗;

case r = (r1|r2)

migrateChoice(r1) = (a1|a2| . . . |an);

migrateChoice(r2) = (b1|b2| . . . |bn);

return (a1|a2| . . . |an|b1|b2| . . . |bn);

case r = (r1, r2)

migrateChoice(r1) = (a1|a2| . . . |an);

migrateChoice(r2) = (b1|b2| . . . |bn);

return ((a1, b1)|(a1, b2)| . . . |(a1, bn)|(a2, b1)|(a2, b2)| . . . |(a2, bn)|

. . . |(an, b1)|(an, b2)|(an, bn));

Algorithm 1: migrateChoice

104

as convertChoice().

Now consider a general case where a content model can in turn contain fur-

ther nested content models in it and all use | operators in a complex manner.

From a basic regular expression algebraic law ([HMU01], page 118), the follow-

ing equality holds: (a | b)* = (a*, b*)*. Using the law, the shown Algo-

rithm migrateChoice() determines an equivalent regular expression of the form

(r1|r2| . . . |rn), where no ri (1 ≤ i ≤ n) contains | operator (i.e., remove | in inner

groups except ones in the outermost group)

Once we have a content model returned from migrateChoice(), then all |

operators have migrated from inside to outside. Next step is to flatten content

models out. For instance, [STH99] describes various heuristics such as a*? =

a* or (a*,a*) = (a*). Let us call such steps as flatten().

As a conclusion, content models of DTDs using the choice operator can be in

general converted to relational schema by going through 1) migrateChoice(r) for

each content model r and 2) successively convertChoice(r) and 3) flatten(r).

For further details of the algorithm, refer to [MLM01b].

Example 7. Consider <!ELEMENT r ((a|b)*|c)>. First, migrateChoice(r)

is converted to migrateChoice((a|b)∗|c)) and is in turn converted to two calls:

migrateChoice((a|b)∗) and migrateChoice(c). Further, migrateChoice((a|b)∗)

returns migrateChoice((a∗, b∗)∗) while migrateChoice(c) remains intact. Hence,

eventually migrateChoice(r) returns migrateChoice((a∗, b∗)∗|c) At second stage,

(a∗, b∗)∗|c is simulated by ((a∗, b∗)∗?, c?) by convertChoice() and in turn simpli-

fied to ((a∗, b∗)∗, c?) by flatten(), generating <!ELEMENT r (a*,b*,c?)> with

a proper constraint at the end. The new content model is free of the choice

operator and can be fed into the hybrid algorithm in the next section. 2

105

6.3.2 Hybrid Inlining Algorithm

The hybrid algorithm [STH99] essentially does the following1:

1. Create a DTD graph that represents the structure of a given DTD. A DTD

graph can be constructed when parsing the given DTD. Its nodes are ele-

ments, attributes, or operators in the DTD. Each element appears exactly

once in the graph, while attributes and operators appear as many times as

they appear in the DTD.

2. Identify top nodes in a DTD graph. A top node satisfies any of the following

conditions: 1) not reachable from any nodes (e.g., source node), 2) direct

child of “*” or “+” operator node, 3) recursive node with indegree > 1, or 4)

one node between two mutually recursive nodes with indegree = 1. Then,

starting from a top node T , inline all the elements and attributes at leaf

nodes reachable from T unless they are other top nodes.

3. Attribute names are composed from the concatenated path from the top

node to the leaf node using “ ” as a delimiter. Use an attribute with ID

type as a key if provided. Otherwise, add a system-generated integer key2.

4. If a table corresponds to the shared element with indegree > 1 in the DTD,

then add a field parent elm to denote the parent element to which the

current tuple belongs. Further, for each shared element, a new field fk X

is added as a foreign key to record the key values of parent element X. If

X is inlined into another element Y , then record the Y ’s key value in the

fk Y field.

1We have made a few changes to the hybrid algorithm for a better presentation (e.g., re-
naming, supporting “|” operator), but the crux of the algorithm remains intact.

2In practice, even if there is an attribute with ID type, one may decide to have a system-
generated key for better performance.

106

date

year

mon

day

? title

+*

editor

id name

fn ln

email

cite

contact

aid

*

?

?

?

?

*

?

author

*

conf

paper

person

id

id

top node

eids

format
?

id

phone

?

Figure 6.2: A DTD graph for the DTD in Table 6.1.

5. Inlining an element Y into a table r, corresponding to another element X

(i.e., top node), creates a problem when an XML document is rooted at the

element Y . To facilitate queries on such elements, a new field root elm is

added to a table r.

6. If an ordered DTD model is used, a field ordinal is added to record po-

sition information of sub-elements in the element. (For simplification, the

ordinal field is not shown in this Chapter.)

For further details of the algorithm, refer to [STH99]. Figure 6.2 illustrates

a DTD graph that is created from the DTD of Table 6.1. Table 6.3 shows the

output of the transformation by the hybrid algorithm. Note that the hybrid

algorithm does not generate semantic constraints (∆).

Among eleven elements in the DTD of Table 6.1, four elements – conf, paper,

person, and eids – are top nodes and thus, chosen to be mapped to the different

107

conf

id root title date date date
elm year mon day

er05 conf ER 2005 May 20

conf editor eids

id root fk eids
elm conf

100001 conf er05 sheth
100002 conf er05 bossy

paper

id root parent fk fk title contact cite cite
elm elm conf cite aid id format

p1 conf conf er05 – Indexing ... dao – –
p2 conf conf er05 – Logical ... shah c100 ACM
p3 conf cite – c100 Making ... – – –
p7 paper – – – Constraints ... lee c200 IEEE

person

id root parent fk fk name name email phone
elm elm conf paper fn ln

klavans conf editor er05 – Judith Klavans klavans... –
dao conf paper – p1 Tuong Dao – –
shah conf paper – p2 Kshitij Shah – –
sheth conf paper – p2 Amit Sheth amit@cs... –
bossy conf paper – p3 Marcia Bossy – 391.4337
lee paper paper – p7 Dongwon Lee dongwon... –

Table 6.3: A relational scheme (S) along with the associated data that are con-

verted from the DTD of Table 6.1 and XML document of Table 6.2 by the hybrid

algorithm.

108

tables. For the top node conf, the elements date, title, and editor are reach-

able and thus inlined. Then, the id attribute is used as a key and the root elm

field is added. For the top node paper, the elements title, contact aid, author,

cite format and cite id are reachable and inlined. Since the paper element is

shared by the conf and cite elements (two incoming edges in a DTD graph), new

fields parent elm, fk conf and fk cite are added to record who and where the

parent node was. Note that in the paper table (Table 6.3), a tuple with id="p7"

has the value "paper" for the root elm field. This is because the element <paper

id="p7"> is rooted in the DTD (Table 6.2) without being embedded in other

elements. Consequently, its parent elm, fk conf and fk cite fields are null. For

the top node person, the elements name fn, name ln and email are reachable and

inlined. Since the person is shared by the author and editor elements, again,

the parent elm is added. Note that in the person table (Table 6.3), a tuple with

id="klavans" has the value "editor", not "paper", for the parent elm field.

This implies that “klavans” is in fact an editor, not an author of the paper.

6.4 Semantic Constraints in DTDs

6.4.1 Domain Constraints

When the domain of the attributes is restricted to a certain specified set of values,

it is called Domain Constraints . For instance, in the following DTD, the domain

of the attributes gender and married are restricted.

<!ATTLIST author gender (male|female) #REQUIRED

married (yes|no) #IMPLIED>

In transforming such DTD into relational schema, we can enforce the domain

constraints using SQL CHECK clause as follows:

109

CREATE DOMAIN gender VARCHAR(10) CHECK (VALUE IN ("male", "female"))

CREATE DOMAIN married VARCHAR(10) CHECK (VALUE IN ("yes", "no"))

When the mandatory attribute is defined by the #REQUIRED keyword in the

DTD, it needs to be forced in the transformed relational schema as well. That

is, the attribute ln cannot be omitted below.

<!ELEMENT person EMPTY>

<!ATTLIST person fn CDATA #IMPLIED ln CDATA #REQUIRED>

We use the notation “X 9 ∅” to denote that an attribute X cannot be null.

This kind of domain constraint can be best expressed by using the NOT NULL

clause in SQL as follows:

CREATE TABLE person (fn VARCHAR(20), ln VARCHAR(20) NOT NULL)

6.4.2 Cardinality Constraints

In a DTD declaration, there are only 4 possible cardinality relationships between

an element and its sub-elements as illustrated below:

<!ELEMENT article (title, author+, reference*, price?)>

(0,1). (“at most” semantics): An element can have either zero or one sub-element.

(e.g., sub-element price)

(1,1). (“only” semantics): An element must have one and only one sub-element.

(e.g., sub-element title)

(0,N). (“any” semantics): An element can have zero or more sub-elements. (e.g.,

sub-element reference)

110

(1,N). (“at least” semantics): An element can have one or more sub-elements.

(e.g., sub-element author)

Following the notations in [BCN92], let us call each cardinality relationship as

type (0,1), (1,1), (0,N), (1,N), respectively. From these cardinality relationships,

mainly three constraints can be inferred. First, whether or not the sub-element

can be null. Similar to the attribute case, we use the notation “X 9 ∅” to

denote that an element X cannot be null. This constraint is easily enforced by

the NULL or NOT NULL clause. Second, whether or not more than one sub-element

can occur. This is also known as singleton constraint in [Woo99] and is one kind

of equality-generating dependencies. Third, given an element, whether or not

its sub-element should occur. This is one kind of tuple-generating dependencies.

The second and third types will be further discussed below.

6.4.3 Inclusion Dependencies (INDs)

An Inclusion Dependency assures that values in the columns of one fragment must

also appear as values in the columns of other fragments and is a generalization

of the notion of referential integrity .

Trivial form of INDs found in the DTD is that “given an element X and its

sub-element Y , Y must be included in X (i.e., Y ⊆ X)”. For instance, from

the conf element and its four sub-elements in DTD, the following INDs can be

found as long as conf is not null: {conf.title ⊆ conf, conf.date ⊆ conf,

conf.editor ⊆ conf, conf.paper ⊆ conf}. Another form of INDs can be

found in the attribute definition part of the DTD with the use of the IDREF(S)

keyword. For instance, consider the contact and editor elements in the DTD

in Table 6.1 shown below:

<!ELEMENT person (name,(email|phone)?>

111

<!ATTLIST person id ID #REQUIRED>

<!ELEMENT contact EMPTY>

<!ATTLIST contact aid IDREF #REQUIRED>

<!ELEMENT editor (person*)>

<!ATTLIST editor eids IDREFS #IMPLIED>

The DTD restricts the aid attribute of the contact element such that it can

only point to the id attribute of the person element3. Further, the eids attribute

can only point to multiple id attributes of the person element. As a result, the

following INDs can be derived: {editor.eids ⊆ person.id, contact.aid ⊆

person.id }. INDs can be best enforced by the “foreign key” concept if the

attribute being referenced is a primary key. Otherwise, it needs to use the CHECK,

ASSERTION, or TRIGGERS facility of SQL.

6.4.4 Equality-Generating Dependencies (EGDs)

The Singleton Constraint [Woo99] restricts an element to have “at most” one

sub-element. When an element type X satisfies the singleton constraint towards

its sub-element type Y , if an element instance x of type X has two sub-elements

instances y1 and y2 of type Y , then y1 and y2 must be the same. This property

is known as Equality-Generating Dependencies (EGDs) and denoted by “X →

Y ” in database theory. For instance, two EGDs: {conf → conf.title, conf

→ conf.date} can be derived from the conf element of Table 6.1. This kind of

EGDs can be enforced by SQL UNIQUE construct. In general, EGDs occur in the

case of the (0,1) and (1,1) mappings in the cardinality constraints.

3Precisely, an attribute with IDREF type does not specify which element it should point to.
This information is available only by human experts. However, new XML schema languages
such as XML-Schama and DSD can express where the reference actually points to [LC00a].

112

6.4.5 Tuple-Generating Dependencies (TGDs)

Tuple-Generating Dependencies (TGDs) in a relational model require that some

tuples of a certain form be present in the table and use the “�” symbol. Two

useful forms of TGDs from DTD are the child and parent constraints [Woo99].

1. Child constraint: "Parent � Child" states that every element of type

Parent must have at least one child element of type Child. This is the case

of the (1,1) and (1,N) mappings in the cardinality constraints. For instance,

from the DTD in Table 6.1, because the conf element must contain the

title and date sub-elements, the child constraint conf � {title, date}

holds.

2. Parent constraint: "Child � Parent" states that every element of type

Child must have a parent element of type Parent. According to XML spec-

ification, XML documents can start from any level of elements without nec-

essarily specifying its parent element, when a root element is not specified

by <!DOCTYPE root>. In the DTD of Table 6.1, for instance, the editor

and date elements can have the conf element as their parent. Further, if

we know that all XML documents were started at the conf element level,

rather than the editor or date level, then the parent constraint {editor,

date} � conf holds. Note that the title � conf does not hold since the

title element can be a sub-element of either the conf or paper element.

6.5 Constraints-Preserving Inlining Algorithm

To help find semantic constraints, we use the following data structure:

Definition 11 An annotated DTD graph (ADG) G is a pair (V, E), where

113

date

year

mon

day

title

id name

fn ln email

contactaid

eids

person

conf

paper

id

id
top node

(0,1)

(1,1)
(1,1)

(0,N)

(1,N)

(0,N)

(0,1)
(1,1) editor

(0,N)

(0,1) (0,1)(1,1)

(1,1)(1,1)

author(1,1)
(1,1)

cite

(0,1)(1,1)

(0,1)

(0,1)

(0,N)

(1,1)

(1,1)

(1,1)

(0,1)
(1,1)
(0,N)
(1,N)

?

*
+

id

(1,1)

format

phone

(0,1)

Figure 6.3: An Annotated DTD graph for the Conference DTD of Table 6.1.

V is a finite set and E is a binary relation on V. The set V consists of element and

attributes in a DTD. Each edge e ∈ E is labeled with the cardinality relationship

types as defined in Section 6.4.2. In addition, each vertex v ∈ V carries the

following information:

1. indegree stores the number of incoming edges.

2. type contains the element type name in the content model of the DTD

(e.g., conf or paper).

3. tag stores a flag value whether the node is an element or attribute (if

attribute, it contains the attribute keyword like ID or IDREF, etc.).

4. status contains “visited” flag if the node was visited in a depth-first search

or “not-visited”. 2

Note that the cardinality relationship types in ADG considers not only el-

ement vs. sub-element relationships but also element vs. attribute relation-

ships. For instance, from the DTD <!ATTLIST X Y #IMPLIED Z #REQUIRED>,

114

Relationship Symbol Semantics not null EGDs TGDs

(0,1) ? at most no yes no

(1,1) only yes yes yes

(0,N) * any no no no

(1,N) + at least yes no yes

Table 6.4: Cardinality relationships and their corresponding semantic constraints.

two types of cardinality relationships (i.e., type (0,1) between element X and

attribute Y , and type (1,1) between element X and attribute Z) can be derived.

Figure 6.3 illustrates an example of ADG for the Conference DTD of Table 6.1.

Then, the cardinality relationships can be used to find semantic constraints in a

systematic fashion. Table 6.4 summarizes 3 main semantic constraints that can

be derived from and the findConstraints() algorithm below is immediately

derived from Table 6.4.

Input : Node v and w

switch edge(v,w) do

case type (0,1)

v → w;

case type (1,1)

w is not null; v → w; v � w;

case type (0,N)

/* empty */;

case type (1,N)

w is not null; v � w;

Algorithm 2: findConstraints

115

Semantic constraints discovered by findConstraints() have additional usage

as discussed in Section [LC01]. However, to enforce correct semantics in the newly

generated relational schema, the semantic constraints in XML terms need to be

rewritten in relational terms. This is done by the algorithm rewriteConstraints().

We shall now describe our complete DTD-to-relational schema transforma-

tion algorithm: CPI (Constraints-preserving Inlining) algorithm is a combina-

tion of the hybrid inlining, findConstraints() and rewriteConstraints() al-

gorithms. The CPI algorithm is illustrated in CPI() and hybrid().

The algorithm first identifies all the top nodes from the ADG. This can be

done using algorithms to find sources or strongly-connected components in a

graph [STH99]. Then, for each top node, the algorithm generates a corresponding

table scheme using hybrid(). The associated constraints are found and rewrit-

ten in relational terms using findConstraints() and rewriteConstraints(),

respectively. The hybrid() algorithm scans an ADG in a depth-first search while

finding constraints. The final output schema is the union of all the table schemes

and semantic constraints.

Table 6.5 contains the semantic constraints that are rewritten from XML

terms to relational terms. As an example, the CPI algorithm will eventually spit

out the following SQL CREATE statement for the paper table. Note that not only

is the relational scheme provided, but the semantic constraints are also ensured

by use of the NOT NULL, KEY, UNIQUE or CHECK constructs.

CREATE TABLE paper (

id NUMBER NOT NULL,

title VARCHAR(50) NOT NULL,

contact_aid VARCHAR(20),

cite_id VARCHAR(20),

116

Input : Constraints ∆′ in XML notation

Output: Constraints ∆ in relational notation

switch ∆′ do

case X 9 ∅

If X is mapped to attribute X ′ in table scheme A, then A[X ′]

cannot be null. (i.e., “CREATE TABLE A (...X ′ NOT NULL...)”) ;

case X ⊆ Y

If X and Y are mapped to attributes X ′ and Y ′ in table scheme A

and B, respectively, then rewrite it as A[X ′] ⊆ B[Y ′]. (i.e., If Y ′ is

a primary key of B, then “CREATE TABLE A (...FOREIGN KEY (X ′)

REFERENCES B(Y ′)...)”. Else “CREATE TABLE A (...(X ′) CHECK (X ′

IN (SELECT Y ′ FROM B))...”) ;

case X → X.Y

If element X and Y are mapped to the same table scheme A (i.e.,

since Y is not a top node, Y becomes an attribute of table A) and

Z is the key attribute of A, then rewrite it as A[Z] → A[Y]. (i.e.,

“CREATE TABLE A (...UNIQUE (Y), PRIMARY KEY (Z)...)”);

case X � X.Y

if (element X and Y are mapped to the same table) then

Let A be the table and Z be the key attribute of A. Then

rewrite it as A[Z] � A[Y]. (i.e., “CREATE TABLE A (...Y NOT

NULL, PRIMARY KEY (Z)...)”) ;

else

Let the tables be A and B, respectively and Z be the key at-

tribute of A. Then rewrite it as B[fk A] ⊆ A[Z]. (i.e., “CREATE

TABLE B (...FOREIGN KEY (fk A) REFERENCES A(Z)...)”)

return ∆;

Algorithm 3: rewriteConstraints

117

Input : Annotated DTD Graph G = (V, E)

Output: Relational Schema R

V← topnode(G);

for each v ∈ V do

table def ← {};

if v.tag = ’element’ then

add(’root elm’, table def); /* start where? */

if v.indegree > 1 then

add(’parent elm’, table def); /* shared elements case */

add(concat(’fk ’, parent(v)), table def);

W← Adj[v]; w ∈ W;

if any w.tag = ’ID’ then add(w.type, table def);

else add(’id’, table def); /* system-generated primary key */

R← R + hybrid(v, table def , ∅);
return R;

Algorithm 4: CPI

Input : Vertex v, TableDef table def , string attr name

Output: Relational Schema R

v.status← ’visited’;

for each w ∈ Adj[v] do

if w.status = ’not-visited’ then

∆′ ← findConstraints(v, w); ∆ ← rewriteConstraints(∆′);

hybrid(w, table def , concat(attr name, ’ ’, w.type));

add(attr name, table def); R← table def + ∆;

return R;

Algorithm 5: hybrid

118

Type Semantic constraints in relational notation

ID conf editor eids[eids] ⊆ person[id], paper[contact aid] ⊆ person[id]

EGD
conf[id] → conf[title,date year,date mon,date day]

paper[id] → conf[title,contact aid,cite id,cite format]

person[id] → conf[name fn,name ln,email]

TGD

conf[id] � conf[title,date year,date mon,date day]

paper[id] � conf[title,contact aid,cite id,cite format]

person[id] � conf[name fn,name ln,email]

conf editor eids[fk conf] ⊆ conf[id]

paper[fk conf] ⊆ conf[id], paper[fk cite] ⊆ paper[cite id]

person[fk conf] ⊆ conf[id], person[fk paper] ⊆ paper[id]

not null
conf[id,title,date year,date mon,root elm] 9 ∅
conf editor eids[id,root elm] 9 ∅
paper[id,title,root elm] 9 ∅, person[id,name ln,root elm] 9 ∅

Table 6.5: The semantic constraints in relational notation for the Conference

DTD of Table 6.1.

cite_format VARCHAR(50) CHECK (VALUE IN ("ACM", "IEEE")),

root_elm VARCHAR(20) NOT NULL,

parent_elm VARCHAR(20),

fk_cite VARCHAR(20)

CHECK (fk_cite IN (SELECT cite_id FROM paper)),

fk_conf VARCHAR(20),

PRIMARY KEY (id),

UNIQUE (cite_id),

FOREIGN KEY (fk_conf) REFERENCES conf(id),

FOREIGN KEY (contact_aid) REFERENCES person(id)

);

119

6.6 Experimental Results

We have implemented the CPI algorithm in Java using the IBM XML4J package.

Table 6.6 shows a summary of our experimentation. We gathered test DTDs from

“http://www.oasis-open.org/cover/xml.html” and [Sah00]. Since some DTDs had

syntactic errors caught by the XML4J, we had to modify them manually. Note

that people seldom used the ID and IDREF(S) constructs in their DTDs except

the XMI and BSML cases. The number of tables generated in the relational schema

was usually smaller than that of elements/attributes in DTDs due to the inlining

effect. The only exception to this phenomenon was the XMI case, where extensive

use of types (0,N) and (1,N) cardinality relationships resulted in many top nodes

in the ADG.

The number of semantic constraints had a close relationship with the design of

the DTD hierarchy and the type of cardinality relationship used in the DTD. For

instance, the XMI DTD had many type (0,N) cardinality relationships, which do

not contribute to the semantic constraints. As a result, the number of semantic

constraints at the end was small, compared to that of elements/attributes in

the DTD. This was also true for the OSD case. On the other hand, in the ICE

case, since it used many type (1,1) cardinality relationships, it resulted in many

semantic constraints.

6.7 Summary

This Chapter presents a method to transform XML DTD to relational schema

both in structural and semantic aspects. After discussing the semantic con-

straints hidden in DTDs, two algorithms are presented for: 1) discovering the

semantic constraints using the hybrid inlining algorithm, and 2) rewriting the

120

DTD Semantics DTD Schema Relational Schema

Name Domain Elm/Attr ID/IDREF(S) Table/Attr → � 9 ∅

novel literature 10/1 1/0 5/13 6 9 9

play Shakespeare 21/0 0/0 14/46 17 30 30

tstmt religious text 28/0 0/0 17/52 17 22 22

vCard business card 23/1 0/0 8/19 18 13 13

ICE content synd. 47/157 0/0 27/283 43 60 60

MusicML music desc. 12/17 0/0 8/34 9 12 12

OSD s/w desc. 16/15 0/0 15/37 2 2 2

PML web portal 46/293 0/0 41/355 29 36 36

Xbel bookmark 9/13 3/1 9/36 9 1 1

XMI metadata 94/633 31/102 129/3013 10 7 7

BSML DNA seq. 112/2495 84/97 104/2685 99 33 33

Table 6.6: Experimental results of CPI algorithm.

semantic constraints in relational notation. Our experimental results reveal that

constraints can be systematically preserved during the conversion from XML to

relational schema. Such constraints can also be used for semantic query opti-

mization or semantic caching.

Despite the obstacles in converting from XML to relational models and vice

versa, there are several practical benefits:

• Considering the present market that is mostly dominated by RDB products,

it is not easy nor practical to abandon RDB to support XML. It is very

likely that industries would be reluctant to adopt the new technology if

it does not support the existing RDB techniques as they were reluctant

towards object-oriented database in the past.

• By using RDB as an underlying storage system, the mature RDB techniques

can be leveraged. That is, a vast number of sophisticated techniques (e.g.,

121

OLAP, Data Mining, Data Warehousing, etc.) developed for RDB can be

applied to XML data with minimal changes.

• The integration of a large amount of XML data on the Web with the legacy

data in relational format is possible.

We strongly believe that devising more accurate and efficient conversion method-

ologies between XML and relational models is very important and our CPI algo-

rithm can serve as an enhancement for such conversion algorithms.

Due to many benefits from using relational databases as storage systems for

XML data, the need for efficient and effective conversion between relational and

XML models will significantly grow in a foreseeable future. We believe the fol-

lowing directions of research are very important.

First, as we move to more expressive next generation XML schema languages

such as XML-Schema [Fal01] or RELAX [Mur00b], the degree of complexities

captured in a XML schema is far greater than that in a DTD. For instance, XML-

Schema supports an extensive set of features to specify structural and semantic

constraints. However, all existing XML to relational conversion algorithms (dis-

cussed in Section 6.2) focus only on the DTD case, which is the simpliest and

least expressive XML schema language according to [LC00a, LMM00]. There-

fore, there is an immediate need to modify and extend the current conversion

algorithms to support more complex schema languages.

Second, with XML emerging as the data format of the Internet era, there

is a substantial increase in the amount of data encoded in XML. However, the

majority of everyday data is still stored and maintained in relational databases.

Therefore, we expect the needs to convert such relational data into XML doc-

uments to grow substantially as well. Although commercial database vendors

122

already support tools that generate XML documents out of relational data, the

types of XML documents generated are very simple in their structure and con-

sequently cannot capture all semantics in the original relational schema. For

instance, a majority of tools can only convert the so-called “flat translation”

where a table t and columns ci of relational model is mapped to an element e

and its attributes ai of XML model. We have proposed the “nesting-based trans-

lation” to capture certain semantics in the original relational schema [LMC01],

however, more research efforts in that direction are needed.

123

CHAPTER 7

Relational to XML Conversion

Two algorithms, called NeT and CoT, to translate relational schemas to XML

schemas using various semantic constraints are presented. The XML schema

representation we use is a language-independent formalism named XSchema, that

is both precise and concise. A given XSchema can be mapped to a schema in

any of the existing XML schema language proposals. Our proposed algorithms

have the following characteristics: (1) NeT derives a nested structure from a flat

relational model by repeatedly applying the nest operator on each table so that

the resulting XML schema becomes hierarchical, and (2) CoT considers not only

the structure of relational schemas, but also semantic constraints such as inclusion

dependencies during the translation - it takes as input a relational schema where

multiple tables are interconnected through inclusion dependencies and converts it

into a good XSchema. To validate our proposals, we present experimental results

using both real schemas from the UCI repository and synthetic schemas from

TPC-H.

7.1 Background

XML [BPS00] is rapidly becoming one of the most widely adopted technologies

for information exchange and representation on the World Wide Web. With XML

emerging as the data format of the Internet era, there is a substantial increase

124

in the amount of data encoded in XML. However, the majority of everyday data

is still stored and maintained in relational databases. Therefore, we expect the

needs to convert such relational data into XML documents will grow substantially

as well. In this Chapter, we study the problems in this conversion. Especially, we

are interested in finding XML schema1 (e.g., DTD [BPS00], RELAX-NG [CM01],

XML-Schema [TBM01]) that best describes the existing relational schema. Hav-

ing an XML schema that precisely describes the semantics and structures of

the original relational data is important to further maintain the converted XML

documents in future.

At present, there exist several tools that enable the composition of XML doc-

uments from relational data, such as XML Extender from IBM2, XML-DBMS3,

DB2XML [Tur99], SilkRoute [FTS00], and XPERANTO [CFI00]. In these tools,

the success of the conversion is closely related with the quality of the target

XML schema onto which a given input relational schema is mapped. However,

the mapping from the relational schema to the XML schema is specified by hu-

man experts. Therefore, when large amount of relational schemas and data need

to be translated into XML documents, a significant investment of human effort

is required to initially design target schemas. To make matters worse, in the

context of merging legacy relational data to existing XML documents, devising

a good XML schema that does not violate existing structures and constraints is

a non-trivial task. Being able to automatically infer a precise XML schema out

of relational schema would be very useful in such settings.

In this Chapter, therefore, we are interested in finding a method that can

1We differentiate two terms – XML schema(s) and XML-Schema. The former refers to a
general term for schema in XML model while the latter refers to one particular kind of XML
schema language proposed by W3C [TBM01].

2http://www-4.ibm.com/software/data/db2/extenders/xmlext/
3http://www.rpbourret.com/xmldbms/index.htm

125

infer the best XML schema from the given relational schema automatically. We

particularly focus on two aspects of the translation: (1) Structural aspect: We

want to find the most intuitive and precise XML schema structure from the given

relational schema. We especially try to use the hidden characteristics of data us-

ing nest operator, and (2) Semantic aspect: During the translation, we want

to use semantic constraints that could be either acquired from database directly

or provided by human experts explicitly. Let us first consider a motivating ex-

ample illustrating why correctly converting structures and semantics of relational

schema into XML schema is an important and useful problem.

Example 8. Suppose one tries to model an entity paper in a database. It would

typically contain attributes Title, Year, Author, Keyword, etc. Besides, suppose

there can be one or many authors and keywords per paper. In representing such

model into relational schema, one in general cannot express the fact that there

can be many authors and keywords in a single table since it would violate 1NF.

Hence, typical relational schema that captures the scenario would be as follows:

paper (Pid NUMBER, Title VARCHAR, Year NUMBER,

Author VARCHAR, Keyword VARCHAR)

Suppose this table is translated to an XML schema (with a common attribute

<!ATTLIST paper Pid ID #REQUIRED>):

(1) <!ELEMENT paper (Title,Year,Author,Keyword)>

(2) <!ELEMENT paper (Title,Year,Author+,Keyword+)>

From the users’ perspective, the second DTD is better than the first DTD, since it

represents the given relational schema more accurately: the first DTD incorrectly

implies that paper can have only one Author and Keyword. The main reason of

this discrepancy between the users’ perception and the representation is that

126

in relational model, concepts need to be flattened out to fit into the model.

Since XML model allows hierarchical nesting, it would be desirable to unflatten

concepts to make such structures if preferred so. 2

In short, we aim to solve the following problem:

Given a relational schema R, find an XML schema X that best satisfies

semantic constraints of R

We first present a straightforward relational to XML translation algorithm, called

Flat Translation (FT). Since FT maps the flat relational model to the flat XML

model in a one-to-one manner, it does not utilize the regular expression operators

(e.g., “*”, “+”) supported in the content models of XML. Then, we present our

first proposal called Nesting-based Translation (NeT), to remedy the problems

found in FT. NeT derives nested structures from a flat relational model by the

use of the nest operator so that the resulting XML schema is more intuitive and

precise than otherwise. Although NeT infers hidden characteristics of data by

nesting, it is only applicable to a single table at a time. Therefore, it is unable

to capture a correct “big picture” of relational schema where many tables are

interconnected. To remedy this problem, we present the second proposal called

Constraints-based Translation (CoT); CoT considers inclusion dependencies dur-

ing the translation. Such constraints can be acquired from database through

ODBC/JDBC interface or provided by human experts who are familiar with the

semantics of the relational schema being translated. CoT is capable of generating

a more intuitive XML schema than what NeT. Figure 7.1 illustrates the overview

of our approach.

127

XSchema

RDB CoT

XML
Schemas

Final
XML

Schema

Schema
Designer

NeT

Figure 7.1: Overview of NeT and CoT algorithms.

7.2 Related Work

There also have been work in mapping from non-relational models to XML model.

[MLM01a] studies the conversion from XML to ER model and vice versa. Gener-

ation of an XML schema from a UML model is studied in [NEF00]. In addition,

there have been other DTD inference algorithms that take as “input” a set of

XML documents [GGR00] or a view description [PV99].

Conversion from relational to XML models can ba categorized as follows:

• Structure-oriented Relational to XML conversion: Some primitive

work has been done in [Tur99] dealing with the transformation from rela-

tional tables to XML documents. In XML Extender, the user specifies the

mapping through a language such as DAD or XML Extender Transform

Language. In XML-DBMS, a template-driven mapping language is pro-

vided to specify the mappings. SilkRoute [FTS00] provides a declarative

query language (RXL) for viewing relational data in XML. Applications ex-

press the answer data as a query over the view and SilkRoute dynamically

materializes the fragment of an XML view. [SSB00] extends SQL to spec-

ify the conversion process declaratively, whereas SilkRoute proposes a new

language RXL and describes an extensive study on the issues of efficiently

implementing the algorithms. Similar to SilkRoute, XPERANTO [CFI00]

128

aims to provide a uniform XML interface to underlying ORDB, transpar-

ently providing an XML-to-SQL query rewriter and a table-to-XML answer

converter. Its output XML view is, however, mainly specified by the user’s

input XML queries. Note that in SilkRoute and XPERANTO, the user has

to specify the query in the appropriate query language. DB2XML uses an

algorithm similar to FT (and hence suffers from similar problems).

• Constraints-oriented Relational to XML conversion: Path constraints

on a semi-structured model [BFW98] or XML model [FS00] have been stud-

ied, mostly with respect to their implication problems. However, to our best

knowledge, there has not been much work on this direction of conversion

problem. For instance, [FS00] proposes three languages to capture the se-

mantics of XML model and presents implication results, but does not deal

with issues on converting constraints from RDB to XML model. Recently,

the authors proposed to convert relational schema to XML schema using

the hidden data semantics found by the nest operator in [LMC01].

7.3 Input and Output Models

We first briefly define the input and output models for the translation. In rela-

tional databases, schema is typically created by SQL DDL (e.g., CREATE) state-

ments. Therefore, by examining such DDL statements, one can find out the

original schema information. Even if such DDL statements are not available, one

can still infer the schema information - table and column names, key and foreign

key information, etc - by querying the database through an ODBC/JDBC inter-

face or by examining the database directly. In this Chapter, regardless of how

one acquired the schema information, we assume that the schema information is

129

encoded in a vector R defined below.

Let us assume the existence of a set T̂ of table names, a set Ĉ of column names

and a set b̂ of atomic base types defined in the standard SQL (e.g., integer, char,

string). When name collision occurs, a column name c ∈ Ĉ is qualified by a table

name t ∈ T̂ using the “[]” notation (e.g., t[c]).

Definition 12 (Relational Schema) A relational schema is denoted by 4-tuple

R = (T, C, P, ∆), where:

• T is a finite set of table names in T̂ ,

• C is a function from a table name t ∈ T to a set of column names c ∈ Ĉ,

• P is a function from a column name c to its column type definition: i.e.,

P (c) = α, where α is a 5-tuple (τ, u, n, d, f), where τ ∈ b̂, u is either “υ”

(unique) or “¬υ” (not unique), n is either “?” (nullable) or “¬?” (not

nullable), d is a finite set of valid domain values of c or ε if not known, and

f is a default value of c or ε if not known, and

• ∆ is a finite set of relational integrity constraints that can be either retrieved

from databases directly or provided by human experts. 2

Example 9. Consider two tables student(Sname, Advisor, Course) and

professor(Pname, Office) where keys are underlined, and Advisor is a foreign

key referencing Pname column. The column Office is an integer type, while the

rest of the columns are string types. Also Office may be null. When student’s

advisor has not yet been decided, professor “Prof. Smith” will be the initial

advisor. Student can have many advisors and take zero or more courses. The

corresponding relational schema and data fragment are given in Table 7.1. 2

130

T = {student, professor}

C(student) = {Sname, Advisor, Course}

C(professor) = {Pname, Office}

P (Sname) = (string,¬v,¬?, ε, ε)

P (Advisor) = (string,¬v,¬?, ε, “Prof.Smith′′)

P (Course) = (string,¬v,¬?, ε, ε)

P (Pname) = (string, v,¬?, ε, ε)

P (Office) = (integer,¬v, ?, ε, ε)

∆ = {{Sname, Advisor, Course} key→ student,

Pname
key→ professor, Advisor ⊆ Pname

student

Sname Advisor Course

John Prof. Muntz Multimedia

John Prof. Zaniolo Logic

John Prof. Zaniolo Data Mining

Tom Prof. Muntz Queueing Theory

Tom Prof. Chu Database Systems

Tom Prof. Chu Distributed Databases

professor

Pname Office

Prof. Muntz 600

Prof. Chu 550

Prof. Zaniolo

Prof. Parker 490

Table 7.1: Example of relational schema and data.

131

Next, let us define the output model. Lately, there have been about a dozen

competing XML schema language proposals. Although XML-Schema is being

shaped by W3C and will replace DTD soon, it is likely that different applica-

tions will choose different XML schema languages that best suit their particular

purposes. Therefore, instead of choosing one language proposal, we formalize a

core set of important features into a new notion of XSchema and use it as our

output modeling language. The benefits of such formalization is that it is both

concise and precise. More importantly, it breaks the tie between the transla-

tion algorithm that we are developing and the final schema language notations.

Informally, XSchema borrows structural features from DTD and RELAX-NG,

and data types and constraint specification features from XML-Schema. From

a formal language and database perspective [MLM01c], XSchema is a local tree

grammar extended with attribute, datatype and constraint specifications.

Starting from the notations in [FS00], we define XSchema below. We first

assume the existence of a set Ê of element names, a set Â of attribute names and

a set τ̂ of atomic data types defined in [BM01] (e.g., ID, IDREF, string, integer,

date, etc). When needed, an attribute name a ∈ Â is qualified by the element

names using the path expression notation e1.e2 · · · en.a, where ei ∈ Ê, 1 ≤ i ≤ n).

Definition 13 (XSchema) An XSchema is denoted by 6-tuple X = (E, A, M, P, r,

Σ), where:

• E is a finite set of element names in Ê,

• A is a function from an element name e ∈ E to a set of attribute names

a ∈ Â,

• M is a function from an element name e ∈ E to its element type definition:

i.e., M(e) = α, where α is a regular expression: α ::= ε | τ | α + α | α, α |

132

α? | α∗ | α+, where ε denotes the empty element, τ ∈ τ̂ , “+” for the union,

“,” for the concatenation, “α?” for zero or one occurrence, “α∗” for the

Kleene star, and “α+” for “α, α∗”,

• P is a function from an attribute name a to its attribute type definition:

i.e., P (a) = β, where β is a 4-tuple (τ, n, d, f), where τ ∈ τ̂ , n is either “?”

(nullable) or “¬?” (not nullable), d is a finite set of valid domain values of

a or ε if not known, and f is a default value of a or ε if not known,

• r ⊆ E is a finite set of root elements, and

• Σ is a finite set of integrity constraints for XML model 2

Translation from XSchema to the actual XML schema language notations is rela-

tively straightforward and not discussed further in this Chapter. It is worthwhile

to note, however, that depending on the chosen XML schema language, some of

the features specifiable in XSchema might not be translatable at the end. For

instance, any “non-trivial type” or composite key information would be lost if

one decides to use DTD as the final XML schema language.

7.4 Flat Translation and Nesting-based Translation

XML model uses two basic building blocks to construct XML documents – at-

tribute and element. A few basic characteristics inherited from XML model

include: (1) the attributes of a node are not ordered, while the child elements of

a node are ordered, (2) both support data types as specified in [BM01], and (3)

elements can express multiple occurrences better than attributes. The detailed

capabilities of those, however, vary depending on the chosen XML schema lan-

guage. In translating R to X, therefore, one can either use attribute or element

133

in X to represent the same entity in R (e.g, a column with string type in R can

be translated to either attribute or element with string type in X).

To increase the flexibility of the algorithms, we assume that there are two

modes – attribute-oriented and element-oriented. Depending on the mode,

an algorithm can selectively translate an entity in R to either attribute or element

if both can capture the entity correctly. However, if the chosen XML schema

language requires attribute or element for an entity (e.g., a key column in R

needs to be translated to an attribute with type ID in X), we assume that the

algorithm follows the limitations.

7.4.1 Flat Translation

The simplest translation method is to translate (1) tables in R to elements in

X and (2) columns in R to attributes (in attribute-oriented mode) or elements

(in element-oriented mode) in X. These two modes are analogous except that

element-oriented mode adds additional order semantics to the resulting schema.

Since X represents the “flat” relational tuples faithfully, this method is called Flat

Translation (FT). The general procedure of the Flat Translation is omitted in

the interest of space and can be found in [LMC01]. One example of FT is shown

below:

Example 10. R9 in Example 9 would be translated to X10 = (E, A, M, P, r, Σ)

via FT, where

E = {student, professor}

A(student) = {Sname, Advisor, Course}

A(professor) = {Pname, Age}

M(student) = ε

M(professor) = ε

134

P (Sname) = (string, ?, ε, ε)

P (Advisor) = (IDREF, ?, ε, “J.Smith′′)

P (Course) = (string, ?, ε, ε)

P (Pname) = (ID,¬?, ε, ε)

P (Age) = (integer, ?, ε, ε)

r = {student, professor}

Σ = {{Sname, Advisor, Course} key→ student,

Pname
key→ professor, Advisor ⊆ Pname} 2

FT is a simple and effective translation algorithm, but it has some problems.

As the name implies, FT translates the “flat” relational model to a “flat” XML

model in a one-to-one manner. The drawback of FT is that it does not utilize

several basic “non-flat” features provided by XML for data modeling such as

representing repeating sub-elements through regular expression operators (e.g.,

“*”, “+”). We remedy this problem in the NeT algorithm below.

7.4.2 Nesting-based Translation

To remedy the problems of FT, one needs to utilize various element content

models of XML. Towards this goal, we propose to use the nest operator [JS82].

Our idea is to find a “best” element content model that uses α∗ or α+ using the

nest operator. First, let us define the nest operator. Informally, for a table t with

a set of columns C, nesting on a non-empty column X ∈ C collects all tuples

that agree on the remaining columns C −X into a set4. Formally,

Definition 14 (Nest) [JS82]. Let t be a n-ary table with column set C. Let

further X ∈ C and X = C −X. For each (n− 1)-tuple γ ∈ ΠX(t), we define an

4Here, we only consider single attribute nesting.

135

n-tuple γ∗ as follows:

γ∗[X] = γ

γ∗[X] = {κ[X] | κ ∈ t ∧ κ[X] = γ}

 then, nestX(t) = {γ∗ | γ ∈ ΠX(t)}

2

After nestX(t), if column X has only a set with “single” value {v} for all the

tuples, then we say that nesting failed and we treat {v} and v interchangeably

(i.e., {v} = v). Thus when nesting failed, the following is true: nestX(t) = t.

Otherwise, if column X has a set with “multiple” values {v1, ..., vk} with k ≥ 2 for

at least one tuple, then we say that nesting succeeded. The general procedure

for nesting is given in Table 7.2.

Example 11. Consider a table R in Table 7.3, where column names containing

a set after nesting (i.e., nesting succeeded) are appended by “+” symbol. Here

we assume that the columns A, B, C are non-nullable. In computing nestA(R)

at (b), the first, third, and fourth tuples of R agree on their values in columns

(B, C) as (a, 10), while their values of the column A are all different. Therefore,

these different values are grouped (i.e., nested) into a set {1,2,3}. The result is

the first tuple of the table nestA(R) – ({1,2,3}, a, 10). Similarly, since the sixth

and seventh tuples of R agree on their values as (b, 20), they are grouped to a set

{4,5}. In computing nestB(R) at (c), there are no tuples in R that agree on the

values of the columns (A, C). Therefore, nestB(R) = R. In computing nestC(R)

at (d), since the first two tuples of R – (1, a, 10) and (1, a, 20) – agree on the

values of the columns (A, B), they are grouped to (1, a, {10,20}). Nested tables

(e) through (j) are constructed similarly. 2

Since the nest operator requires scanning of the entire set of tuples in a given

table, it can be quite expensive. In addition, as shown in Example 11, there

136

NeT: R = (T,C, P, ∆) =⇒ X = (E,A, M, P, r, Σ)

1. Each table ti in R is translated to an element ei in X: E =
⋃
∀i{ei}.

2. For each table ti in R, apply the nest operator repeatedly until no nesting suc-

ceeds. Choose the best nested table based on the selected criteria. Denote

this table as t′i(c1, . . . , ck−1, ck, . . . , cn), where nesting succeeded on the columns

{c1, . . . , ck−1}. If k = 1 (i.e., no nesting succeeded), follow the flat translation.

Otherwise, do the following:

(a) For each column ci (1 ≤ i ≤ k−1), where P (ci) = (τ, u, n, d, f), if n =?, then

the content model is M(ei) = (. . . , c∗i , . . .), otherwise M(ei) = (. . . , c+
i , . . .).

(b) For each column cj (k ≤ j ≤ n), where P (cj) = (τ, u, n, d, f), do flat

translation

• (element-oriented mode) if n =?, the content model is M(ei) =

(. . . , c?
j , . . .), otherwise M(ei) = (. . . , cj , . . .).

• (attribute-oriented mode) if cj is translated to aj , then A(ei) =⋃
∀j{aj} and P (aj) = (τ , n, d, f).

3. All elements ei in X become roots: r =
⋃
∀i{ei}.

4. Copy ∆ in R into Σ in X.

Table 7.2: NeT algorithm.

137

A B C

#1 1 a 10

#2 1 a 20

#3 2 a 10

#4 3 a 10

#5 4 b 10

#6 4 b 20

#7 5 b 20

A+ B C

{1,2,3} a 10

1 a 20

4 b 10

{4,5} b 20

A B C

1 a 10

1 a 20

2 a 10

3 a 10

4 b 10

4 b 20

5 b 20

A B C+

1 a {10,20}

2 a 10

3 a 10

4 b {10,20}

5 b 20

(a) R (b) nestA(R) (c) nestB(R) = R (d) nestC(R)

A+ B C

{1,2,3} a 10

1 a 20

4 b 10

{4,5} b 20

A+ B C+

1 a {10,20}

{2,3} a 10

4 b {10,20}

5 b 20

A B C+

1 a {10,20}

2 a 10

3 a 10

4 b {10,20}

5 b 20

(e)
nestB(nestA(R))

= nestC(nestA(R))
(f) nestA(nestC(R)) (g) nestB(nestC(R))

A+ B C

{1,2,3} a 10

1 a 20

4 b 10

{4,5} b 20

A+ B C+

1 a {10,20}

{2,3} a 10

4 b {10,20}

5 b 20

(h)
nestC(nestB(nestA(R)))

= nestB(nestC(nestA(R)))
(i)

nestB(nestA(nestC(R)))

= nestA(nestB(nestC(R)))

Table 7.3: A relational table R and its various nested forms.

138

are various ways to nest the given table. Therefore, it is important to find an

efficient way (that uses the nest operator minimum number of times) of obtaining

an acceptable element content model.

First, to find out the total number of ways to nest, let us use the following

two properties [JS82]:

P1 : nestA(nestB(t)) 6= nestB(nestA(t))

P2 : nestX(nestAllL(t)) = nestAllL(t), if X ∈ L.

Here, nestAllL(t) represents performing nesting on the columns on L in the

order as shown below: nestAllL=<c1,c2,...,cn>(t) = nestc1(nestc2(. . . (nestcn(t))))

P1 states that “commutativity” of nesting does not hold in general and P2 states

that nesting along the same column repeatedly has the property of “idempo-

tency”. Using the two properties, the number of permutations to nest tables can

be described as follows:

Remark 1 Using the falling factorial power notation “x to the m falling” as xm

in [GKP94], the total number of different nestings T for a table with n columns

is given by: T =
∑n

k=1 nk 2

Proof. The number of the first nesting along n columns is the same as the

number of 1-element sequences: n. The number of the second nesting along n

columns is again the same as the number of 2-elements sequences by P2: n(n−1).

Continuing this, the number of the last nesting along n columns is again the same

as the number of n-elements sequences: n+n(n−1)+ · · ·+n(n−1) . . . (2)(1) =

n1 + n2 + · · ·+ nn =
∑n

k=1 nk (q.e.d)

According to Remark 1, there are 15 meaningful ways of nesting along the

columns A, B, C in Table 7.3. Then, the next questions are (1) how to decrease

139

T by avoiding unnecessary nesting, and (2) which nesting should be chosen as the

translation. To answer these questions, let us first describe a few useful properties

of the nest operator as follows:

Lemma 4. Consider a table t with column set C, and candidate keys, K1, K2, . . . ,

Kn ⊆ C. Applying the nest operator on a column X /∈ (K1 ∩ K2 ∩ . . . ∩ Kn)

yields no changes.

Proof. Consider a column X ∈ C, such that X is not an attribute of at least

one of the candidate keys, say X /∈ Ki. Now X ⊇ Ki, and hence X is unique.

Thus, no two tuples can agree on X. Therefore, by the definition of the nest

operator, nesting on X will fail. (q.e.d)

Corollary 2. For any nested table nestX(t), X → X holds. (q.e.d)

Corollary 2 states that after applying the nest operator of column X, the

remaining columns X become a super key. Fischer et al. [FST85] have proved

that functional dependencies are preserved against nesting as follows:

Lemma 5. [FST85] If X, Y , Z are columns of t, then: t : X → Y =⇒ nestZ(t) :

X → Y

Now, we arrive at the following useful property:

Theorem 1. Consider a table t with column set C, candidate keys, K1, K2, . . . ,

Kn ⊆ C, and column set K such that K = K1 ∩ K2 ∩ . . . ∩ Kn. Further, let

|C| = n and |K| = m (n ≥ m). Then, the number of necessary nestings, N , is

bounded by N ≤
∑m

k=1 mk

Proof. The first column to be nested, say X, is chosen such that X ∈ K by

Lemma 4, in one of the m ways. Now after the first nesting, by Corollary 2,

140

we have a new candidate key X. The next column to be nested is chosen from

K ∩ X, where |K ∩ X| = m − 1. Thus we have m − 1 ways of chosing the

second column for nesting. Continuing this, we have total number of nesting is

m + m(m− 1) + . . . + m(m− 1) . . . (2)(1) =
∑m

k=1 mk. (q.e.d)

Note that in general m is much smaller than n in Theorem 1, thus reducing

the number of necessary nesting significantly.

Example 12. Consider a table R in Table 7.3 again. Suppose attributes A and C

constitute a key for R. Since nesting on the same column repeatedly is not useful

by property P2 there is no need to construct, for instance, nestA(nestA(R)).

Since nesting on a non-key column is not useful by Lemma 4, nesting along

column B (e.g., nestB(R) at (c)) can be avoided. Furthermore, the functional

dependency (i.e., AC
key→ R = AC → AC = AC → B) persists after nesting on

either column A or C by Lemma 5. Consequently, one needs to construct only

the following nested tables: nestA(R) at (b), nestC(R) at (d), nestC(nestA(R))

at (e), nestA(nestC(R)) at (f). 2

As we have shown, when candidate key information is available, the number

of nestings to be performed can be reduced. However, when such information is

not known, the nest operator must be applied for all possible combinations in

Remark 1. After applying the nest operator to the given table repeatedly, there

can be still several nested tables where nesting succeeded. In general, the choice

of the final schema should take into consideration the semantics and usages of the

underlying data or application and this is where user intervention is beneficial.

By default, without further input from users, NeT chooses as the final schema

the nested table where the most number of nestings succeeded - this is a schema

which provides low “data redundancy” - as given in Table 7.2.

141

Example 13. Using NeT with the element-oriented mode, R9 in Example 9

would be translated to X13 = (E, A, M, P, r, Σ), where

E = {student, professor}

A(professor) = {Pname}

M(student) = (Sname, Advisor+, Course+)

M(professor) = (Age?)

P (Pname) = (ID,¬?, ε, ε)

r = {student, professor}

Σ = {{Sname, Advisor, Course} key→ student,

Pname
key→ professor, Advisor ⊆ Pname}

X13 can be further rewritten in XML-Schema notations as shown in Table 7.4.

Note that all three semantic constraints in Σ are captured in XML-Schema due

to its sufficient expressive power. 2

We expect that the NeT algorithm will be especially useful in two scenarios,

outlined below.

• The given relation is in 3NF (or BCNF) but not in 4NF. Non-fully normal-

ized relations occur quite commonly in legacy databases, and they exhibit

data redundancy. The NeT algorithm helps to decrease the data redun-

dancy in such cases.

As an example, consider the relation ctx(Course, Teacher, Text), which

gives the set of teachers and the set of text books for each course. Assume

that the following multivalued dependencies hold, Course � Teacher, and

Course�Text. Suppose the relation ctx is represented as such (i.e., ctx

is not in 4NF). The key for this relation is given by {Course, Teacher,

142

<schema>

<element name="student">

<complexType><sequence>

<element ref="Sname"/>

<element ref="Gender" minOccurs="0" maxOccurs="1"/>

<element ref="Advisor" maxOccurs="unbounded"/>

<element ref="Course" minOccurs="0" maxOccurs="unbounded"/>

</sequence></complexType>

</element>

<element name="professor">

<complexType>

<sequence> <element ref="Age" minOccurs="0" maxOccurs="1"/>

</sequence>

<attribute name="Pname" type="string" use="required"/>

</complexType>

</element>

<element name="Sname"> <complexType mixed="true"/> </element>

<element name="Gender"> <complexType mixed="true"/> </element>

<element name="Advisor"> <complexType mixed="true"/> </element>

<element name="Course"> <complexType mixed="true"/> </element>

<element name="Age"> <complexType mixed="true"/> </element>

<key name="ekey">

<selector xpath="//student"/>

<field xpath="Sname"/> <field xpath="Advisor"/>

<field xpath="Course"/>

</key>

<key name="pkey"> <selector xpath="//professor"/>

<field xpath="@Pname"/> </key>

<keyref refer="pkey"> <selector xpath="//student"/>

<field xpath="Advisor"/> </key>

</schema>

Table 7.4: An XML schema equivalent to a relational schema of Example 9 in

XML-Schema notations.

143

Text}key→ctx. When we do nesting on ctx, we will get the following ta-

ble ctx’(Course, Teacher+, Text+). Thus NeT helps in removing data

redundancies arising from multivalued dependencies.

• It is sometimes possible to represent the given relation “more intuitively” as

a nested table by performing grouping on one or more of the attributes. As

an example, consider the relation emp(empNum, branch) where the key is

given by empNum
key→ emp. This relation gives the employees and the branch

where they work. When NeT is applied on the above relation, we might

get the new nested relation as emp’(empNum+, branch). This relation has

grouped the list of employees by their branch.

Thus we observe that NeT is useful for decreasing data redundancy and ob-

taining a “more intuitive” schema by (1) removing redundancies caused by mul-

tivalued dependencies and (2) performing grouping on attributes. However NeT

considers tables one by one, and cannot obtain a big picture of the relational

schema where many tables are interconnected with each other through various

other dependencies such as inclusion dependencies. To remedy this problem, we

propose to use other semantic constraints of relational schema.

7.5 Translation using Inclusion Dependencies

In this section, we consider one kind of semantic constraints called Inclusion

Dependency (IND) in database theory. Other kinds of semantic constraints such

as Functional Dependency (FD) or Multi-Valued Dependency (MVD) are not

considered in this section for the following reasons: In general, most CASE tools

for relational database design generate schemas at least in 3NF. If there existed

any MVDs, for instance, then the table would have been split up (i.e., normalized

144

to 4NF) to avoid excessive data redundancy. Even if it was not normalized to

4NF, if we apply the NeT algorithm, most of the MVDs would have been removed.

General forms of INDs are difficult to acquire from the database automati-

cally. However, we shall consider the most pervasive form of INDs - foreign key

constraints - which can be queried through ODBC/JDBC interface. We study

the translation of inclusion dependencies incrementally in three steps. In the first

step, we consider the simplest case - one foreign key constraint defined between

two tables. In the second step, we consider the case when there exist two foreign

key constraints among three tables. In the third step, we consider the general

case of mapping any given relational schema.

7.5.1 One Foreign Key between two Tables

Foreign key constraints are a special kind of INDs where the attributes being

referenced form the primary key of the referenced relation. For two distinct

tables s and t with lists of columns X and Y , respectively, suppose we have

a foreign key constraint s[α] ⊆ t[β], where α ⊆ X and β ⊆ Y . Also suppose

that Ks ⊆ X is the key for s. Then, rewriting this in R notation, we have:

T = {s, t}, C(s) = {X}, C(t) = {Y }, ∆ = {s[α] ⊆ t[β], β
key→ t,Ks

key→ s}.

Different cardinality binary relationships between s and t can be expressed in

the relational model by a combination of the following: (1) α is unique/not-unique

(2) α is nullable/non-nullable.

The translation of two tables s, t with a foreign key constraint into XSchema,

summarized in Table 7.5, works as follows:

• If α is non-nullable (i.e., none of the columns of α can take null values),

then:

145

– If α is unique, then there is a 1 : 1 relationship between s and t. This

can be captured as a sub-element M(t) = (Y, s?).

– If α is not-unique, then there is a 1 : n relationship between s and t,

and this is captured as a sub-element M(t) = (Y, s∗).

If s is represented as a sub-element of t, then the key for s will change from

Ks to (Ks − α). The key for t will remain the same.

• If α is nullable, then the IND is represented as such in XSchema. Here we

do flat translation on s, and copy the IND s[α] ⊆ t[β] to Σ.

Let us study the case when α is nullable more closely with the following exam-

ple. Consider the relation t(w1, w2, w3) with key (w1, w2). Let t have the following

tuples: {(1, 1, 1)}. Now consider s(v1, v2, v3) with key (v2, v3), and IND s[v1, v2] ⊆

t[w1, w2]. Let s have the following tuples: {(null, 1, 1), (null, 1, 2), (null, 2, 1), (1, 1, 3)}.

We can observe that we cannot represent s as s(v3), and obtain the values of

(v1, v2) for an s tuple by representing this s tuple as a child of a t tuple, or by

having an IDREF attribute for the s tuple that refers to a t tuple. This is because

v1 is nullable.

In such a case, we represent the IND as such in XSchema. In this Chapter,

we are concerned mostly with the usage of sub-elements and IDREF attribute

for translation, and therefore, we will focus on the case when α is non-nullable,

unless stated otherwise.

Example 14. Consider two tables student and professor of Example 9 again.

There is a foreign key Advisor ⊆ Pname and Advisor is not unique. Using the

above rules, the schema will be mapped to the following XML schema in DTD

notation:

146

α s : t XSchema

υ, ¬? (1, 1) : (0, 1)
M(t) = (Y, s?), M(s) = (X − α),

Σ = {(Ks − α)
key→ s, β

key→ t}

υ, ? (0, 1) : (0, 1)
M(t) = (Y), M(s) = (X),

Σ = {s[α] ⊆ t[β], Ks
key→ s, β

key→ t}

¬υ, ¬? (1, 1) : (0, n)
M(t) = (Y, s∗), M(s) = (X − α),

Σ = {(Ks − α)
key→ s, β

key→ t}

¬υ, ? (0, 1) : (0, n)
M(t) = (Y), M(s) = (X),

Σ = {s[α] ⊆ t[β], Ks
key→ s, β

key→ t}

Table 7.5: Different values taken by α, the corresponding cardinality of the binary

relationship between s and t, and the corresponding translation to XSchema.

<!ELEMENT professor (Pname,Age,student*)>

<!ELEMENT student (Sname,Course)>

Note the usage of * attached to the sub-element student. Note further that to

identify a unique student element for a given professor, one needs now only

Sname and Course pair (Advisor attribute was removed from the original key

attribute list). 2

7.5.2 Two Foreign Key among three Tables

Now consider the case where two foreign key constraints exist among three tables

s, t1, t2 with a list of columns X, Y1, Y2, respectively, such that s[α] ⊆ t1[β1]

and s[γ] ⊆ t2[β2], where α, γ ⊆ X and are non-nullable, β1 ⊆ Y1 and β2 ⊆ Y2.

If one applies the mapping rules for the case of a foreign key between two tables

in Section 7.5.2 one at a time, then one will have a combination of the following

depending on whether α and γ are unique or not: (1) M(t1) = (Y1, s?) or M(t1) =

147

(Y1, s
∗), (2) M(t2) = (Y2, s?) or M(t2) = (Y2, s

∗).

The above translation has redundancy, and it exhibits the phenomenon known

in database theory as “update anomaly” for s. That is, when one wants to update

data for s, he/she needs to update s in two different places – fragment of s data

under both t1 and t2. On the contrary, the original relational schema is “better”

because one needs to update tuples of s in a single place. The same problem

occurs for the case of “delete” as well. To avoid these anomalies, one of the two

foreign key constraints should be captured either using INDs or using IDREF

attributes. For example, let us assume that the first foreign key constraint s[α]

⊆ t1[β1] is represented as M(t1) = (Y1, s
∗), M(s) = (X − α). Then the second

foreign key constraint s[γ] ⊆ t2[β2] can be represented using IDREF attribute as

follows:

A(t2) = {ID t2}, P (ID t2) = (ID,¬?, ε, ε)

A(s) = {Ref t2}, P (Ref t2) = (IDREF,¬?, ε, ε)

M(t2) = (Y2), M(s) = (X − α− γ)

Let us denote the old and new keys for s as Ks and K ′
s, respectively. Then, K ′

s

is determined as follows: (1) if α∩Ks = φ, then K ′
s = Ks, and (2) if α∩Ks 6= φ,

then K ′
s = (Ks − α) ∪ Ref t2

Example 15. In addition to two tables student and professor of Example 14,

consider a third table class(Cname, Room) with a second foreign key student[Course]

⊆ class[Cname]. Then, using the above rules, the schema will be mapped to the

following XML schema in DTD notation:

<!ELEMENT professor (Pname,Age,student*)>

<!ELEMENT student (Sname)>

<!ELEMENT class (Cname,Room)>

148

<!ATTLIST student Ref_class IDREF>

<!ATTLIST class ID_class ID>

Note the addition of two new attributes - Ref class of type IDREF and ID class

of type ID. The new key for student is given by {Sname, Ref class
key→ student},

which cannot be represented in DTD. 2

Note that between two foreign keys, deciding which one is represented as sub-

element and which one is represented as IDREF attribute can best be done based

on further semantics.

7.5.3 A General Relational Schema

Now let us consider the most general case with set of tables {t1, ..., tn} and INDs

ti[αi] ⊆ tj[βj], where i, j ≤ n. We consider only those INDs that are foreign key

constraints (i.e., βj
key→ tj), and where αi is non-nullable. The relationships among

tables can be captured by a graph representation, termed as IND-Graph.

Definition 15 (IND-Graph) An IND-Graph G = (V, E) consists of a node set

V and a directed edge set E, such that for each table ti, there exists a node in

V , and for each distinct IND ti[α] ⊆ tj[β], tj → ti exists in G. 2

Note the edge direction is reversed from the IND direction for convenience.

Given a set of INDs, such IND-Graph can be easily constructed. Once IND-

Graph is constructed, one needs to decide the starting point to apply translation

rules. For that purpose, we use the notion of top nodes similar to the one

in [STH99, LC00b], where an element is a top node if it cannot be represented as

a sub-element of any other element. Such top nodes can be identified as follows:

1. An element s is a top node, if there exists no other element t, t 6= s, where

there is a IND of the form s[α] ⊆ t[β], and α is non-nullable.

149

prof

student

dept

proj

emp

course
top node

Figure 7.2: The IND-Graph representation of the schema of Table 7.7.

2. Consider a set of elements S = s1, s2, . . . , sk that form a cyclic set of INDs

and none of the elements in S is a top node by 1. Suppose there exists no

element t /∈ S, such that there is a IND of the form sj[α] ⊆ t[β], and α

is non-nullable. In this case, choose any one of the elements in S as a top

node.

Let T denote the set of top nodes. After identifying the top nodes, we tra-

verse G, using say Breadth-First Search (BFS), until we traverse all the nodes

and edges, and represent the INDs as sub-elements or IDREF attributes. The

algorithm for Constraint-based Translation (CoT) is given in Table 7.6.

Example 16. Consider a schema and its associated INDs in Table 7.7. The

IND-Graph is shown in Figure 7.2. Two top nodes are identified (1) course:

There is no node t, where there is an IND of the form course [α] ⊆ t[β], and

(2) emp: There is a cyclic set of INDs between emp and proj, and there exists

no node t such that there is an IND of the form emp [α] ⊆ t[β] or proj [α] ⊆

t[β]. Therefore of emp and proj we decided to choose emp arbitrarily. Following

list shows one of the possible orders in which the different INDs are visited, the

choice made to represent the IND (either sub-element or IDREF attribute), and

the resulting changes in XSchema.

1. prof(Teach) ⊆ course(Cid): M (course) = (Cid, Title, Room, prof∗),

150

CoT: R = (T,C, P, ∆) =⇒ X = (E,A, M, P, r, Σ)

1. Construct IND-Graph G = (V,E) from the given INDs; Identify T , the set of top

nodes. Define S = T to keep track of top-nodes and nodes that are represented

as sub-elements.

2. For each top-node t ∈ T , do BFS. Suppose we reach a node w from v (i.e., IND:

w[α] ⊆ v[β]); Let C(w) = Cw, and C(v) = Cv.

(a) If w /∈ S (i.e., w is not yet a sub-element of some other node), translate the

IND as in Section 7.5.1.

i. If α is unique, then M(v) = (Cv, w?).

ii. If α is not-unique, then M(v) = (Cv, w
∗).

iii. M(w) = (Cw − α).

iv. S = S ∪ w.

(b) If w ∈ S (i.e., w is already a sub-element of some other node), translate the

IND as IDREF attribute as in Section 7.5.2.

i. A(v) = {ID v}, A(w) = {Ref v}, M(v) = (Cv), M(w) = (Cw − α),

Σ = K ′
w

key→ w.

3. Copy the remaining integrity constraints in ∆ to Σ. Also set r = T .

Table 7.6: CoT algorithm.

151

student(Sid, Name, Advisor)

emp(Eid, Name, ProjName)

prof(Eid, Name, Teach)

course(Cid, Title, Room)

dept(Dno, Mgr)

proj(Pname, Pmgr)

student(Advisor) ⊆ prof(Eid)

emp(ProjName) ⊆ proj(Pname)

prof(Teach) ⊆ course(Cid)

prof(Eid, Name) ⊆ emp(Eid, Name)

dept(Mgr) ⊆ emp(Eid)

proj(Pmgr) ⊆ emp(Eid)

Table 7.7: Example of a relational schema with complex INDs.

M (prof) = (Eid, Name)

2. student(Advisor) ⊆ prof(Eid): M(prof) = (Eid, Name, student∗),

M(student) = (Sid, Name)

3. dept(Mgr)⊆ emp(Eid): M(emp) = (Eid, Name, ProjName, dept∗), M(dept)

= (Dno)

4. proj(Pmgr) ⊆ emp(Eid): M(emp) = (Eid, Name, ProjName, dept∗, proj∗),

M(proj) = (Pname)

5. emp(ProjName) ⊆ proj(Pname): M(emp) = (Eid, Name, dept∗, proj∗),

A(proj) = {ID proj}, A(emp) = {Ref proj}

6. prof(Eid, Name) ⊆ emp(Eid, Name): M(prof) = (student∗), A(emp) =

{ID emp}, A(prof) = {Ref emp}, Σ = {Ref emp
key→ prof} 2

152

Example 17. X16 of Example 16 can be further rewritten in element-oriented

mode to DTD notations as follows:

<!ELEMENT course (Cid, Title, Room, prof*)>

<!ELEMENT prof (Name, student*)>

<!ATTLIST prof Eid ID>

<!ELEMENT student (Sid, Name)>

<!ELEMENT emp (Eid, Name, ProjName, dept*, proj*)>

<!ATTLIST emp Ref_prof IDREF>

<!ELEMENT dept (Dno)>

<!ELEMENT proj (Pname)>

<!ATTLIST proj Ref_emp IDREFS>

It is worthwhile to point out that there are several places in CoT where human

experts can determine better mapping based on the semantics and usages of the

underlying data or application.

• The CoT algorithm identifies a minimal set of top-nodes, breaking any ties

(when there are cyclic INDs) arbitrarily. A better mapping might have

more top-nodes than this minimal set, or might choose to break a tie in a

particular manner.

• Given a set of foreign-key constraints on one table, CoT chooses one foreign-

key constraint to be represented as a sub-element, and represents the re-

maining using IDREF attributes. Human experts might be able to provide

better input as to which constraint should be represented as sub-element,

and which as IDREF attributes.

Examples so far have shown the conversion flow of X→ CoT→ DTD. We can

also have the conversion flow X→ NeT→ CoT→ DTD. However this imposes a

153

restriction; when NeT followed by CoT are applied, nesting can be done only on

attributes that do not participate in any IND. One such example is shown below:

Example 18. Consider R9 in Example 9. Let us first apply NeT and then

CoT on this. When we apply NeT, we perform nesting only on the column

Course of student, and obtain a content model for student as M(student) =

(Sname, Advisor, Course+). Now applying CoT on the above schema, we get

the output XSchema as X18 = (E, A, M, P, r, Σ), where

E = {student, professor}

A(professor) = {Pname}

M(student) = (Sname, Course+)

M(professor) = (Age?, student∗)

P (Pname) = (ID,¬?, ε, ε)

r = {student, professor}

Σ = {{Sname, Course} key→ student,

Pname
key→ professor} 2

7.6 Discussion

All three algorithms – FT, NeT, and CoT – are “correct” in the sense that they

all have preserved the original information of relational schema. For instance,

using the notion of information capacity [MIR94], a theoretical analysis for the

correctness of our translation procedures is possible; we can actually show that

NeT and CoT algorithms are equivalence preserving transformations . However,

we defer this detailed analysis to a later version.

With respect to the “goodness” of XML schema that the proposed algo-

rithms generate, it is not obvious to bluntly state whether or not they are good,

154

since there has not been any unanimous normalization theory for XML model

yet. Some early work for nested relational model (e.g., [OY87]) is related, but

more recently a few proposals have been made for normal forms of XML model

(e.g., [EM01, WLL01]). To a greater or lesser extent, the crux of such normal

forms is an attempt to reduce data redundancy so that various anomalies can

be avoided. Although the output schema from NeT or CoT does not exactly

fit into normal forms defined by [EM01, WLL01], they share similar properties.

For instance, identifying multivalued attributes and making them repeating sub-

elements in NeT is essentially a necessary step towards “object class normal

form” in [WLL01]. The use of reference attributes in CoT for handling multiple

foreign key constraints defined on one table (Section 7.5.2) can be explained sim-

ilarly. Therefore, we would like to point out that although it is early to formally

prove the goodness of our proposals, it is evident that our proposals lead to less

redundant yet correct XML schema.

7.7 Experimental Results

7.7.1 NeT Results

We compare the results of FT and NeT with that of DB2XML v 1.3 [Tur99]. Con-

sider the Orders table (containing 830 tuples) found in MS Access NorthWind

sample database.

Orders (CustomerID, EmployeeID, ShipVia, ShipAddress,

ShipCity, ShipCountry, ShipPostalCode)

Tables 7.8 and 7.9 show the DTDs generated by DB2XML, FT in attribute-

oriented mode, NeT in both element-oriented and attribute-oriented modes, re-

155

<!ELEMENT Orders (CustomerID,EmployeeID,ShipVia,ShipAddress,

ShipCity,ShipCountry,ShipPostalCode)>

<!ELEMENT CustomerID (#PCDATA)>

<!ATTLIST CustomerID ISNULL (true|false) #IMPLIED>

<!ELEMENT EmployeeID (#PCDATA)>

<!ATTLIST EmployeeID ISNULL (true|false) #IMPLIED>

<!ELEMENT ShipVia (#PCDATA)>

<!ATTLIST ShipVia ISNULL (true|false) #IMPLIED>

...

<!ELEMENT ShipCountry (#PCDATA)>

<!ATTLIST ShipCountry ISNULL (true|false) #IMPLIED>

<!ELEMENT ShipPostalCode (#PCDATA)>

<!ATTLIST ShipPostalCode ISNULL (true|false) #IMPLIED>

(a) DB2XML

<!ELEMENT Orders (EMPTY)>

<!ATTLIST Orders

CustomerID CDATA #IMPLIED

EmployeeID CDATA #IMPLIED

ShipVia CDATA #IMPLIED

ShipAddress CDATA #IMPLIED

ShipCity CDATA #IMPLIED

ShipCountry CDATA #IMPLIED

ShipPostalCode CDATA #IMPLIED>

(b) FT in attribute-oriented mode

Table 7.8: DTDs generated by FT algorithm.

spectively. In Table 7.8(a), DB2XML always uses element to represent columns

of a table. To represent whether the column is nullable or not, DB2XML adds a

special attribute ISNULL to every element: i.e., “ISNULL = true” means the col-

umn is nullable. In Table 7.8(b), FT in attribute-oriented mode uses #IMPLIED or

REQUIRED to represent whether the column is nullable or not. Observe that both

DB2XML and FT share the same problem of translating “flat” relational schema

to “flat” XML schema. In both Tables 7.9(a) and 7.9(b), NeT finds two columns

EmployeeID and ShipVia can be nested. Intuitively, the new schema infers that

156

<!ELEMENT Orders (CustomerID,EmployeeID+,ShipVia*,ShipAddress?,

ShipCity?,ShipCountry?,ShipPostalCode?)>

<!ELEMENT CustomerID (#PCDATA)>

<!ELEMENT EmployeeID (#PCDATA)>

<!ELEMENT ShipVia (#PCDATA)>

<!ELEMENT ShipAddress (#PCDATA)>

<!ELEMENT ShipCity (#PCDATA)>

<!ELEMENT ShipCountry (#PCDATA)>

<!ELEMENT ShipPostalCode (#PCDATA)>

(a) NeT in element-oriented mode

<!ELEMENT Orders (EmployeeID+,ShipVia*)>

<!ATTLIST Orders

CustomerID CDATA #REQUIRED

ShipAddress CDATA #IMPLIED

ShipCity CDATA #IMPLIED

ShipCountry CDATA #IMPLIED

ShipPostalCode CDATA #IMPLIED>

<!ELEMENT EmployeeID (#PCDATA)>

<!ELEMENT ShipVia (#PCDATA)>

(b) NeT in attribute-oriented mode

Table 7.9: DTDs generated by NeT algorithm.

for each CustomerID, multiple non-zero EmployeeID and multiple ShipVia can

exist. Also NeT finds that CustomerID is a mandatory column. To ensure this

property, Table 7.9(a) adds no suffix such as ? or * to CustomerID sub-element

and Table 7.9(b) uses #REQUIRED construct explicitly. Not only DTDs found by

NeT are more succinct than one by DB2XML, We observe that the DTDs found

by NeT are more succinct and more intuitive than the ones found by DB2XML.

We implemented the NeT algorithm described in Table 7.2, where we used

two additional optimization rules: (1) if nestX(t) = t, then nestX(nestAllL(t)) =

nestAllL(t) for any list of columns, L, and (2) if nestX(nestAllL(t)) = nestAllL(t)

for any column X and all possible list of columns L of length l, then nestX(nestAllM(t)) =

157

Test Set
of attr.

NestRatio ValueRatio
Size before # of nested Time

/ tuple / after attr. (sec.)

Balloons1 5 / 16 42 / 64 80 / 22 0.455 / 0.152 3 1.08

Balloons2 5 / 16 42 / 64 80 / 22 0.455 / 0.150 3 1.07

Balloons3 5 / 16 40 / 64 80 / 42 0.455 / 0.260 3 1.14

Balloons4 5 / 16 42 / 64 80 / 22 0.455 / 0.149 3 1.07

Hayes 6 / 132 1 / 6 792 / 522 1.758 / 1.219 1 1.01

Bupa 7 / 345 0 / 7 2387 / 2387 7.234 / 7.234 0 4.40

Balance 5 / 625 56 / 65 3125 / 1120 6.265 / 2.259 4 21.48

TA Eval 6 / 110 253 / 326 660 / 534 1.559 / 1.281 5 24.83

Car 7 / 1728 1870 / 1957 12096 / 779 51.867 / 3.157 6 469.47

Flare 13 / 365 11651 / 13345 4745 / 2834 9.533 / 5.715 4 6693.41

Table 7.10: Summary of NeT experimentations.

nestAllM(t) for any column X and all possible list of columns M of length m,

where m ≥ l.

Our preliminary results comparing the goodness of the XSchema obtained

from NeT, and FT with that obtained from DB2XML v 1.3 [Tur99] appeared

in [LMC01]. We further applied our NeT algorithm on several test sets drawn

from UCI KDD5 / ML6 repositories, which contain a multitude of single-table

relational schemas and data. Sample results are shown in Table 7.10. Two metrics

are used as follows:

NestRatio =
of successful nesting

of total nesting

ValueRatio =
of original data values

of data values D in the nested table

where D is the number of individual data values present in the table. For example,

the D in the row ({1, 2, 3}, a, 10) of a nested table is 5.

5http://kdd.ics.uci.edu/
6http://www.ics.uci.edu/∼mlearn/MLRepository.html

158

Note that NestRatio denotes the efficiency of our optimization rules, while

ValueRatio implies whether it was useful to perform nesting.

In our experimentation, we observed that most of the attempted nestings are

succesful, and hence our optimization rules are quite efficient. In Table 7.10, we

see that nesting was useful for all the data sets except for the Bupa data set.

Also nesting was especially useful for the Car data set, where the size of the

nested table is only 6% of the original data set. Time required for nesting is an

important parameter, and it depends on the number of attempted nestings, and

the number of tuples. The number of attempted nestings depend on the number

of attributes, and increase drastically as the number of attributes increases. This

is observed for the Flare data set, where we have to do nesting on 13 attributes.

The NeT algorithm could nest only up to 4 attributes for feasibility reasons, it is

actually possible to nest more for this data set.

7.7.2 CoT Results

For testing CoT, we need some well-designed relational schema where tables are

interconnected via inclusion dependencies. For this purpose, we use the TPC-H

schema v 1.3.07, which is an ad-hoc, decision support benchmark and has 8 tables

and 8 inclusion dependencies. The IND-Graph for the TPC-H schema is shown

in Figure 7.4.

CoT identifies two top-nodes - part and region. Then, CoT converted the

TPC-H schema into the following XSchema Xtpc = (E, A, M, P, r, Σ). We show

the definitions only for attributes of types ID and IDREF.

E = {part, partsupp, lineitem, orders, customer, supplier, nation, region}

A(part) = {PartKey, Name, Mfgr, Brand, Type, Size, Container,

7http://www.tpc.org/tpch/spec/h130.pdf

159

Figure 7.3: The TPC-H schema: the arrow → points in the direction of the

1-to-many relationship between tables.

supplier

lineitem

nation

orders

partsupp

customer

part

region

Figure 7.4: The IND-Graph representation of the TPC-H schema.

160

0

50000

100000

150000

200000

250000

0 0.5 1 1.5 2 2.5

of

 d
at

a
va

lu
es

 in
 X

M
L

do
cu

m
en

t

size of TPC-H raw data (MB)

FT
CoT

Figure 7.5: Comparison of XML documents generated by FT and CoT algorithms

for TPC-H data.

RetailPrice, Comment}

M(part) = ε

P (PartKey) = (ID,¬?, ε, ε)

A(region) = {RegionKey,Name,Comment}

M(region) = {nation∗}

P (RegionKey) = (ID,¬?, ε, ε)

A(nation) = {NationKey, Name, Comment}

M(nation) = {supplier∗, customer∗}

P (NationKey) = (ID,¬?, ε, ε)

A(supplier) = {SuppKey, Name, Address, Phone,AcctBal, Comment}

M(supplier) = {partsupp∗}

161

P (SuppKey) = (ID,¬?, ε, ε)

A(partsupp) = {Ref part, AvailQty, SupplyCost, Comment}

M(partsupp) = {lineitem∗}

P (Ref part) = (IDREF,¬?, ε, ε)

A(lineitem) = {Ref orders, LineNumber,Quantity, ExtendedPrice,

Discount, Tax, ReturnF lag, LineStatus, ShipDate, CommitDate,

ReceiptDate, ShipInstruct, ShipMode, Comment}

M(lineitem) = ε

P (Ref orders) = (IDREF,¬?, ε, ε)

A(customer) = {CustKey, Name, Address, Phone,AcctBal, MktSegment, Comment}

M(customer) = {orders∗}

P (CustKey) = (ID,¬?, ε, ε)

A(orders) = {OrderKey, OrderStatus, TotalPrice,OrderDate,

OrderPriority, Clerk, ShipPriority, Comment}

M(orders) = ε

P (OrderKey) = (ID,¬?, ε, ε)

r = {part, region}

Σ = {PartKey
key→ part, SuppKey

key→ supplier, {Ref part, SuppKey} key→ partsupp,

{Ref orders, LineNumber} key→ lineitem,OrderKey
key→ orders,

CustKey
key→ customer,NationKey

key→ nation, RegionKey
key→ region}

Six of the eight inclusion dependencies are mapped using sub-element, and the

remaining two are mapped using IDREF attributes. We believe that the XSchema

produced by CoT is “more intuitive” than the relational schema we started with.

Figure 7.5 shows a comparison of the number of data values originally present

in the database, and the number of data values in the XML document generated

162

by FT and CoT. Because FT is a flat translation, the number of data values in

the XML document generated by FT is the same as the number of data values

in the original data. However, CoT is able to decrease the number of data values

in the generated XML document by more than 12%.

Table 7.11 shows a portion of XML documents (generated by CoT) that con-

form to the XSchema Xtpc. Note that CoT generated interwoven hierarchical

structures in the final schema, instead of a flat schema.

7.8 Summary

We have presented two relational-to-XML conversion algorithms - NeT and CoT.

The naive translation algorithm FT translates the “flat” relational model to “flat”

XML model in a one-to-one manner. Thus FT does not use the non-flat features

of the XML model, possible through regular expression operators such as “*”

and “+”. To remedy this problem, we first presented NeT, which uses the nest

operator to generate a more precise and intuitive XML Schema from relational

inputs. When poorly designed or legacy relational schema needs to be converted

to XML format, NeT can suggest a fairly intuitive XML schema. However NeT

is only applicable to a single table at a time, and cannot obtain a big picture

of a relational schema where many tables are interconnected with each other.

Our next algorithm CoT addresses this problem - CoT uses semantic constraints

(especially inclusion dependencies) specified in the relational model to come up

with a more intuitive XML Schema for the entire relational schema.

Thus our approaches have the following properties: (1) automatically infer a

“good” XML Schema from a given relational schema, (2) remove redundancies

that might be present in poorly designed or legacy relational schema (3) maintain

163

<TPC-H>

<region RegionKey="1" Name="AMERICA" Comment="even, ironic theodolites">

<nation NationKey="24" Name="UNITED STATES"

Comment="blithely regular deposits serve furiously blithely regular!">

<supplier SuppKey="19" Name="Supplier#000000019" Address="edZT3es,"

Phone="34-278-310-2731" AcctBal="6150.38"

Comment="quickly regular pinto beans mold blithely slyly pending.">

<partsupp PartKey="2518" AvailQty="8018" SupplyCost="131.37"

Comment="pending instructions sleep after the pending, regular.">

<lineitem OrderKey="5999968" LineNumber="179124" Quantity="19"

ExtendedPrice="259.28" Discount="0.06" Tax="0.00" ReturnFlag="N"

ShipDate="1998-10-28" ReceiptDate="1998-11-25"

ShipInstruct="COLLECT" ShipMode="SHIP" Comment="ironic"/>

</partsupp>

</supplier> ... <supplier/>

<customer CustKey="117" Name="Customer#000000117" Address="uNhM,5Y"

Phone="34-403-631-3505" AcctBal="3950.83" MktSegment="FURNITURE"

Comment="ironic requests cajole furiously around the special.">

<orders Ref_lineitem="5999968" OrderStatus="F"

TotalPrice="354575.46" OrderDate="1992-12-24"

OrderPriority="3-MEDIUM" Clerk="Clerk#000000736"

ShipPriority="0" Comment="packages according to the regular"/>

</customer> ... <customer/>

</nation>

</region>

<part PartKey="1" Name="goldenrod spring peru powder" Mfgr="Manufacturer#1"

Brand="Brand#13" Type="PROMO BURNISHED COPPER" Size="7"

Container="JUMBO PKG" RetailPrice="901.00" Comment="final deposits s"

Ref_partsupp="2518"/>

...

</TPC-H>

Table 7.11: TPC-H data (populated by DBGEN) published as an XML document

that conforms to Xtpc.

164

semantic constraints during translation. With a rapid adoption of XML standards

among industries and majority of data still stored in relational databases, the need

to correctly and effectively convert relational data into XML format is imminent.

We believe our proposed methods are good additions to such a practical problem.

Our work in this Chapter concentrates on obtaining a “good” and “correct”

XML schema. However there are still several other issues to be studied. Im-

plementation issues (e.g., I/O cost, tagging strategy, nesting strategy) are very

important. Early investigation on these issues is done in [Bou00]. Since our work

in this Chapter proposes algorithms which can result in a fairly complex target

XML schema as an output, studying an efficient implementation of our NeT and

CoT algorithms is an important direction. Another direction of future research

is studying the normalization theory of XML schema. By formally defining what

is a “good” XML schema, one can devise better relational-to-XML conversion

algorithms that result in normalized XML schema. Also our NeT algorithm

performed only single attribute nesting. Multiple attribute nesting is another

interesting research direction.

In publishing relational data as XML documents, implementation issues (e.g.,

I/O cost, tagging strategy, nesting strategy) are as important as an issue of infer-

ring a right XML schema. Early investigation on the issue includes, for instance,

works in [Bou00]. Since our work in this Chapter proposes algorithms which can

result in a fairly complex target XML schema as an output, studying an efficient

implementation of our NeT and CoT algorithms is an important direction. An-

other direction of future research is studying the normalization theory of XML

schema. By formally defining what the “good” XML schema is first, one can

devise better relational-to-XML conversion algorithms that result in normalized

XML schema. the correctness of a converted schema between two models. For

165

instance, using the notion of information capacity [MIR94], a theoretical analysis

for the correctness of our translation procedures is possible; we can show that

NeT and CoT algorithms are equivalence preserving transformations . However,

we defer this detailed analysis to a later version. one can determine whether or

not a relational schema A is correctly converted to an XML schema B. Given a

variety of target XML schema language proposals, we believe that it is not always

possible nor plausible to correctly convert A to B and the correctness aspect can

be of help in a such setting.

166

CHAPTER 8

Conclusion

It has long been believed that exact matching in querying has limitations, espe-

cially for the intelligent query systems which try to mimic human discourse. In

such a system, when the exact matching to the user query is not available, sys-

tems provide approximate matching instead. In both IR and DB communities,

techniques to support such approximate matching have been the focus of active

research in past. In this dissertation, we extend this idea to XML model so that

systems can provide approximate “XML” answers when exact “XML” matches

are not satisfactory.

The difficulties in doing so are that unlike relational models, in DB or a

keyword list-based querying in IR settings, XML model adopts a hierarchical

tree-shaped data model, and in turn XML queries composed by users are also

naturally tree-shaped ones. Therefore, the problem of finding approximate an-

swers that are close to the original queries in both structures and values becomes

non-trivial. In this dissertation, we studied various issues related to this problem.

Although we did not provide a complete ready-to-ship solution to the problem,

we believe our understanding and findings presented in this dissertation will be

a good foundation towards a generic solution in future.

In this dissertation, we first adopted the notion of query relaxation in rela-

tional model into XML model and discussed the types of possible XML query

relaxation and their semantics. Second, we studied two fundamental issues that

167

are related to support query relaxation using native XML engines. That is, we

described some of the preliminary work on distance metric for trees and proposed

a novel selectivity estimation method that takes the characteristics of query re-

laxation in XML model into consideration. Finally, we presented issues involved

in converting data between XML and relational models and proposed three novel

conversion algorithms that not only capture the original structures and values,

but also well preserve the semantic constraints of the original schema. This is a

necessary step to support query relaxation for XML model by way of using the

mature relational database systems.

8.1 Future Work

Many interesting research directions are ahead.

• Design and Implementation of Relaxation-enabled Query Lan-

guage: Once the full understanding of query relaxation for XML model

has been established, it is important to provide a fine and declarative con-

trol of query relaxation to end users. For this purpose, one of the most

common tools being used is the query language. Based on the relaxation

framework in Chapter 3, we plan to build an XML query language that

supports query relaxation. The major features of such language are the

following:

– The language is based on the standard XQuery [CFR01] query state-

ments, and is downward compatible with the corresponding portion of

XQuery FLWR statements.

– The language allows the user to specify relaxation constructs (e.g.

approximate values, conceptual terms, and preference list for certain

168

query condition) in a declarative manner.

– The language allows the user to specify relaxation control constructs

such as an unacceptable list for certain query condition, relaxation

order for multiple relaxable conditions, minimum answer set size, etc.

and allows the user to rank the XML answer sets based on the simi-

larity metric specified in the query.

• Better Method for Top-k XML Query: In many applications, user

specify some desirable target values without requiring the exact matches,

but demanding the minimum number of answers to be ranked. In such a

top-k query problem, one of the fundamental issue to solve is how to relax

the original query in such s way that only one relaxation will guarantee the

finding of k matches. In relational databases, techniques such as [CG99]

have been available. However, no such technique has been developed for

general XML model. The problem, of course, lies in the fact that the

relaxation in XML model has to do with both values and structures of the

query. A novel selectivity estimation technique proposed in Chapter 5 was

aimed at serving the following control flow in query relaxation:

1. N ← EstimateSelectivity(Q)

2. While (N < k)

(a) Q ← Relax(Q)

(b) N ← EstimateSelectivity(Q)

If a better technique, say SingleRelax(), towards the top-k query problem

were available, the above pseudo-code could be rephrased as follows:

1. N ← EstimateSelectivity(Q)

169

2. If (N < k)

(a) Q ← SingleRelax(Q)

Note that the loop was removed due to the guarantee provided by the

SingleRelax() method. Often, this removal implies significant gains in

query relaxation.

170

References

[AAN01] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. “Estimating
the Selectivity of XML Path Expressions for Internet Scale Applica-
tions”. In VLDB, Roma, Italy, Sep. 2001.

[ACS02] S. Amer-Yahia, S. Cho, and D. Srivastava. “Tree Pattern Relax-
ation”. In EDBT, Prague, Czech Republic, Mar. 2002.

[AGM97] S. Abiteboul, R. Goldman, J. McHugh, V. Vassalos, and Y. Zhuge.
“Views for Semistructured Data”. In Proc. of the Workshop on Man-
agement of Semistructured Data, Tucson, Arizona, May 1997.

[AHD96] P. Arabie, L. J. Hubert, and G. De Soete (Eds). “Clustering and
Classification”. World Scientific, 1996.

[AQM97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J.Wiener, and
J. Widom. “The Lorel Query Language for Semistructured Data”.
Int’l J. on Digital Libraries (IJDL), 1(1):68–88, Apr. 1997.

[BC00] A. Bonifati and S. Ceri. “Comparative Analysis of Five XML Query
Languages”. ACM SIGMOD Record, 29(1):68–77, Mar. 2000.

[BCD95] D. T. Barnard, G. Clarke, and N. Duncan. “Tree-to-tree Correction
for Document Trees”. Technical report, Queen’s Univ. Computer
Science Dept., Jan. 1995.

[BCN92] C. Batini, S. Ceri, and S. B. Navathe. “Conceptual Database Design:
An Entity-Relationship Approach”. The Benjamin/Cummings Pub.,
1992.

[BFR02] P. Bohannon, J. Freire, P. Roy, and J. Simeon. “From XML Schema
to Relations: A Cost-Based Approach to XML Storage”. In IEEE
ICDE, San Jose, CA, Feb. 2002.

[BFW98] P. Buneman, W. Fan, and S. Weinstein. “Path Constraints in
Semistructured and Structured Databases”. In ACM PODS, Seat-
tle, WA, Jun. 1998.

[BHP00] P. Bernstein, A. Halevy, and R. Pottinger. “A Vision of Management
of Complex Models ”. ACM SIGMOD Record, 29(3):55–63, Dec.
2000.

171

[BKK00] S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, and R. Murthy.
“Oracle8i - The XML Enabled Data Management System.”. In IEEE
ICDE, San Diego, CA, Feb. 2000.

[BL01] A. Bonifati and D. Lee. “Technical Survey of XML Schema and Query
Languages”. Technical report, UCLA Computer Science Dept., Jun.
2001.

[BM01] P. V. Biron and A. Malhotra (Eds). “XML Schema
Part 2: Datatypes”. W3C Recommendation, May 2001.
http://www.w3.org/TR/xmlschema-2/.

[Bou99] R. Bourret. “XML and Databases”. Web page, Sep. 1999.
http://www.rpbourret.com/xml/XMLAndDatabases.htm.

[Bou00] R. Bourret. “Data Transfer Strategies: Transferring Data between
XML Documents and Relational Databases”. Web page, 2000.
http://www.rpbourret.com/xml/DataTransfer.htm.

[BPS00] T. Bray, J. Paoli, and C. M. Sperberg-McQueen (Eds). “Extensible
Markup Language (XML) 1.0 (2nd Edition)”. W3C Recommenda-
tion, Oct. 2000. http://www.w3.org/TR/2000/REC-xml-20001006.

[BR99] R. Baeza-Yates and B. Ribeiro-Neto. “Modern Information Re-
trieval”. Addison–Wesley, 1999.

[CAC94] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. “From Struc-
tured Document to Novel Query Facilities”. In ACM SIGMOD, Min-
neapolis, MN, Jun. 1994.

[CAM02] G. Cobena, S. Abiteboul, and A. Marian. “Detecting Changes in
XML Documents”. In IEEE ICDE, San Jose, CA, Feb. 2002.

[CCD99] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and
L. Tanca. “XML-GL: a Graphical Language for Querying and Re-
structuring WWW Data”. In Int’l World Wide Web Conf. (WWW),
Toronto, Canada, May 1999.

[CCH94] W. W. Chu, Q. Chen, and A. Huang. “Query Answering via Coop-
erative Data Inference”. J. Intelligent Information Systems (JIIS),
3(1):57–87, Feb. 1994.

[CCH96] W. W. Chu, K. Chiang, C.-C. Hsu, and H. Yau. “Error-
based Conceptual Clustering Method for Providing Approximate
Query Answers”. Comm. ACM, 39(12):216–230, Dec. 1996.
http://www.acm.org/pubs/cacm/extension.

172

[CD99] J. Clark and S. J. DeRose (Eds). “XML Path Language
(XPath) Version 1.0”. W3C Recommendation, Apr. 1999.
http://www.w3.org/TR/xpath.

[CDF01] S. Comai, E. Damiani, and P. Fraternali. “Graphical Queries over
XML Data”. In ACM Trans. on Information Systems (TOIS), (To
appear), 2001.

[CFI00] M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasundaram,
E. Shekita, and S. Subramanian. “XPERANTO: Publishing Object-
Relational Data as XML”. In Int’l Workshop on the Web and
Databases (WebDB), Dallas, TX, May 2000.

[CFR01] D. Chamberlin, D. Florescu, J. Robie, J. Siméon, and M. Ste-
fanescu (Eds). “XQuery 1.0: An XML Query Language”. W3C
Working Draft, Jun. 2001. http://www.w3.org/TR/2001/WD-xquery-
20010607/.

[CG99] S. Chaudhuri and L. Gravano. “Evaluating Top-k Selection Queries”.
In VLDB, Edinburgh, Scotland, Sep. 1999.

[Cha90] S. Chaudhuri. “Generalization and a Framework for Query Modifi-
cation”. In IEEE ICDE, Los Angeles, CA, Feb. 1990.

[CHC98] W. W. Chu, C-C. Hsu, A. F. Cardenas, and R. K. Taira. “Knowledge-
Based Image Retrieval with Spatial and Temporal Construct”. IEEE
Trans. on Knowledge and Data Engineering (TKDE), 10(6):872–888,
1998.

[CJK00] W. W. Chu, D. B. Johnson, and H. Kangarloo. “A Medical Digital Li-
brary to Support Scenario and User-Tailored Information Retrieval”.
IEEE Trans. on Information Technology in Biomedicine, 4(2), Jun.
2000.

[CJK01] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan,
R. T. Ng, and D. Srivastava. “Counting Twig Matches in a Tree”. In
IEEE ICDE, Heidelberg, Germany, Apr. 2001.

[Cla00] J. Clark (Eds). “XML Transformations (XSLT) Version 1.1”. W3C
Working Draft, Dec. 2000. http://www.w3.org/TR/xslt11.

[Cla01] J. Clark. “TREX – Tree Regular Expressions for XML”. Web page,
2001. http://www.thaiopensource.com/trex/.

173

[CLC91] W. W. Chu, R. C. Lee, and Q. Chen. “Using Type Inference and In-
duced Rules to Provide Intensional Answers”. In IEEE ICDE, Kobe,
Japan, Apr. 1991.

[CM01] J. Clark and M. Murata (Eds). “RELAX NG Tuto-
rial”. OASIS Working Draft, Jun. 2001. http://www.oasis-
open.org/committees/relax-ng/tutorial.html.

[CRF00] D. Chamberlin, J. Robie, and D. Florescu. “Quilt: An XML Query
Language for Heterogeneous Data Sources”. In Int’l Workshop on the
Web and Databases (WebDB), Dallas, TX, May 2000.

[CRG96] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom.
“Change Detection in Hierarchically Structured Information”. In
ACM SIGMOD, Montreal, Quebec, Canada, Jun. 1996.

[CTZ01] S-Y. Chien, V. J. Tsotras, and C. Zaniolo. “Efficient Management of
Multiversion Documents by Object Referencing”. In VLDB, Roma,
Italy, Sep. 2001.

[CX00] J. M. Cheng and J. Xu. “XML and DB2”. In IEEE ICDE, San Diego,
CA, Feb. 2000.

[CYC94] W. W. Chu, H. Yang, K. Chiang, B. Ribeiro, and G. Chow. “CoGIS:
A Cooperative Geographical Information System”. In SPIE Conf.
on Knowledge-Based Artificial Intelligence Systems in Aerospace and
Industry, Orlando, FL, Apr. 1994.

[CYC96] W. W. Chu, H. Yang, K. Chiang, M. Minock, G. Chow, and C. Lar-
son. “CoBase: A Scalable and Extensible Cooperative Information
System”. J. Intelligent Information Systems (JIIS), 6(2/3):223–259,
May 1996.

[DFF99] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Su-
ciu. “A Query Language for XML”. In Int’l World Wide Web Conf.
(WWW), Toronto, Canada, May 1999.

[DFS98] A. Deutsch, M. F. Fernandez, and D. Suciu. “Storing Semistructured
Data with STORED”. In ACM SIGMOD, Philadephia, PA, Jun.
1998.

[EM01] D. W. Embley and W. Y. Mok. “Developing XML Documents with
Guranteed “Good” Properties”. In Int’l Conf. on Conceptual Model-
ing (ER), Yokohama, Japan, Nov. 2001.

174

[Fal01] D. C. Fallside (Eds). “XML Schema Part 0: Primer”. W3C Recom-
mendation, May 2001. http://www.w3.org/TR/xmlschema-0.

[Fel98] C. Fellbaum (Eds). “WordNet: An Electronic Lexical Database”. The
MIT Press, 1998.

[FG01] N. Fuhr and K. Grossjohann. “XIRQL - An Extension of XQL for
Information Retrieval”. In ACM SIGIR, New Orleans, LA, Sep. 2001.

[FK99] D. Florescu and D. Kossmann. “Storing and Querying XML Data
Using an RDBMS”. IEEE Data Eng. Bulletin, 22(3):27–34, Sep.
1999.

[FS00] W. Fan and J. Siméon. “Integrity Constraints for XML”. In ACM
PODS, Dallas, TX, May 2000.

[FST85] P. C. Fischer, L. V. Saxton, S. J. Thomas, and D. V. Gucht. “Inter-
actions between Dependencies and Nested Relational Structures”. J.
Computer and System Sciences (JCSS), 31(3):343–354, Dec. 1985.

[FTS00] M. F. Fernandez, W.-C. Tan, and D. Suciu. “SilkRoute: Trading be-
tween Relations and XML”. In Int’l World Wide Web Conf. (WWW),
Amsterdam, Netherlands, May 2000.

[Gaa97] T. Gaasterland. “Cooperative Answering through Controlled Query
Relaxation.”. IEEE Expert, 12(5):48–59, 1997.

[Gal88] A. Gal. “Cooperative Responses in Deductive Databases”. PhD thesis,
Dept. of Computer Science, Univ. of Maryland, College Park, 1988.

[GGM90] T. Gaasterland, P. Godfrey, and J. Minker. “Relaxation as a Plat-
form for Cooperative Answering”. J. Intelligent Information Systems
(JIIS), 1(3/4):293–392, 1990.

[GGR00] M. N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim.
“XTRACT: A System for Extracting Document Type Descriptors
from XML Documents”. In ACM SIGMOD, Dallas, TX, May 2000.

[GGW01] P. Ganesan, H. Garcia-Molina, and J. Widom. “Exploiting Hi-
erarchical Domain Structure to Compute Similarity”. Techni-
cal report, Stanford Computer Science Dept. 2001-27, Jun. 2001.
http://dbpubs.stanford.edu/pub/2001-27.

[GJK02] S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and T. Yu. “Ap-
proximate XML Joins”. In ACM SIGMOD, Madison, WI, Jun. 2002.

175

[GKP94] R. L. Graham, D. E. Knuth, and O. Patashnik. “Concrete Mathe-
matics: A Foundation for Computer Science”. Addison-Wesley Pub.,
1994.

[God97] P. Godfrey. “Minimization in Cooperative Response to Failing
Database Queries”. Int’l J. Cooperative Information Systems (IJ-
CIS), 6(2):95–149, Jun. 1997.

[Gro98] W3C XSL Working Group. “The Query Language Position Paper of
the XSLT Working Group”. In WWW The Query Language Work-
shop (QL), Cambridge, MA, Dec. 1998.

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. “Introduction to
Automata Theory, Language, and Computation”. Addison–Wesley,
2nd edition, 2001.

[HP00] H. Hosoya and B. C. Pierce. “XDuce: A Typed XML Processing
Language”. In Int’l Workshop on the Web and Databases (WebDB),
Dallas, TX, May 2000.

[ISO86] ISO 8879. “Information processing – Text and Office Systems – Stan-
dard Generalized Markup Language (SGML)”, Oct. 1986.

[ISO00] ISO/IEC. “Information Technology – Text and Office Systems – Reg-
ular Language Description for XML (RELAX) – Part 1: RELAX
Core”, 2000. DTR 22250-1.

[JK84] M. Jarke and J. Koch. “Query Optimization in Database Systems”.
ACM Comp. Survey, 16(2):111–152, Jun. 1984.

[JKN99] H. V. Jagadish, O. Kapitskaia, R. T. Ng, and D. Srivastava. “Multi-
dimensional substring selectivity estimation”. In VLDB, Edinburgh,
Scotland, Sep. 1999.

[JKS00] H. V. Jagadish, N. Koudas, and D. Srivastava. “On Effective Multi-
Dimensional Indexing for Strings”. In ACM SIGMOD, Dallas, TX,
May 2000.

[JLS01] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and K. Thomp-
son. “TAX: A Tree Algebra for XML”. In Int’l Workshop on Data
Bases and Programming Languages (DBPL), Frascati, Rome, Sep.
2001.

[JNS99] H. V. Jagadish, R. T. Ng, and D. Srivastava. “Substring selectivity
estimation”. In ACM PODS, Philadelphia, PA, May-Jun. 1999.

176

[JS82] G. Jaeschke and H.-J. Schek. “Remarks on the Algebra of Non First
Normal Form Relations”. In ACM PODS, Los Angeles, CA, Mar.
1982.

[Kap82] S. J. Kaplan. “Cooperative Aspects of Database Interactions”. Arti-
ficial Intelligence, 19(2):165–187, Oct. 1982.

[KKR00] G. Kappel, E. Kapsammer, S. Rausch-Schott, and W. Retschitzeg-
ger. “X-Ray - Towards Integrating XML and Relational Database
Systems.”. In Int’l Conf. on Conceptual Modeling (ER), pp. 339–353,
Salt Lake City, UT, Oct. 2000.

[KM00] C.-C. Kanne and G. Moerkotte. “Efficient Storage of XML Data”.
In IEEE ICDE, San Diego, CA, Feb. 2000.

[KNS99] Y. Kanza, W. Nutt, and Y. Sagiv. “Queries with Incomplete Answers
over Semistructured Data”. In ACM PODS, Philadelphia, PA, May-
Jun. 1999.

[KS01] Y. Kanza and Y. Sagiv. “Flexible Queries over Semistructured Data”.
In ACM PODS, Santa Barbara, CA, May 2001.

[KVI96] P. Krishnan, J. S. Vitter, and B. R. Iyer. “Estimating Alphanumeric
Selectivity in the Presence of Wildcards”. In ACM SIGMOD, Mon-
treal, Quebec, Canada, Jun. 1996.

[LC00a] D. Lee and W. W. Chu. “Comparative Analysis of Six XML Schema
Languages”. ACM SIGMOD Record, 29(3):76–87, Sep. 2000.

[LC00b] D. Lee and W. W. Chu. “Constraints-preserving Transformation from
XML Document Type Definition to Relational Schema”. In Int’l
Conf. on Conceptual Modeling (ER), pp. 323–338, Salt Lake City,
UT, Oct. 2000.

[LC01] D. Lee and W. W. Chu. “CPI: Constraints-Preserving Inlining Al-
gorithm for Mapping XML DTD to Relational Schema”. J. Data &
Knowledge Engineering (DKE), 39(1):3–25, Oct. 2001.

[Lin95] L. Lindbom. “A Wiener Filtering Approach to the Design of
Tracking Algorithms With Applications in Mobile Radio Com-
munications”. PhD thesis, Uppsala University, Nov. 1995.
http://www.signal.uu.se/Publications/abstracts/a951.html.

177

[LMC01] D. Lee, M. Mani, F. Chiu, and W. W. Chu. “Nesting-based
Relational-to-XML Schema Translation”. In Int’l Workshop on the
Web and Databases (WebDB), Santa Barbara, CA, May 2001.

[LMM00] D. Lee, M. Mani, and M. Murata. “Reasoning about XML Schema
Languages using Formal Language Theory”. Technical report, IBM
Almaden Research Center, RJ# 10197, Log# 95071, Nov. 2000.
http://www.cs.ucla.edu/∼dongwon/paper/.

[LS02] D. Lee and D. Srivastava. “Counting Relaxed Twig Matches in a
Tree”. Technical report, UCLA Computer Science Dept., Feb. 2002.

[MIR94] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. “Schema Equiv-
alence in Heterogeneous Systems: Bridging Theory and Practice (Ex-
tended Abstract)”. In EDBT, Cambridge, UK, Mar. 1994.

[Mit97] T. M. Mitchell. “Machine Leaning”. McGraw-Hill Co., 1997.

[MLM01a] M. Mani, D. Lee, and R. D. Muntz. “Semantic Data Modeling us-
ing XML Schemas”. In Int’l Conf. on Conceptual Modeling (ER),
Yokohama, Japan, Nov. 2001.

[MLM01b] M. Mani, D. Lee, and M. Murata. “Normal Forms for Regular Tree
Grammars”. Technical report, UCLA Computer Science Dept., 2001.

[MLM01c] M. Murata, D. Lee, and M. Mani. “Taxonomy of XML
Schema Languages using Formal Language Theory”. In
Extreme Markup Languages, Montreal, Canada, Aug. 2001.
http://www.cs.ucla.edu/∼dongwon/paper/.

[MM99] A. Malhotra and M. Maloney (Eds). “XML Schema Requirements”.
W3C Note, Feb. 1999. http://www.w3.org/TR/NOTE-xml-schema-
req.

[Mot84] A. Motro. “Query Generalization: A Method for Interpreting Null
Answers.”. In Expert Database Systems Workshop, Kiawah Island,
SC, Oct. 1984.

[Mot86] A. Motro. “SEAVE: A Mechanism for Verifying User Presuppositions
in Query Systems”. ACM Trans. on Information Systems (TOIS),
4(4):312–330, Oct. 1986.

[Mot90] A. Motro. “FLEX: A Tolerant and Cooperative User Interface
to Databases”. IEEE Trans. on Knowledge and Data Engineering
(TKDE), 2(2):231–246, Jun. 1990.

178

[MS01] S. Muench and M. Scardina (Eds). “XSLT Require-
ments Version 2.0”. W3C Working Draft, Feb. 2001.
http://www.w3.org/TR/xslt20req.

[MSB98] M. Mitra, A. Singhal, and C. Buckley. “Improving Automatic Query
Expansion”. In ACM SIGIR, Melbourne, Austrailia, Aug. 1998.

[Mur00a] M. Murata. “Hedge Automata: a Formal Model for XML Schemata”.
Web page, 2000. http://www.xml.gr.jp/relax/hedge nice.html.

[Mur00b] M. Murata. “RELAX (REgular LAnguage description for XML)”.
Web page, Aug. 2000. http://www.xml.gr.jp/relax/.

[MW99] J. McHugh and J. Widom. “Query Optimization for XML”. In
VLDB, Edinburgh, Scotland, Sep. 1999.

[NEF00] C. Nentwich, W. Emmerich, A. Finkelstein, and A. Zis-
man. “BOX: Browsing Objects in XML”. Soft-
ware Practice and Experience, 30(15):1661–1676, 2000.
http://www.cs.ucl.ac.uk/staff/c.nentwich/Box/.

[NJ02] A. Nierman and H. V. Jagadish. “Evaluating Structural Similarity
in XML Documents”. In Int’l Workshop on the Web and Databases
(WebDB), Madison,WI, Jun. 2002.

[OY87] Z. M. Özsoyoglu and L. Y. Yuan. “A New Normal Form for Nested
Relations”. ACM Trans. on Database Systems (TODS), 12(1):111–
136, Mar. 1987.

[PV99] Y. Papakonstantinou and P. Velikhov. “Enhancing Semistructured
Data Mediators with Document Type Definitions”. In IEEE ICDE,
pp. 136–145, Sydney, Austrialia, Mar. 1999.

[RHJ99] D. Raggett, A. L. Hors, and I. Jacobs (Eds). “HTML
4.01 Specification”. W3C Recommendation, Dec. 1999.
http://www.w3.org/TR/html4/.

[RLS98] J. Robie, J. Lapp, and D. Schach. “XML Query Language (XQL)”.
WWW The Query Language Workshop (QL), Cambridge, MA, Dec.
1998. http://www.w3.org/TandS/QL/QL98/pp/xql.html.

[Rob99] J. Robie (Eds). “XQL (XML Query Language)”. Web page, Aug.
1999. http://www.ibiblio.org/xql/xql-proposal.html.

179

[Sah00] A. Sahuguet. “Everything You Ever Wanted to Know About DTDs,
But Were Afraid to Ask”. In Int’l Workshop on the Web and
Databases (WebDB), Dallas, TX, May 2000.

[SLR98] D. Schach, J. Lapp, and J. Robie. “Querying and Transforming
XML”. In WWW The Query Language Workshop (QL), Cambridge,
MA, Dec. 1998.

[SSB00] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey, B. G.
Lindsay, H. Pirahesh, and B. Reinwald. “Efficiently Publishing Re-
lational Data as XML Documents”. In VLDB, Cairo, Egypt, Sep.
2000.

[STH99] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and
J. Naughton. “Relational Databases for Querying XML Documents:
Limitations and Opportunities”. In VLDB, Edinburgh, Scotland,
Sep. 1999.

[SYU99] T. Shimura, M. Yoshikawa, and S. Uemura. “Storage and Retrieval of
XML Documents using Object-Relational Databases”. In Int’l Conf.
on Database and Expert Systems Applications (DEXA), pp. 206–217,
Florence, Italy, Aug. 1999.

[Tai79] K. Tai. “The Tree-to-Tree Correction Problem”. J. ACM, 26(3):422–
433, 1979.

[TBM01] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn (Eds).
“XML Schema Part 1: Structures”. W3C Recommendation, May
2001. http://www.w3.org/TR/xmlschema-1/.

[Tur99] V. Turau. “Making Legacy Data Accessible for XML Ap-
plications”. Web page, 1999. http://www.informatik.fh-
wiesbaden.de/∼turau/veroeff.html.

[TW00] A. Theobald and G. Weikum. “Adding Relevance to XML”. In Int’l
Workshop on the Web and Databases (WebDB), Dallas, TX, May
2000.

[WDC01] Y. Wang, D. J. DeWitt, and J-Y. Cai. “X-Diff: A Fast Change De-
tection Algorithm for XML Documents”. Technical report, U. Wis-
consin, Computer Science Dept., 2001.

[WH60] B. Widrow and M. E. Hoff. “Adaptive Switching Circuits”. Insti-
tute of Radio Engineers, Western Electronic Show and Convention,
Convention Record, pp. 96–104, 1960.

180

[WLL01] X. Wu, T. W. Ling, M. L. Lee, and G. Dobbie. “Designing Semistruc-
tured Database Using ORA-SS Model”. Unpublished Manuscript,
2001.

[Woo99] P. T. Wood. “Optimizing Web Queries Using Document Type Defini-
tions”. In Int’l Workshop on Web Information and Data Management
(WIDM), pp. 28–32, Kansas City, MO, Nov. 1999.

[ZC00] G. Zhang and W. W. Chu. “MDC: A Mixed-Type Data Clustering
Algorithm”. Technical report, UCLA Computer Science Dept., 2000.

[ZCF97] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V.S. Subrahma-
nian, and R. Zicari. “Advanced Database Systems”. Morgan Kauf-
mann Pub., 1997.

[ZS89] K. Zhang and D. Shasha. “Simple Fast Algorithms for the Editing
Distance Between Trees and Related Problems”. SIAM J. Comput.,
18(6):1245–1262, Dec. 1989.

181

