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Abstract

As Extensible Markup Language (XML) is emerging as
the data format of the Internet era, there is an increas-
ing need to efficiently store and query XML data. At
the same time, as requirements change, we expect a sub-
stantial amount of conventional relational data to be con-
verted or published as XML data. One path to accommo-
date these changes is to transform XML data into rela-
tional format (and vice versa) to use the mature relational
database technology.

In this paper, we present three semantics-based schema
transformation algorithms towards this goal: 1) CPI con-
verts an XML schema to a relational schema while pre-
serving semantic constraints of the original XML schema,
2) NeT derives a nested structured XML schema from a
flat relational schema by repeatedly applying the nest
operator so that the resulting XML schema becomes hi-
erarchical, and 3) CoT takes a relational schema as in-
put, where multiple tables are interconnected through in-
clusion dependencies and generates an equivalent XML
schema as output.

1 Introduction

Recently, XML [4] has emerged as the de facto stan-
dard for data format on the web. The use of XML as
the common format for representing, exchanging, stor-
ing, and accessing data poses many new challenges to
database systems. Since the majority of everyday data is
still stored and maintained in relational database systems,
we expect that the needs to convert data format between
XML and relational models will grow substantially. To
this end, several schema transformation algorithms have
been proposed (e.g., [7, 9, 16, 5]). Although they work
well for the given applications, the XML-to-Relational or
Relational-to-XML transformation algorithms only cap-
ture the structure of the original schema and largely ig-
nore the hidden semantic constraints. Consider the fol-
lowing example for XML-to-Relational conversion case.

Example 1. Consider a DTD that models conference
publications:

<!ELEMENT conf (title,society,year,mon?,paper+)>

<!ELEMENT paper (pid,title,abstract?)>

Suppose the combination of title and year uniquely
identifies the conf. Using the hybrid inlining algo-
rithm [16], the DTD would be transformed to the fol-
lowing relational schema:

conf (title,society,year,mon)

paper (pid,title,conf_title,conf_year,abstract)

While the relational schema correctly captures the
structural aspect of the DTD, it does not enforce cor-
rect semantics. For instance, it cannot prevent a tu-
ple t1: paper(100,’DTD...’,’ER’,3000,’...’) from
being inserted. However, tuple t1 is inconsistent with
the semantics of the given DTD since the DTD im-
plies that the paper cannot exist without being asso-
ciated with a conference and there is apparently no
conference “ER-3000” yet. In database terms, this
kind of violation can be easily prevented by an inclu-
sion dependency saying “paper[conf title,conf year]
⊆ conf[title,year]”. 2

The reason for this inconsistency between the DTD
and the transformed relational schema is that most of the
proposed transformation algorithms, so far, have largely
ignored the hidden semantic constraints of the original
schema.

1.1 Related Work

Between XML and Non-relational Models: Con-
version between different models has been extensively in-
vestigated. For instance, [6] deals with transformation
problems in OODB area; since OODB is a richer envi-
ronment than RDB, their work is not readily applicable
to our application. The logical database design methods
and their associated transformation techniques to other
data models have been extensively studied in ER research.
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For instance, [1] presents an overview of such techniques.
However, due to the differences between ER and XML
models, those transformation techniques need to be mod-
ified substantially. More recently, [2] studies a generic
mapping between arbitrary models with the focus of de-
veloping a framework for model management, but is not
directly relevant to our problems.

From XML to Relational: From XML to relational
schema, several conversion algorithms have been pro-
posed recently. STORED [7] is one of the first signifi-
cant attempts to store XML data in relational databases.
STORED uses a data mining technique to find a rep-
resentative DTD whose support exceeds the pre-defined
threshold and using the DTD, converts XML documents
to relational format. Because [3] discusses template
language-based transformation from DTD to relational
schema, it requires human experts to write an XML-
based transformation rule. [16] presents three inlining
algorithms that focus on the table level of the schema
conversions. On the contrary, [9] studies different per-
formance issues among eight algorithms that focus on the
attribute and value level of the schema. Unlike these, we
propose a method where the hidden semantic constraints
in DTDs are systematically found and translated into re-
lational formats [12]. Since the method is orthogonal to
the structure-oriented conversion method, it can be used
along with algorithms in [7, 3, 16, 9].

From Relational to XML: There have been different
approaches for the conversion from relational model to
XML model, such as XML Extender from IBM, XML-
DBMS, SilkRoute [8], and XPERANTO [5]. All the above
tools require the user to specify the mapping from the
given relational schema to XML schema. In XML Exten-
der, the user specifies the mapping through a language
such as DAD or XML Extender Transform Language.
In XML-DBMS, a template-driven mapping language is
provided to specify the mappings. SilkRoute provides a
declarative query language (RXL) for viewing relational
data in XML. XPERANTO uses XML query language for
viewing relational data in XML. Note that in SilkRoute
and XPERANTO, the user has to specify the query in
the appropriate query language.

2 Overview of Our Schema Trans-
lation Algorithms

In this paper, we present three schema transformation
algorithms that not only capture the structure, but also
the semantics of the original schema. The overview of our
proposals is illustrated in Figure 1.

CPI (Constraints-preserving Inlining Algorithm): identi-
fies various semantics constraints in the original XML

RDB

CPI

NeT & CoT

Schema
Designer

XML
Schemas

Figure 1: Overview of our schema translation algorithms.

schema and preserves them by rewriting them in the final
relational schema.

NeT (Nesting-based Translation Algorithm): derives a
nested structure from a flat relational schema by repeat-
edly applying the nest operator so that the resulting XML
schema becomes hierarchical. The main idea is to find a
more intuitive element content model of the XML schema
that utilizes the regular expression operators provided by
the XML schema specification (e.g., “*” or “+”).

CoT (Constraints-based Translation Algorithm): Al-
though NeT infers hidden characteristics of data by nest-
ing, it is only applicable to a single table at a time. There-
fore, it is unable to capture the overall picture of rela-
tional schema where multiple tables are interconnected.
To remedy this problem, CoT considers inclusion depen-
dencies during the translation, and merges multiple inter-
connected tables into a coherent and hierarchical parent-
child structure in the final XML schema.

3 The CPI Algorithm

Transforming a hierarchical XML model to a flat rela-
tional model is not a trivial task due to several inherent
difficulties such as non-trivial 1-to-1 mapping, existence of
set values, complicated recursion, and/or fragmentation
issues [16]. Most XML-to-Relational transformation al-
gorithms (e.g., [3, 7, 9, 16]) have so far mainly focused on
the issue of structural conversion, largely ignoring the se-
mantics already existed in the original XML schema. Let
us first describe various semantic constraints that one can
mine from the DTD. Throughout the discussion, we will
use the example DTD and XML document in Tables 1
and 2.

3.1 Semantic Constraints in DTDs

Cardinality Constraints: In a DTD declaration, there
are only 4 possible cardinality relationships between an
element and its sub-elements as illustrated below:

<!ELEMENT article (title, author+, ref*, price?)>
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<!ELEMENT conf (title,date,editor?,paper*)>
<!ATTLIST conf id ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT date EMPTY>
<!ATTLIST date year CDATA #REQUIRED

mon CDATA #REQUIRED
day CDATA #IMPLIED>

<!ELEMENT editor (person*)>
<!ATTLIST editor eids IDREFS #IMPLIED>
<!ELEMENT paper (title,contact?,author,cite?)>
<!ATTLIST paper id ID #REQUIRED>
<!ELEMENT contact EMPTY>
<!ATTLIST contact aid IDREF #REQUIRED>
<!ELEMENT author (person+)>
<!ATTLIST author id ID #REQUIRED>
<!ELEMENT person (name,(email|phone)?)>
<!ATTLIST person id ID #REQUIRED>
<!ELEMENT name EMPTY>
<!ATTLIST name fn CDATA #IMPLIED

ln CDATA #REQUIRED>
<!ELEMENT email (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT cite (paper*)>
<!ATTLIST cite id ID #REQUIRED

format (ACM|IEEE) #IMPLIED>

Table 1: A DTD for Conference.

1. (0,1): An element can have either zero or one sub-
element. (e.g., sub-element price)

2. (1,1): An element must have one and only one sub-
element. (e.g., sub-element title)

3. (0,N): An element can have zero or more sub-
elements. (e.g., sub-element ref)

4. (1,N): An element can have one or more sub-
elements. (e.g., sub-element author)

Following the notations in [1], let us call each cardi-
nality relationship as type (0,1), (1,1), (0,N), (1,N), re-
spectively. From these cardinality relationships, mainly
three constraints can be inferred. First is whether or not
the sub-element can be null. We use the notation “X 9

∅” to denote that an element X cannot be null. This
constraint is easily enforced by the NULL or NOT NULL
clause in SQL. Second is whether or not more than one
sub-element can occur. This is also known as singleton
constraint in [17] and is one kind of equality-generating
dependencies. Third, given an element, whether or not
its sub-element should occur. This is one kind of tuple-
generating dependencies. The second and third types will
be further discussed below.

Inclusion Dependencies (INDs): An Inclusion De-
pendency assures that values in the columns of one frag-
ment must also appear as values in the columns of other
fragments and is a generalization of the notion of refer-
ential integrity .

Trivial form of INDs found in the DTD is that “given
an element X and its sub-element Y , Y must be in-
cluded in X (i.e., Y ⊆ X)”. For instance, from the

<conf id="er05">
<title>Int’l Conference on Conceptual Modeling (ER)</title>
<date>

<year>2005</year> <mon>May</mon> <day>20</day>
</date>
<editor eids="sheth bossy">

<person id="klavans">
<name fn="Judith" ln="Klavans"/>
<email>klavans@cs.columbia.edu</email>

</person> </editor>
<paper id="p1">

<title>Indexing Model for Structured...</title>
<contact aid="dao"/>
<author>

<person id="dao"><name fn="Tuong" ln="Dao"/></person>
</author>

</paper>
<paper id="p2">

<title>Logical Information Modeling of...</title>
<contact aid="shah"/>
<author>

<person id="shah">
<name fn="Kshitij" ln="Shah"/>

</person>
<person id="sheth">

<name fn="Amit" ln="Sheth"/>
<email>amit@cs.uga.edu</email>

</person>
</author>
<cite id="c100" format="ACM">

<paper id="p3">
<title>Making Sense of Scientific...</title>
<author>

<person id="bossy">
<name fn="Marcia" ln="Bossy"/>
<phone>391.4337</phone>

</person>
</author> </paper> </cite> </paper>

</conf>
<paper id="p7">

<title>Constraints-preserving Transformation from...</title>
<contact aid="lee"/>
<author>

<person id="lee">
<name fn="Dongwon" ln="Lee"/>
<email>dongwon@cs.ucla.edu</email>

</person> </author>
<cite id="c200" format="IEEE"/>

</paper>...

Table 2: An example XML document conforming to the
DTD in Table 1.

conf element and its four sub-elements in the Conference
DTD, the following INDs can be found as long as conf
is not null: {conf.title ⊆ conf, conf.date ⊆ conf,
conf.editor ⊆ conf, conf.paper ⊆ conf}. Another
form of INDs can be found in the attribute definition part
of the DTD with the use of the IDREF(S) keyword. For
instance, consider the contact and editor elements in
the Conference DTD shown below:

<!ELEMENT person (name,(email|phone)?>

<!ATTLIST person id ID #REQUIRED>

<!ELEMENT contact EMPTY>

<!ATTLIST contact aid IDREF #REQUIRED>

<!ELEMENT editor (person*)>

<!ATTLIST editor eids IDREFS #IMPLIED>

The DTD restricts the aid attribute of the contact
element such that it can only point to the id at-
tribute of the person element1. Further, the eids at-
tribute can only point to multiple id attributes of the
person element. As a result, the following INDs can be
derived: {editor.eids ⊆ person.id, contact.aid ⊆

1Precisely, an attribute with IDREF type does not specify which
element it should point to. This information is available only by hu-
man experts. However, new XML schema languages such as XML-
Schema and DSD can express where the reference actually points
to [11].
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person.id}. Such INDs can be best enforced by the “for-
eign key” if the attribute being referenced is a primary
key. Otherwise, it needs to use the CHECK, ASSERTION, or
TRIGGERS facility of SQL.

Equality-Generating Dependencies (EGDs): The
Singleton Constraint [17] restricts an element to have “at
most” one sub-element. When an element typeX satisfies
the singleton constraint towards its sub-element type Y ,
if an element instance x of type X has two sub-elements
instances y1 and y2 of type Y , then y1 and y2 must be the
same. This property is known as Equality-Generating De-
pendencies (EGDs) and denoted by “X → Y ” in database
theory. For instance, two EGDs: {conf → conf.title,
conf → conf.date} can be derived from the conf ele-
ment in Table 1. This kind of EGDs can be enforced by
SQL UNIQUE construct. In general, EGDs occur in the
case of the (0,1) and (1,1) mappings in the cardinality
constraints.

Tuple-Generating Dependencies (TGDs): TGDs in
a relational model require that some tuples of a certain
form be present in the table and use the “�” symbol.
Two useful forms of TGDs from DTD are the child and
parent constraints [17].

1. Child constraint: "Parent � Child" states that
every element of type Parent must have at least
one child element of type Child. This is the case
of the (1,1) and (1,N) mappings in the cardinality
constraints. For instance, from the DTD in Table 1,
because the conf element must contain the title
and date sub-elements, the child constraint conf �
{title, date} holds.

2. Parent constraint: "Child � Parent" states
that every element of type Child must have a parent
element of type Parent. According to XML spec-
ification, XML documents can start from any level
of element without necessarily specifying its parent
element, when a root element is not specified by
<!DOCTYPE root>. In the DTD in Table 1, for in-
stance, the editor and date elements can have the
conf element as their parent. Further, if we know
that all XML documents were started at the conf
element level, rather than the editor or date level,
then the parent constraint {editor, date} � conf
holds. Note that the title � conf does not hold
since the title element can be a sub-element of ei-
ther the conf or paper element.

3.2 Discovering and Preserving Semantic
Constraints from DTDs

The CPI algorithm utilizes a structure-based conversion
algorithm as a basis and identifies various semantic con-

Relationship Symbol not null EGDs TGDs
(0,1) ? no yes no
(1,1) yes yes yes
(0,N) * no no no
(1,N) + yes no yes

Table 3: Cardinality relationships and their correspond-
ing semantic constraints.

straints described in Section 3.1. We will use the hybrid
algorithm [16] as the basis algorithm. CPI first constructs
a DTD graph that represents the structure of a given
DTD. A DTD graph can be constructed when parsing
the given DTD. Its nodes are elements, attributes, or op-
erators in the DTD. Each element appears exactly once
in the graph, while attributes and operators appear as
many times as they appear in the DTD. CPI then an-
notates various cardinality relationships (summarized in
Table 3) among nodes to each edge of the DTD graph.
Note that the cardinality relationship types in the graph
consider not only element vs. sub-element relationships
but also element vs. attribute relationships. Figure 2 il-
lustrates an example of such annotated DTD graph for
the Conference DTD in Table 1.

Once the annotated DTD graph is constructed, CPI
follows the basic navigation method provided by the hy-
brid algorithm; it identifies top nodes [16, 12] that are
the nodes: 1) not reachable from any nodes (e.g., source
node), 2) direct child of “*” or “+” operator node, 3) re-
cursive node with indegree > 1, or 4) one node between
two mutually recursive nodes with indegree = 1. Then,
starting from each top node T , inline all the elements and
attributes at leaf nodes reachable from T unless they are
other top nodes. In doing so, each annotated cardinality
relationship can be properly converted to its counterpart
in SQL syntax as described in Section 3.1. The details
of the algorithm is beyond the scope of this paper and
interested readers are referred to [12]. For instance, Fig-
ure 3 and Table 4 are such output relational schema and
data in SQL notation, automatically generated by the CPI
algorithm.

4 The NeT Algorithm

The simplest Relational-to-XML translation method,
termed as FT (Flat Translation) in [13], is to translate
1) tables in a relational schema to elements in an XML
schema and 2) columns in a relational schema to at-
tributes in an XML schema. FT is a simple and effective
translation algorithm. However, since FT translates the
“flat” relational model to a “flat” XML model in a one-
to-one manner, it does not utilize several basic “non-flat”
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paper

id root elm parent elm fk conf fk cite title contact aid cite id cite format

p1 conf conf er05 – Indexing ... dao – –
p2 conf conf er05 – Logical ... shah c100 ACM
p3 conf cite – c100 Making ... – – –
p7 paper – – – Constraints ... lee c200 IEEE

Table 4: Final relational “data” for the paper element in the Conference DTD in Table 1, generated by CPI
algorithm.

date

year

mon

day

title

id name

fn ln email

contactaid

eids

person

conf

paper

id

id
top node

(0,1)

(1,1)
(1,1)

(0,N)

(1,N)

(0,N)

(0,1)
(1,1) editor

(0,N)

(0,1) (0,1)(1,1)

(1,1)
(1,1)

author(1,1)

(1,1)

cite

(0,1)(1,1)

(0,1)

(0,1)

(0,N)

(1,1)

(1,1)

(1,1)

(0,1)      
(1,1)   
(0,N)      
(1,N)    

?      
    
*      
+     

id

(1,1)

format

phone

(0,1)

Figure 2: An annotated DTD graph for the Conference
DTD in Table 1.

features provided by the XML model for data modeling
such as representing repeating sub-elements through reg-
ular expression operators (e.g., “*”, “+”). To remedy
the shortcomings of FT, we propose the NeT algorithm
that utilizes various element content models of the XML
model. NeT uses the nest operator [10] to derive a “good”
element content model.

Informally, for a table t with a set of columns C, nest-
ing on a non-empty column X ∈ C collects all tuples
that agree on the remaining columns C −X into a set2.
Formally,

Definition 1 (Nest) [10]. Let t be a n-ary table with
column set C, and X ∈ C and X = C−X. For each (n−
1)-tuple γ ∈ ΠX(t), we define an n-tuple γ∗ as follows:
γ∗[X] = γ, and γ∗[X] = {κ[X] | κ ∈ t ∧ κ[X] = γ. Then,
nestX(t) = {γ∗ | γ ∈ ΠX(t)}. 2

After nestX(t), if column X has only a set with “single”
value {v} for all the tuples, then we say that nesting
failed and we treat {v} and v interchangeably (i.e., {v}
= v). Thus when nesting failed, the following is true:
nestX(t) = t. Otherwise, if column X has a set with
“multiple” values {v1, ..., vk} with k ≥ 2 for at least one
tuple, then we say that nesting succeeded.

Example 2. Consider a table R in Table 5. Here we
assume that the columns A, B, C are non-nullable. In
computing nestA(R) at (b), the first, third, and fourth

2Here, we only consider single attribute nesting.

CREATE TABLE paper (

id NUMBER NOT NULL,

title VARCHAR(50) NOT NULL,

contact_aid VARCHAR(20),

cite_id VARCHAR(20),

cite_format VARCHAR(50)

CHECK (VALUE IN ("ACM", "IEEE")),

root_elm VARCHAR(20) NOT NULL,

parent_elm VARCHAR(20),

fk_cite VARCHAR(20)

CHECK (fk_cite IN (SELECT cite_id FROM paper)),

fk_conf VARCHAR(20),

PRIMARY KEY (id),

UNIQUE (cite_id),

FOREIGN KEY (fk_conf) REFERENCES conf(id),

FOREIGN KEY (contact_aid) REFERENCES person(id)

);

Figure 3: Final relational “schema” for the paper element
in the Conference DTD in Table 1, generated by CPI
algorithm.

tuples of R agree on their values in columns (B, C) as (a,
10), while their values of the column A are all different.
Therefore, these different values are grouped (i.e., nested)
into a set {1,2,3}. The result is the first tuple of the table
nestA(R) – ({1,2,3}, a, 10). Similarly, since the sixth and
seventh tuples of R agree on their values as (b, 20), they
are grouped to a set {4,5}. In computing nestB(R) at (c),
there are no tuples in R that agree on the values of the
columns (A, C). Therefore, nestB(R) = R. In computing
nestC(R) at (d), since the first two tuples of R – (1, a,
10) and (1, a, 20) – agree on the values of the columns (A,
B), they are grouped to (1, a, {10,20}). Nested tables (e)
through (j) are constructed similarly. 2

Since the nest operator requires scanning of the entire
set of tuples in a given table, it can be quite expensive.
In addition, as shown in Example 2, there are various
ways to nest the given table. Therefore, it is important
to find an efficient way (that uses the nest operator mini-
mum number of times) of obtaining an acceptable element
content model. For a detailed description on the various
properties of the nest operator, the interested are referred
to [13, 14].

Lemma 1. For a table t with n columns, and m (≤ n)
columns that participate in all candidate keys, the max-
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A B C
#1 1 a 10
#2 1 a 20
#3 2 a 10
#4 3 a 10
#5 4 b 10
#6 4 b 20
#7 5 b 20

A+ B C
{1,2,3} a 10

1 a 20
4 b 10
{4,5} b 20

A B C
1 a 10
1 a 20
2 a 10
3 a 10
4 b 10
4 b 20
5 b 20

A B C+

1 a {10,20}
2 a 10
3 a 10
4 b {10,20}
5 b 20

A+ B C
{1,2,3} a 10

1 a 20
4 b 10
{4,5} b 20

(a) R (b) nestA(R) (c) nestB(R) = R (d) nestC(R) (e)
nestB(nestA(R))

= nestC(nestA(R))

A+ B C+

1 a {10,20}
{2,3} a 10

4 b {10,20}
5 b 20

A B C+

1 a {10,20}
2 a 10
3 a 10
4 b {10,20}
5 b 20

A+ B C
{1,2,3} a 10

1 a 20
4 b 10
{4,5} b 20

A+ B C+

1 a {10,20}
{2,3} a 10

4 b {10,20}
5 b 20

(f) nestA(nestC(R)) (g) nestB(nestC(R)) (h)
nestC(nestB(nestA(R)))

= nestB(nestC(nestA(R)))
(i)

nestB(nestA(nestC(R)))
= nestA(nestB(nestC(R)))

Table 5: A relational table R and its various nested forms. Column names containing a set after nesting (i.e., nesting
succeeded) are appended by “+” symbol.

imum number of nestings is (m) + (m)(m − 1) + ... +
(m)(m− 1)...(2)(1).

Lemma 1 implies that when candidate key information
is available, one can avoid unnecessary nestings substan-
tially. For instance, suppose attributes A and C in Ta-
ble 5 constitute a key for R. Then, one needs to compute
only: nestA(R) at (b), nestC(R) at (d), nestC(nestA(R))
at (e), nestA(nestC(R)) at (f) in Table 5.

After applying the nest operator to the given table re-
peatedly, there can be still several nested tables where
nesting succeeded. In general, the choice of the final
schema should take into consideration the semantics and
usages of the underlying data or application and this is
where user intervention is beneficial. By default, without
further input from users, NeT chooses the nested table
where the most number of nestings succeeded as the final
schema, since this is a schema which provides low “data
redundancy”. The outline of the NeT algorithm is as fol-
lows:

1. For each table ti in the input relational schema R, apply
the nest operator repeatedly until no nesting succeeds.

2. Choose the best nested table based on the selected cri-
teria. Denote this table as t′i(c1, . . . , ck−1, ck, . . . , cn),
where nesting succeeded on the columns {c1, . . . , ck−1}.

(a) If k = 1, follow the FT translation.

(b) If k > 1,

i. For each column ci (1 ≤ i ≤ k − 1), if ci was
nullable in R, use c∗i for the element content
model, and c+i otherwise.

ii. For each column cj (k ≤ j ≤ n), if ci was
nullable in R, use c?j for the element content
model, and cj otherwise.

5 The CoT Algorithm

The NeT algorithm is useful for decreasing data redun-
dancy and obtaining a more intuitive schema by 1) re-
moving redundancies caused by multivalued dependen-
cies, and 2) performing grouping on attributes. However,
NeT considers tables one at a time, and cannot obtain
a overall picture of the relational schema where many
tables are interconnected with each other through var-
ious other dependencies. To remedy this problem, we
propose the CoT algorithm that uses Inclusion Depen-
dencies (INDs) of relational schema. General forms of
INDs are difficult to acquire from the database automati-
cally. However, we shall consider the most pervasive form
of INDs, foreign key constraints, which can be queried
through ODBC/JDBC interface.

The basic idea of the CoT is the following: For two
distinct tables s and t with lists of columns X and Y ,
respectively, suppose we have a foreign key constraint s[α]
⊆ t[β], where α ⊆ X and β ⊆ Y . Also suppose that
Ks ⊆ X is the key for s. Then, different cardinality
binary relationships between s and t can be expressed in
the relational model by a combination of the following: 1)
α is unique/not-unique, and 2) α is nullable/non-nullable.
Then, the translation of two tables s, t with a foreign key
constraint works as follows:

1. If α is non-nullable (i.e., none of the columns of α can
take null values), then:

(a) If α is unique, then there is a 1 : 1 relationship
between s and t, and can be captured as <!ELEMENT
t (Y, s?)>.

(b) If α is not-unique, then there is a 1 : n relationship
between s and t, and can be captured as <!ELEMENT
t (Y, s*)>.
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student(Sid, Name, Advisor)

emp(Eid, Name, ProjName)

prof(Eid, Name, Teach)

course(Cid, Title, Room)

dept(Dno, Mgr)

proj(Pname, Pmgr)

student(Advisor) ⊆ prof(Eid)

emp(ProjName) ⊆ proj(Pname)

prof(Teach) ⊆ course(Cid)

prof(Eid, Name) ⊆ emp(Eid, Name)

dept(Mgr) ⊆ emp(Eid)

proj(Pmgr) ⊆ emp(Eid)

Table 6: An example schema with associated INDs.

2. If s is represented as a sub-element of t, then the key for
s will change from Ks to (Ks − α). The key for t will
remain the same.

Extending this to the general case where multiple tables
are interconnected via INDs, consider the schema with a
set of tables {t1, ..., tn} and INDs ti[αi] ⊆ tj [βj ], where
i, j ≤ n. We consider only those INDs that are foreign
key constraints (i.e., βj constitutes the primary key of the
table tj), and where αi is non-nullable. The relationships
among tables can be captured by a graph representation,
termed as IND-Graph.

Definition 2 (IND-Graph) An IND-Graph G =
(V,E) consists of a node set V and a directed edge set E,
such that for each table ti, there exists a node Vi ∈ V ,
and for each distinct IND ti ⊆ tj , there exists an edge
Eji ∈ E from the node Vj to Vi. 2

Note the edge direction is reversed from the IND direc-
tion for convenience. Given a set of INDs, the IND-Graph
can be easily constructed. Once an IND-Graph G is con-
structed, CoT needs to decide the starting point to apply
translation rules. For that purpose, we use the notion
of top nodes. Intuitively, an element is a top node if
it cannot be represented as a sub-element of any other
element. Let T denote the set of top nodes. Then, CoT
traverses G, using say Breadth-First Search (BFS), until
it traverses all the nodes and edges, while capturing the
INDs on edges as either sub-elements (when the node is
visited for the first time) or IDREF attributes (when the
node was visited already).

Example 3. Consider a schema and its associated INDs
in Table 6. The IND-Graph with two top nodes is shown
in Figure 4: 1) course: There is no node t, where there is
an IND of the form course[α] ⊆ t[β], and 2) emp: There
is a cyclic set of INDs between emp and proj, and there
exists no node t such that there is an IND of the form
emp[α] ⊆ t[β] or proj[α] ⊆ t[β]. Then,

• First, starting from a top node course, do BFS
scan. Pull up a reachable node prof into

prof

student

dept

proj

emp

course

Figure 4: The IND-Graph representation of the schema
in Table 6 (top nodes denoted by rectangular nodes).

course and make it as sub-element by <!ELEMENT
course (Cid, Title, Room, prof∗)>. Similarly,
the node student is also pulled up into its par-
ent node prof by <!ELEMENT prof (Eid, Name,
student∗)>. Since the node student is a leaf, no
nodes can be pulled in: <!ELEMENT student (Sid,
Name)>. Since there is no more unvisited reachable
node from course, the scan stops.

• Next, starting from another top node emp,
pull up neighboring node dept into emp simi-
larly by <!ELEMENT emp (Eid, Name, ProjName,
dept∗)> and <!ELEMENT dept (Dno, Mgr)>. Then,
visit a neighboring node prof, but prof was visited
already. To avoid data redundancy, an attribute
Ref prof is added to emp accordingly. Since at-
tributes in the left-hand side of the corresponding
IND, prof(Eid,Name) ⊆ emp(Eid,Name), form a
super key, the attribute Ref prof is assigned type
IDREF, and not IDREFS: <!ATTLIST prof Eid ID>
and <!ATTLIST emp Ref prof IDREF>.

• Next, visit a node proj and pull it up to
emp by <!ELEMENT emp (Eid, Name, ProjName,
dept∗, proj∗)> and <!ELEMENT proj (Pname)>.
In next step, visit a node emp from prof, but since
it was already visited, an attribute Ref emp of type
IDREFS is added to proj, and scan stops.

It is worthwhile to point out that there are several
places in CoT where human experts can help to find a
better mapping based on the semantics and usages of the
underlying data or application.

6 Conclusion

We have presented a method to transform a relational
schema to an XML schema, and two methods to trans-
form an XML schema to a relational schema, both in
structural and semantic aspects. All three algorithms are
“correct” in the sense that they all have preserved the
original information of relational schema. For instance,
using the notion of information capacity [15], a theoretical
analysis for the correctness of our translation procedures
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is possible; we can actually show that CPI, NeT and CoT
algorithms are equivalence preserving transformations.

CPI was tested against DTDs gathered from OASIS3.
For all cases, CPI successfully identified hidden seman-
tic constraints from DTDs and correctly preserved them
by rewriting them in SQL. We also applied the NeT al-
gorithm on 10 test sets drawn from UCI KDD4 / ML5

repositories, which contain a multitude of single-table re-
lational schemas and data. Except the one case, NeT
successfully found nested attributes and thus generated a
hierarchical XML schema. When CoT was tested against
TPC-H schema6 which is an ad-hoc, decision support
benchmark and has 8 tables and 8 inclusion dependen-
cies, it successfully derived a “better” XML schema with
less redundant data (about 12% decrease compared to
FT). Further details can be found in [12, 14].

Despite the difficulties in conversions between XML
and relational models, there are many practical ben-
efits. We strongly believe that devising more
accurate and efficient conversion methodologies be-
tween XML and relational models is important.
The prototypes of our algorithms are available at:
http://www.cobase.cs.ucla.edu/projects/xpress/
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