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Abstract. As Extensible Markup Language (XML) [5] is emerging as
the data format of the internet era, there are increasing needs to effi-
ciently store and query XML data. One way towards this goal is using
relational database by transforming XML data into relational format.
In this paper, we argue that existing transformation algorithms are not
complete in the sense that they focus only on structural aspects and ig-
noring semantic aspects. We present the semantic knowledge that needs
to be captured during the transformation to ensure a correct relational
schema. Further, we show a simple algorithm that can 1) derive such
semantic knowledge from the given XML Document Type Definition
(DTD) and 2) preserve the knowledge by representing them in terms
of semantic constraints in relational database terms. By combining the
existing transformation algorithms and our constraints-preserving algo-
rithm, one can transform XML DTD to relational schema where correct
semantics and behaviors are guaranteed by the preserved constraints.
Experimental results are also presented.

1 Introduction

As the World-Wide Web becomes a major means of disseminating and sharing
information, Extensible Markup Language (XML) [5] is emerging as a possible
candidate data format because it is simpler than SGML and more powerful
than HTML. To query XML data, one way is to reuse the established relational
database techniques by converting and storing XML data in relational storage.
Since the hierarchical XML and the flat relational data models are not fully
compliant, the transformation is not a straightforward task.

To this end, several XML-to-relational transformation algorithms have been
studied [8,9, 16]. Although they work well for the given applications, to a greater
or lesser extent, they miss one important point. That is, the transformation algo-
rithms only capture the structure of the Document Type Definition (DTD) and
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Fig. 1. Overview of our approach. Numbers 1) to 3) specify: 1) transforming schema,
2) discovering constraints via FindConstraints(), and 3) preserving constraints via
RewriteConstraints().

ignore the semantic constraints hidden in it. In this paper, via our constraints-
preserving inlining (CPI) algorithm, we show the kinds of semantic constraints
that can be derived from DTD during transformation, and how to preserve them
by re-writing them in resulting schema notation. Since our algorithm to capture
and preserve semantic constraints from DTD is orthogonal to transformation
algorithms, ours can be applied to various transformation algorithms in [8,9, 16]
with little change. Figure 1 presents an overview of our approach. First, given
a DTD, we transform it to a corresponding relational scheme using an exist-
ing algorithm. Second, during the transformation, we discover various semantic
constraints in XML notation. Third, we re-write the discovered constraints to
conform to relational notation.

This paper is organized as follows. Section 2 gives background information
and related work. In Section 3, one transformation algorithm is discussed in de-
tail. Section 4 presents various semantic constraints that are hidden in DTD.
Section 5 proposes our algorithm to preserve such constraints during transfor-
mation. Section 6 reports some experimental results that we have conducted and
Section 7 summarizes with concluding remarks.

2 Background and Related Work

Relational Schema: We define a relational schema R to be composed of a
relational scheme (S) and semantic constraints (A). That is, R = (S, 4). In
turn, the relational scheme S is a collection of table schemes such as r(a1, ..., ax),
where a; is the i-th attribute in the table r and the semantic constraints A is a
collection of various semantic knowledge such as domain constraints, inclusion
dependency, equality-generating dependency, tuple-generating dependency, etc.

XML and DTD: XML is a textual representation of the hierarchical data that
is being defined by the World-Wide Web Consortium [5]. The meaningful piece
of the XML document is bounded by matching starting and ending tags such as
<name> and </name>. In XML, tags are defined by users while in HTML, per-
mitted tags are pre-defined. Thus, XML is a meta-language that can be used for
defining other customized languages. Using DTD, users can define the structure
of the XML document of particular interest. A DTD in XML is very similar to a
schema in a relational database. The main building blocks of DTD are elements
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Table 1. A DTD for Conference.

<!DOCTYPE Conference [
<!ELEMENT conf (tltle date,editor?,paper*)>
<!ATTLIST conf 1D #EEEUIRED)
<!ELEMENT title é#PCDATA)>

<! ate

<!E¥¥E§§¥ ate year  CDATA #REQUIRED
mon CDATA #REQUIRED
day CDATA #IMPLIED>

<!ELEMENT editor (person*)>

<!ATTLIST editor eids_ IDREFS #IMPLIED>

<!ELEMENT paper title,contact?,author,cite?)>

<!'ATTLIST paper id 1D REQUIRED>

<'ELEME§T contact EMPTY>

<I'ATTLIST contact aid IDREF #REQUIRED>

<!ELEMENT author gerson+)>
<VATTLIST author 1D #REQUIRED>
<!ELEMENT person (name, (emalllphone)7)>

<!ATTLIST person id ID #REQUIRED>

ARRIE R BT oum gy,

<!ELEMENT email g#PCDATA;>
<!ELEMENT phone #PCDATA)>
<!ELEMENT cite (gaper*)>
<IATTLIST cite ID #REQUIRED
1> format (ACM|IEEE) #IMPLIED>

and attributes, which are defined by the keywords <!ELEMENT> and <!ATTLIST>,
respectively. In general, components in DTD are specified by the following BNF
syntax:

<!ELEMENT> <element-name> <element-type>
<!ATTLIST> <attr-name> <attr-type> <attr-option>

For a detailed description of DTD model, refer to [12]. Table 1 shows a DTD
for Conference which states that a conf element can have four sub-elements:
title, date, editor and paper in that order. As common in regular expression,
0 or 1 occurrence (i.e., optional) is represented by the symbol “?”, 0 or more
occurrences is represented by the symbol “#”, and 1 or more occurrences is
represented by the symbol “4+”. A sub-element without any such symbols (e.g.,
title) represents a mandatory one.

Keywords #PCDATA and CDATA are used as string types for elements and
attributes, respectively. For instance, the type of title element is defined as
#PCDATA so that title element can be arbitrary character data. <attr-option>
can be #REQUIRED or #IMPLIED among others. An attribute with a #REQUIRED op-
tion is a mandatory one while an attribute with a #IMPLIED option is an optional
one. <attr-type> keywords ID and IDREF are used for the pointed and point-
ing attributes, respectively. IDREFS is a plural form of IDREF. For instance, the
author element must have a mandatory id attribute and this attribute is used
when other attributes point to this attribute. On the other hand, the contact
element has a mandatory aid attribute that must point to the id attribute of the
contacting author of the current paper. One interesting definition in Table 1 is
the cite element; it can have zero or more paper elements as sub-elements, thus
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Table 2. A valid XML document conforming to the DTD for Conference in Table 1.

<conf id="er99">
<title>Int’1l Conference on Conceptual Modeling (ER)</title>
<date> <year>1999</year> <mon>May</mon> <day>20</day> </date>
<editor eids="sheth bossy">
<person id="klavans">
<name fn="Judith" 1n="Klavans"/><email>klavans@columbia.edu</email>
</person> </editor>
<paper id="pl'">
<title>Indexing Model for Structured...</title><contact aid="dao"/>
<author><person id="dao"><name fn="Tuong" 1ln="Dao"/></person></author>
</paper>
<paper id="p2">
<title>Logical Information Modeling of Heterogeneous...</title>
<contact aid="shah"/>
<author>
<person id="shah"><name fn="Kshitij" 1ln="Shah"/></person>
<person id="sheth">
<name fn="Amit" 1ln="Sheth"/><email>amit@cs.uga.edu</email>
</person>
E/altlthggzll 1 o|| t—llACMll)
c%pgpér ia=9p3"§°rma
<title>Making Sense of Scientific Information...</title>
<author> |
<person id="bossy">
<name fn="Marcia" ln="Bossy"/><phone>391.4337</phone>
</person>
</author> </paper> </cite> </paper>
</conf>
<paper id="p7">
<title>Constraints-preserving Transformation from XML...</title>
<contact aid="lee"/>
<author> |
<person id="lee">
<name fn="Dongwon" ln="Lee"/><email>dongwon@cs.ucla.edu</email>
</person> </author>
<cite id="c200" format="IEEE"/>
</paper>

creating a cyclic definition. Table 2 shows a valid XML document conforming
to the DTD for Conference. The document represents a portion of the fictional
ER conference held in 1999. The first two paper elements are described with
id="p1" and id="p2", respectively. The paper element with id="p2" further
has a cite element that describes the references in the paper. The paper ele-
ment with id="p7" shows an example of the valid XML document that is not
rooted at conf element. Note that a valid XML document can be rooted at any
level of the DTD hierarchy as long as their sub-elements and attributes follow
the DTD syntax.

Assumptions: Without loss of generality, to simplify our presentation, we as-
sume that: 1) the input DTD has been already simplified using a technique
in [16], 2) the input XML documents are all valid, and 3) the XML features such
as entities or notations are not covered.

Related Work: [16] presents three transformation algorithms that focus on the
table level of the schema while [9] studies different performance issues among
eight algorithms that focus on the attribute and value level of the schema. Since
our CPI algorithm provides a systematic way of finding and preserving con-
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straints from a DTD, ours is an improvement to the existing transformation
algorithms. Work done in STORED [8] deals with non-valid XML documents.
When input XML documents do not conform to the given DTD, STORED uses
a data mining technique to find a representative DTD whose support exceeds
the pre-defined threshold. Since our algorithm to find and preserve constraints
is not directly tied to a single transformation algorithm, ours can be applied
to this algorithm as well. [13] also presents a DTD inference algorithm when it
is not known. [4] discusses template language-based transformation from XML
DTD to relational schema which requires human experts to write an XML-based
transformation rule.

Some work has been done in [17] dealing with the transformation from re-
lational tables to XML documents. There has been some transformation work
in the OODB area as well [6]. Since OODB is a richer environment than RDB,
their work is not readily applicable to our application. The logical database
design methods and their associated transformation techniques to other data
models have been extensively studied in ER research. For instance, [3] presents
an overview of such techniques. However, due to the differences between ER and
XML models, those transformation techniques need to be modified substantially.

3 Transforming DTD to Relational Schema

Transforming a hierarchical XML model to a flat relational model is not a triv-
ial task. There are several difficulties including non 1-to-1 mapping, set values,
recursion, and fragmentation issues [16]. For a better presentation, we chose one
particular transformation algorithm, called the hybrid inlining algorithm [16]
among many algorithms [4,8,9,16]. It is chosen since it exhibits the pros of the
other two competing algorithms in [16] without severe side effects and it is a more
generic algorithm than those in [4, 8]. Since issues of discovering and preserv-
ing semantic constraints in this paper is orthogonal to that of transformation
algorithms, our technique can be applied to other transformation algorithms
easily.

3.1 Hybrid Inlining Algorithm

The hybrid algorithm [16] essentially does the following!:

1. Create a DTD graph that represents the structure of a given DTD. A DTD
graph can be constructed when parsing the given DTD. Its nodes are ele-
ments, attributes, or operators in DTD. Each element appears exactly once
in the graph, while attributes and operators appear as many times as they
appear in the DTD.

! We have made a few changes to the hybrid algorithm for a better presentation (e.g.,
renaming, supporting “|” operator), but the crux of the algorithm remains intact.
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2. Sub-elements in the choice model using the operator are treated as if
they are in the ordered sequence model with the following changes: 1) “+”
operator is converted to “*” operator, 2) sub-elements without any occur-
rence operators are appended by “?” operator. For instance, <!ELEMENT A
((alb)+|c)> is converted to <!ELEMENT A (a*,bx,c?)>. Further, an at-
tribute with #IMPLIED or IDREFS type is converted to an operator node “?”
or “+” in a DTD graph.

3. Identify top nodes in a DTD graph. A top node satisfies any of the following
conditions: 1) not reachable from any nodes (e.g., source node), 2) direct
child of “*” or “+” operator node, 3) recursive node with indegree > 1, or
4) one node between two mutually recursive nodes with indegree = 1. Then,
starting from a top node T, inline all the elements and attributes at leaf
nodes reachable from T unless they are other top nodes.

4. Attribute names are composed by the concatenated path from the top node
to the leaf node using “_” as a delimiter. Use an attribute with ID type as a
key if provided. Otherwise, add a system-generated integer key?.

5. If a table corresponds to the shared element with indegree > 1 in DTD, then
add a field parent_elm to denote the parent element to which the current
tuple belongs. Further, for each shared element, a new field fk_$X$ is added
as a foreign key to record the key values of parent element X. If X is inlined
into another element Y, then record the Y’s key value in the fk_$Y$ field.

6. Inlining an element Y into a table r corresponding to another element X
(i-e., top node) creates a problem when an XML document is rooted at the
element Y. To facilitate queries on such elements, a new field root_elm is
added to a table r.

7. If an ordered DTD model is used, a field ordinal is added to record position
information of sub-elements in the element. (For simplification, the ordinal
field is not shown in this paper.)

((|”

Table 3 shows the output of the transformation by the hybrid algorithm.
Among eleven elements in the DTD in Table 1, four elements — conf, paper,
person, and eids — are top nodes and thus chosen to be mapped to the different
tables. For the top node conf, the elements date, title, and editor are reach-
able and thus inlined. Then, the id attribute is used as a key and the root_elm
field is added. For the top node paper, the elements title, contact_aid, author,
cite_format and cite_id are reachable and inlined. Since the paper element is
shared by the conf and cite elements (two incoming edges in a DTD graph), new
fields parent_elm, fk_conf and fk_cite are added to record who and where the
parent node was. Note that in the paper table (Table 3), a tuple with id="p7"
has the value "paper" for the root_elm field. This is because the element <paper
id="p7"> is rooted in the DTD (Table 2) without being embedded in other el-
ements. Consequently, its parent_elm, fk_conf and fk_cite fields are null. For
the top node person, the elements name fn, name 1n and email are reachable

% In practice, even if there is an attribute with ID type, one may decide to have a
system-generated key for better performance.
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Table 3. A relational scheme (S) along with the associated data that are converted
from the DTD in Table 1 and XML document in Table 2 by the hybrid algorithm.
Note that the hybrid algorithm does not generate semantic constraints (A).

conf conf_editor_eids
: - ~onfl i
id [[root_elmtitle|date_year|date_mon|date_day 10(1;;01||r00t eflm|fk c;gn | :dtsh
con er99 (she
ler99]| conf [ER[ 1999 [ May | 20 | 100002|| conf | er99 |bossy
paper
id [[root_elm|parent_elm|fk_conf|fk _cite] title |contact_aid|cite_id]cite_format
pl|| conf conf er99 - Indexing ... dao - -
p2|| conf conf er99 - Logical ... shah c100 ACM
p3|| conf cite — | cl100 | Making ... - - -
p7|| paper - - — |Constraints ... lee c200 IEEE
person
id ||r00t_e1m|parent_elm|fk_conf|fk_paper| name_fn |name_1n| email | phone
klavans|| conf editor er99 - Judith |Klavans| klavansQ@cs... -
dao conf paper - pl Tuong | Dao - -
shah conf paper - p2 Kshitij | Shah - -
sheth conf paper - p2 Amit | Sheth | amit@cs... -
bossy conf paper - p3 Marcia | Bossy - 391.4337
lee paper paper - p7 |Dongwon| Lee |dongwonQcs... -

and inlined. Since the person is shared by the author and editor elements,
again, the parent_elm is added. Note that in the person table (Table 3), a tuple
with id="klavans" has the value "editor", not "paper", for the parent_elm
field. This implies that “klavans” is in fact an editor, not an author of the

paper.

4 Semantic Constraints in DTD

Domain Constraints When the domain of the attributes is restricted to a
certain specified set of values, it is called Domain Constraints. For instance,
in the following DTD, the domain of the attributes gender and married are
restricted.

<!ATTLIST author gender (male|female) #REQUIRED
married (yes|no) #IMPLIED>

In transforming such DTD into relational schema, we can enforce the domain
constraints using SQL CHECK clause as follows:

CREATE DOMAIN gender VARCHAR(10) CHECK (VALUE IN ("male", "female"))
CREATE DOMAIN married VARCHAR(10) CHECK (VALUE IN ("yes", "no"))
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When the mandatory attribute is defined by the #REQUIRED keyword in DTD,
it needs to be forced in the transformed relational schema as well. That is, the
attribute 1n cannot be omitted below.

<!ELEMENT person EMPTY>
<!'ATTLIST person fn CDATA #IMPLIED 1n CDATA #REQUIRED>

We use the notation “X 4 (0” to denote that an attribute X cannot be null.
This kind of domain constraint can be best expressed by using the NOT NULL
clause in SQL as follows:

CREATE TABLE person (fn VARCHAR(20), 1n VARCHAR(20) NOT NULL)

Cardinality Constraints In DTD declaration, there are only 4 possible car-
dinality relationships between an element and its sub-elements as illustrated
below:

<!ELEMENT article (title, author+, reference*, price?)>

A. 1-t0-{0,1} mapping (“at most” semantics): An element can have either zero
or one sub-element. (e.g., sub-element price)

B. 1-to-{1} mapping (“only” semantics): An element must have one and only
one sub-element. (e.g., sub-element title)

C. 1-to-{0, ...} mapping (“any” semantics): An element can have zero or more
sub-elements. (e.g., sub-element reference)

D. 1-to-{1, ...} mapping (“at least” semantics): An element can have one or
more sub-elements. (e.g., sub-element author)

For convenience, let us call each cardinality relationship as type A, B, C, and
D, respectively. From these cardinality relationships, mainly three constraints
can be inferred. First, whether or not the sub-element can be null. Similar to
the attribute case, we use the notation “X 4 (” to denote that an element
X cannot be null. This constraint is easily enforced by the NULL or NOT NULL
clause. Second, whether or not more than one sub-elements can occur. This is
also known as singleton constraint in [18] and is one kind of equality-generating
dependencies. Third, given an element, whether or not its sub-element should
occur. This is one kind of tuple-generating dependencies. The second and third
types will be further discussed below.

Inclusion Dependencies (IDs) An Inclusion Dependency assures that values
in the columns of one fragment must also appear as values in the columns of
other fragments and is a generalization of the notion of referential integrity.
Trivial form of IDs found in DTD is that “given an element X and its sub-
element Y, Y must be included in X (i.e., Y C X)”. For instance, from the conf
element and its four sub-elements in DTD, the following IDs can be found as long
as conf is not null: {conf.title C conf, conf.date C conf, conf.editor
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C conf, conf.paper C conf}. Another form of IDs can be found in the at-
tribute definition part of DTD with the use of the IDREF(S) keyword. For in-
stance, consider the contact and editor elements in the DTD in Table 1 shown
below:

<!ELEMENT person (name, (email|phone)?>

<!'ATTLIST person id ID #REQUIRED>
<!ELEMENT contact EMPTY>

<!ATTLIST contact aid IDREF #REQUIRED>
<!ELEMENT editor (personx)>

<!ATTLIST editor eids IDREFS #IMPLIED>

The DTD restricts the aid attribute of the contact element such that it can only
point to the id attribute of the person element?. Further, the eids attribute
can only point to multiple id attributes of the person element. As a result,
the following IDs can be derived: {editor.eids C person.id, contact.aid
C person.id }. IDs can be best enforced by the “foreign key” concept if the
attribute being referenced is a primary key. Otherwise, it needs to use the CHECK,
ASSERTION, or TRIGGERS facility in SQL.

Equality-Generating Dependencies (EGDs) The Singleton Constraint [18]
restricts an element to have “at most” one sub-element. When an element type
X satisfies the singleton constraint towards its sub-element type Y, if an element
instance z of type X has two sub-elements instances y; and y, of type Y, then
y1 and y» must be the same. This property is known as Fquality-Generating De-
pendencies (EGDs) and denoted by “X — Y” in database theory. For instance,
two EGDs: {conf — conf.title, conf — conf.date} can be derived from
the conf element in Table 1. This kind of EGDs can be enforced by SQL UNIQUE
construct. In general, EGDs occur in the case of the 1-to-{0,1} and 1-to-{1}
mappings in the cardinality constraints.

Tuple-Generating Dependencies (TGDs) Tuple-Generating Dependencies
(TGDs) in relational model require that some tuples of a certain form be present
in the table and use the “—»” symbol. Two useful forms of TGDs from DTD
are the child and parent constraints [18].

1. Child constraint: "Parent —» Child" states that every element of type
Parent must have at least one child element of type Child. This is the case
of the 1-to-{1} and 1-to-{1,...} mappings in the cardinality constraints. For
instance, from the DTD in Table 1, since the conf element must contain the
title and date sub-elements, the child constraint conf — {title, date}
holds.

3 Precisely, an attribute with IDREF type does not specify which element it should
point to. This information is available only by human experts. However, new XML
schema languages such as XML Schama and DSD can express where the reference
actually points to [12].
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Fig. 2. An Annotated DTD graph for the Conference DTD in Table 1. The associated
values of the nodes (i.e., indegree, type, tag, and status) are not shown.

2.

5

Parent constraint: "Child —» Parent" states that every element of type
Child must have a parent element of type Parent. According to XML spec-
ification, there is no notion of root in DTD. That is, XML documents can
start from any level of elements without necessarily specifying its parent el-
ement. Therefore, parent constraints cannot be assured simply by looking
at the DTD structure. Rather, it requires some semantic knowledge. In the
DTD in Table 1, for instance, the editor and date elements can have the
conf element as their parent. Further, if we know that all XML documents
were started at the conf element level rather than the editor or date level,
then the parent constraint {editor, date} —* conf holds. Note that the
title — conf does not hold since the title element can be a sub-element
of either the conf or paper element.

Discovering and Preserving Semantic Constraints

To help find semantic constraints, we use the following data structure:

Definition 1. An annotated DTD graph (ADG) G is a pair (V, £), where
V is a finite set and € is a binary relation onV. The setV consists of element and
attributes in a DTD. Fach edge e € £ is labeled with the cardinality relationship
types (A to D) as defined in Section 4. In addition, each verter v € V carries
the following information:

1.
2.

3.

indegree stores the number of incoming edges.

type contains the element type name in the content model of the DTD (e.g.,
conf or paper).

tag stores a flag value whether the node is an element or attribute (if at-
tribute, it contains the attribute keyword like ID or IDREF, etc.).
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Table 4. Cardinality relationships and their corresponding semantic constraints.

|Relati0nship||Type|Symb01|Semantics||n0t null|EGDs|TGDs|

1-to-{0,1}|| A ? at most no yes | no

1-to-{1}|| B only yes yes | yes
1-to-{0,...}|| C * any no no | no
1-to-{1,...}|{| D at least yes no | yes

4. status contains “visited” flag if the node was visited in a depth-first search
or “not-visited”.

Note that the cardinality relationship types in ADG considers not only ele-
ment vs. sub-element relationships but also element vs. attribute relationships.
For instance, from the DTD <!'ATTLIST X Y #IMPLIED Z #REQUIRED>, two
types of cardinality relationships (i.e., type A between element X and attribute
Y, and type B between element X and attribute Z) can be derived. Figure 2
illustrates an example of ADG for the Conference DTD in Table 1. Then, the
cardinality relationships can be used to find semantic constraints in a systematic
fashion. Table 4 summarizes 3 main semantic constraints that can be derived
from. The FindConstraints () algorithm can be immediately derived from the
properties in Table 4. For detailed description, refer to [11].

Semantic constraints discovered by FindConstraints () have additional us-
age as we have shown in [11]. However, to enforce correct semantics in the newly
generated relational schema, the semantic constraints in XML terms need to be
re-written in relational terms. This is done by the algorithm RewriteConstraints().

5.1 CPI: Constraints-preserving Inlining Algorithm

We shall now describe our complete DTD-to-relational schema, transformation al-
gorithm: CPI (Constraints-preserving Inlining) algorithm is a combination of the
hybrid inlining, FindConstraints() and RewriteConstraints() algorithms.
The CPI algorithm is illustrated in CPI() and hybrid().

The algorithm first identifies all the top nodes from the ADG. This can
be done using algorithms to find sinks or strongly-connected components in a
graph [16]. Then, for each top node, the algorithm generates a corresponding ta-
ble scheme using hybrid (). The associated constraints are found and re-written
in relational terms using FindConstraints() and RewriteConstraints(), re-
spectively. The hybrid () algorithm scans an ADG in a depth-first search manner
while finding constraints and inlines a new field in the leaf node. The final output
schema is the union of all the table schemes and semantic constraints.

Table 5 contains the semantic constraints that are re-written from XML
terms to relational terms. As an example, the CPI algorithm will eventually spit
out the following SQL CREATE statement for the paper table. Note that not only
is the relational scheme provided, but the semantic constraints are also ensured
by use of the NOT NULL, KEY, UNIQUE or CHECK constructs.
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Algorithm 1: RewriteConstraints

Input : Constraints A’ in XML notation
Output: Constraints A in relational notation

switch A’ do

case X /4 0

If X is mapped to attribute X' in table scheme A, then A[X'] cannot
| be null. (i.e., “CREATE TABLE A (...X’' NOT NULL...)”) ;

case X CY

If X and Y are mapped to attributes X' and Y in table scheme A and
B, respectively, then re-write it as A[X'] C B[Y]. (ie., If Y’ is a pri-
mary key of B, then “CREATE TABLE A (...FOREIGN KEY (X') REFERENCES
B(Y'")...)". Else “CREATE TABLE A (...(X') CHECK (X' IN (SELECT Y’
FROM B))...”) ;

case X - X.Y

If element X and Y are mapped to the same table scheme A (i.e., since
Y is not a top node, Y becomes an attribute of table A) and Z is the key
attribute of A, then re-write it as A[Z] — A[Y]. (i.e., “CREATE TABLE
| A (...UNIQUE (Y), PRIMARY KEY (Z)...)");

case X » XY
if (element X and Y are mapped to the same table) then
Let A be the table and Z be the key attribute of A. Then re-write it
as A[Z] = A[Y]. (i.e., “CREATE TABLE A (.Y NOT NULL, PRIMARY
| KEY (2)...)") ;
else
Let the tables be A and B, respectively and Z be the key attribute
of A. Then re-write it as B[fk_A] C A[Z]. (i.e.,, “CREATE TABLE B
| (...FOREIGN KEY (fk_A) REFERENCES A(Z)...)")

return A;

CREATE TABLE paper (

id NUMBER NOT NULL,
title VARCHAR (50) NOT NULL,
contact_aid VARCHAR(20),
cite_id VARCHAR (20) ,

cite_format VARCHAR(50) CHECK (VALUE IN ("ACM", "IEEE")),

root_elm VARCHAR (20) NOT NULL,

parent_elm VARCHAR(20),

fk_cite VARCHAR(20) CHECK (fk_cite IN (SELECT cite_id FROM paper)),
fk_conf VARCHAR (20) ,

PRIMARY KEY (id),

UNIQUE (cite_id),

FOREIGN KEY (fk_conf) REFERENCES conf (id),

FOREIGN KEY (contact_aid) REFERENCES person(id)
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Algorithm 2: CPI
Input : Annotated DTD Graph G = (V,€)
Output: Relational Schema R

V < topnode(G);
for each v € V do
table def < {};
if v.tag = ’element’ then
| add(’root_elm’, table_def); /* start where? */

if v.indegree > 1 then

add(’parent_elm’, table.def); /* shared elements case */
L add(concat(’fk_’, parent(v)), table_def);
W « Adj[v]; w € W;
if any w.tag = *ID’ then add(w.type, table_def);
else add(’id’, table.def); /* system-generated primary key */
R + R + hybrid(v, table def, 0);

return R;

Algorithm 3: hybrid
Input : Vertex v, TableDef table_def, string attr_name
Output: Relational Schema R

v.status < ’visited’;
for each w € Adjjv] do
if w.status = ’not-visited’ then
A’ + FindConstraints(v, w);
\; A < RewriteConstraints(A’);
hybrid(w, table_def, concat(attr_name, ', w.type));

add(attr_name, table_def); R < table_def + A;
return R;

6 Experimental Results

We have implemented the CPI algorithm in Java using the IBM XML4J pack-
age. Table 6 shows a summary of our experimentation. We gathered test DTDs
from “http://www.oasis-open.org/cover/xml.html” and [15]. Since some DTDs
had syntactic errors caught by the XML4J, we had to modify them manually.
Note that people seldom used the ID and IDREF(S) constructs in their DTDs
except the XMI and BSML cases. The number of tables generated in the relational
schema was usually smaller than that of elements/attributes in DTD due to the
inlining effect. The only exception to this phenomenon was the XMI case, where
extensive use of types C and D cardinality relationships resulted in many top
nodes in the ADG.

The number of semantic constraints had a close relationship with the design
of DTD hierarchy and the type of cardinality relationship used in the DTD.
For instance, the XMI DTD had many type C cardinality relationships, which do
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Table 5. The semantic constraints in relational notation for the Conference DTD in
Table 1.

| Type || Semantic constraints in relational notation

ID || conf_editor_eids[eids] C person[id], paper[contact_aid] C person[id]

conf[id] — conf[title,date_year,date_mon,date_day]
EGD || paper[id] — conf[title,contact_aid,cite_id,cite_format]
person[id] — conflname fn name_ In email]

conf[id] = conf[title,date_year,date_mon,date_day]

paper[id] = conf[title,contact_aid,cite_id,cite_format]

TGD || person[id] = conf[name_fn,name_In,email], conf_editor_eids[tk_conf] C conf[id]
paper[tk_conf] C conf[id], paper[tk_cite] C paper|cite_id]

person[fk_conf] C conf[id], person[tk_paper] C paper[id]

conf[id,title,date_year,date_mon,root_elm] /4 0
not null|| conf_editor_eids[id,root_elm] /4 0
paper[id,title,root_elm] 4 @, person[id,name_In,root_elm] /4 @

Table 6. Experimental results of the CPI algorithm.

DTD DTD Schema Relational Schema
Name | Domain Elm[Attr[ID[IDREF(S)||Table] Attr [+ —*[/A 0
novel literature 1011 |1 0 5 1316/91] 9
play Shakespeare 211 0 |0 0 14 | 46 |17/ 30| 30
tstmt religious text 281 0 |0 0 17 | 52 |17| 22| 22
vCard business card 231 1|0 0 8 19 |18/ 13| 13
ICE |content syndication|| 47 | 157 | 0 0 27 | 283 43| 60 | 60
MusicML| music description || 12 | 17 | 0 0 8 34 (912 | 12
0SD s/w description | 16 | 15 | 0 0 15 37|22 | 2
PML web portal 46 (293 |0 0 41 | 355 (29|36 | 36
Xbel bookmark 9 |13 |3 1 9 36 (91 |1
XMI metadata 94 | 633 |31 102 129 |3013(10| 7 | 7
BSML | DNA sequencing || 112 |2495|84 97 104 |2685(99( 33 | 33

not contribute to the semantic constraints. As a result, the number of seman-
tic constraints at the end was small compared to that of elements/attributes
in DTD. This was also true for the 0SD case. On the other hand, in the ICE
case, since it used many type B cardinality relationships, it resulted in many
semantic constraints. For detailed discussions on the experimentation and the
implementation of the CPI algorithm, please refer to [10].

7 Conclusion

This paper presents a method to transform XML DTD to relatonal schema both
in structural and semantic aspects. After discussing the semantic constraints
hidden in DTD, two algorithms are presented for: 1) discovering the semantic
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constraints using the hybrid inlining algorithm, and 2) re-writing the seman-
tic constraints in relational notation. Qur experimental results reveal that con-
straints can be systematically preserved during the conversion from XML to
relational schema. Such constraints can also be used for semantic query opti-
mization or semantic caching [11].

References

1.

10.
11.

12.

13.

14.

15.

16.

17.

18.

Abiteboul, S., Buneman, P., Suciu, D. “Data on the Web: From Relations to
Semistructured Data and XML”, Morgan Kaufmann Publishers, 2000.

. Bohm, K., Aberer, K., Oszu, M. T., Gayer, K. “Query Optimization for Structured

Documents Based on Knowledge on the Document Type Definition”, Proc. IEEE
Advances in Digital Libraries (ADL), Los Alamitos, California, April, 1998.

Batini, C., Ceri, S., Navathe, S. B. “Conceptual Database Design: An Entity-
Relationship Approach”, The Benjamin/Cummings Pub. Inc., 1992.

Bourret, R. “XML and Databases”, Internet Document, September, 1999.
http://www.informatik.tu-darmstadt.de/DVS1/staff /bourret /xml/XMLAndDatabases.htm

. Bray, T., Paoli, J., Sperberg-McQueen, C. M. (ed.), “Extensible Markup Language

(XML) 1.0, W8C Recommendation, Feburary, 1998.

Christophides, V., Abiteboul, S., Cluet, S., Scholl, M. “From Structured Document
to Novel Query Facilities”, Proc. ACM SIGMOD, Minneapolis, Minnesota, 1994.
Deutsch, A., Fernandez, M. F., Florescu, D., Levy, A., Suciu, D. “XML-QL: A
Query Language for XML”, Proc. The Query Language Workshop (QL), 1998.
http://www.w3.org/ TR/NOTE-xml-ql

Deutsch, A., Fernandez, M. F., Suciu, D. “Storing Semistructured Data with
STORED”, Proc. ACM SIGMOD, Philadephia, Pennsylvania, June, 1998.
Florescu, D., Kossmann, D. “Storing and Querying XML Data Using an RDBMS”,
IEEE Data Engineering Bulletin, 22(3), September, 1999.

“XPRESS Home Page”, 2000. http://www.cobase.cs.ucla.edu/projects/xpress/

Lee, D., Chu, W. W. “Constraints-preserving Transformation from XML Document
Type Definition to Relational Schema (Extended Version)”, UCLA-CS-TR 200001,
2000. http://www.cs.ucla.edu/~dongwon/paper/

Lee, D., Chu, W. W. “Comparative Analysis of Six XML Schema Languages”,
UCLA-CS-TR 200008, 2000. http://www.cs.ucla.edu/~dongwon/paper/

Ludé&escher, B., Papakonstantinou, Y., Velikhov, P., Vianu, V. “View Definition
and DTD Inference for XML”, Proc. Post-ICDT Workshop on Query Processing for
Semistructured Data and Non-Standard Data Formats, 1999.

Robie, J., Lapp, J., Schach, D. “XML Query Language (XQL)”, WWW The Query
Language Workshop (QL), December, 1998.

Sahuguet, A. “Everything You Ever Wanted to Know About DTDs, But Were
Afraid to Ask”, Proc. 8rd Int’l Workshop on the Web and Databases (WebDB),
Dallas, TX, 2000.

Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., Naughton, J.
“Relational Databases for Querying XML Documents: Limitations and Opportuni-
ties”, Proc. VLDB, Edinburgh, Scotland, 1999.

Turau, V. “Making Legacy Data Accessible for XML Applications”, Internet Doc-
ument, 1999. http://www.informatik.fh-wiesbaden.de/~turau/veroeff.html

Wood, P. T. “Optimizing Web Queries Using Document Type Definitions”, Proc.
2nd Int’l Workshop on Web Information and Data Management (WIDM), 1999.



