
Conjunctive Point Predicate-based Semantic Caching

for Web Databases

Dongwon Lee

Department of Computer Science

University of California, Los Angeles

dongwon@cs.ucla.edu

Wesley W. Chu

Department of Computer Science

University of California, Los Angeles

wwc@cs.ucla.edu

Last Revised: September 24, 1998

Abstract

A novel semantic caching scheme suitable for web database environments is proposed. In

our scheme, tasks for query translation/capability mapping (named as \query naturalization")

between wrappers and web sources and tasks for semantic caching are seamlessly integrated,

providing greater levels of query optimization opportunities. Semantic cache consists of three

components: (1) \semantic view", a description of the contents in the cache using sub-expressions

of the previous queries, (2) \semantic storage", a placeholder for data satisfying the semantic view,

and (3) \physical storage", a storage containing tuples (or objects) that are shared by all semantic

storages in the cache. Because of the inherent characteristics of IR systems, issues similar to the

classical query containment problem arise. Possible match types and detailed algorithms for

comparing the input query with stored semantic views are discussed. We consider these issues in

the context of a prototype web database system being developed at UCLA.

UCLA-CS-TR-980030

1

1 Introduction

Typical web database systems (hereafter WebDB), which make querying viable on distributed, het-

erogeneous sources accessible through the web, have mainly three components [Ull97]; (1) mediator,

which does a distributed, heterogeneous data integration, (2) wrapper, which does a local translation

and data extraction, and (3) web source, which contains raw data to be queried and extracted.

Two techniques for implementingWebDB are the warehousing and the virtual approaches [FLM98].

In the warehousing approach, data from multiple sources are prefetched into a local repository and

queries are applied to the repository, making query response fast and reliable with the risk of obsolete

data. Hence, this approach is more appropriate for data which is not recurrently updated or whose

size is relatively small to bring in. In the virtual approach, queries are posed to an uniform inter-

face, which decomposes and applies queries to multiple sources at run time. Due to accompanying

run-time costs, querying could be costly or even unavailable. However this approach always provides

up-to-date data. Hence, this approach is more suitable for real-time data (e.g., stock) or data whose

size is too big to bring in regularly1.

Given the vast amount of web sources and their autonomous nature, we believe that developing

techniques to ask queries at run time using the virtual approach is very important. One of the most

e�ective ways to reduce costs in using the virtual approach is to cache the results of the prior queries

and reuse them. The e�ectiveness of the caching is even increased for certain applications, where

a series of semantically associated queries are asked in a row, and the results very likely overlap or

contain one another. The cooperative database system [CYC+96], the associative query answering

system [CZ97], and geographical information system are such examples.

Although caching techniques in distributed systems have been investigated in great detail in

literature (e.g., see [ABGM90, FCL93]), they have received little attention in the WebDB context.

Moreover, WebDB has more constraints than conventional client-server systems. For instance, due to

the lack of the cooperation from the server, server-side caching is not pertinent. Also, since a unique

ID for a tuple (or object) is not always guaranteed to be provided, tuple-ID (a.k.a. pointer-caching)

or page caching is not applicable.

In this paper, we shall propose a novel caching scheme suitable forWebDB in the virtual approach.

Our scheme is based on the client-side, data-shipping , semantic approach. Whether the cache is based

on main-memory, disk, or both, it is orthogonal to the issues being discussed in this paper and we

assume that hereafter cache is only based on the main-memory for illustration purposes. Also the

cache coherence maintainence issue is not covered in this paper.

1
e.g., Microsoft TerraServer at http://terraserver.microsoft.com/

2

2 Preliminaries

In this section, we explain a few basic concepts and examples to be used throughout the paper. In

what follows, we use a relation Child(group,name,gender,age,height,weight), which consists of

three groups, finfant, toddler, pre-schoolg, with their corresponding age limits, 12, 24, 36 months,

respectively.

[De�nition 2.1] Given a database D, a Positive Selection Predicate (P+
) is the predicate with the

form of X � Y in in�x notation, where X is an attribute name, Y is an attribute name or a constant

value and � is any of following SQL operators f>;�; <;�;=, LIKE, IN, BETWEEN g. A Negative

Selection Predicate (P�

) is created negating the above � by appending an : operator. Note that

some of the P+ and P� operators are identical (e.g., : � is same as >). When the context is clear,

we use a Selection Predicate (P) to denote both P+ and P� for short.

A Conjunctive Predicate (CONJ) is the set of P s connected by only logical AND operators and

a Disjunctive Predicate (DISJ) is the set of P s connected by only logical OR operators. Likewise, a

Conjunctive Normal form (CNF) is the logical AND of the DISJ s and a Disjunctive Normal Form

(DNF) is the logical OR of the CONJ s. Formally, with Pj 2 fP
+; P�g,

CONJ =
nY

j=1

Pj ; (1)

DISJ =
nX

j=1

Pj ; (2)

CNF =
mY

i=1

(
nX

j=1

Pj) =
mY

i=1

(DISJ); (3)

DNF =
mX

i=1

(
nY

j=1

Pj) =
mY

i=1

(CONJ) (4)

2

We will use the DNF form as our basis for query processing because of its simplicity and well-

studied semantics. Converting regular boolean predicates into the DNF with unfolded negations

while preserving same semantics is a well-known algorithm in the literature [McC86, CGMP96].

[Example 2.1] Given a query (height < 15 _ height > 20) ^ : (name = 'sylvie') in CNF, an

equivalent DNF and other sub-components are shown in Table 1. 2

A central idea behind our semantic caching as well as query capability reconciliation is closely

related to the so-called query containment problem. It is formally de�ned as follows.

3

Type Predicate

CNF (height < 15 _ height > 20) ^ : (name = 'sylvie')

DNF (height < 15 ^ name 6= 'sylvie') _ (height > 20 ^ name 6= 'sylvie')

CONJ 1: (height < 10 ^ name 6= 'sylvie'), 2: (height > 20 ^ name 6= 'sylvie')

P+ 1: height < 10 , 2: height > 20

P�

name 6= 'sylvie'

Table 1: Predicate types and examples.

[De�nition 2.2] Given a database D and query Q, applying Q on D is denoted by Q(D). hQ(D)i,

or hQi for short, is the n-ary relation obtained by evaluating the query Q on D. Given two n-ary

queries, Q1 and Q2, if hQ1(D)i � hQ2(D)i for an arbitrary relation D, then the query Q1 is contained

in the query Q2 and denoted by Q1 � Q2. If two queries contain each other, they are equivalent and

denoted by Q1 � Q2. 2

[Example 2.2] For two queries, Q1: (height = 20 ^ weight � 25) and Q2: (height = 20 ^ weight

� 30), Q1 � Q2 holds because hQ1(Child)i � hQ2(Child)i. 2

[De�nition 2.3] Given two selection predicates, P1: (attr �1 val) and P2: (attr �2 val), which only

di�er in their operators, if P1 � P2, then �1 is contained in �2 and denoted by �1 � �2. 2

[Example 2.3] For two operators, = and LIKE , = is contained in LIKE because (attr = val) �

(attr LIKE val) for an arbitrary attr and val . 2

3 An Overview of IVY

IVY (Integrated View sYstem) is a WebDB system being developed at UCLA. It has the character-

istic architecture of the mediator and wrapper components found in other WebDB systems (e.g.,

[GMHI+95, KLSS95]), but focuses on narrower application domains. The sources are predominantly

Information Retrieval (IR) systems that are accessible through web interfaces. Since the majority

of data-intensive web sources (called hidden web [FLM98]), are accessible through form-based IR

systems on the web, we believe it is a tolerable constraint.

This limitation leads to an important rami�cation on the design of IVY; since most IR systems

support only interfaces based on the vector-space model [Sal89] for simple queries using limited

keyword searching2, web sources support only selection predicates of the form \�eld operator value",

where operator is f=, LIKEg. Note that range or set predicates are excluded, because the range

operator (e.g., year < 1998) can be treated as a point operator (e.g., year less than = 1998). We shall

2
Another extreme of the spectrum is using an interface for specifying complex selection criteria in boolean logic

(e.g., \intel AND 'Pentium Chip' AND NOT domain:intel.com" for AltaVista search engine). Such case is considered

in author's another paper [LSV98].

4

denote such a selection predicate as a point predicate to di�erentiate it from the range predicate.

IVY embraces the Global As View (GAV) approach [FLM98], explicating mediator schema with

respect to the web source schema. The input query is expressed in the SQL3 language over the medi-

ator schema. From the SQL statement, the mediator spawns sub-queries for wrappers by converting

the WHERE clause into DNF and disjoining each CONJ clause. Each CONJ is executed by the

wrapper as a separate thread and their results are amalgamated together at the end. In IVY, both

project (�) and join (1) operations are operated at the mediator level while select (�) conditions

are pushed down to the wrapper level.

While the mediator-level caching atop the wrapper-level is viable too, here we focus only on the

wrapper-level caching. We consider the hybrid caching in both the mediator and wrapper level as one

of the important future research directions. Due to the space limitation, hereafter, we only address

the wrapper portion of the system.

Upon getting a request in CONJ from the mediator, the wrapper asks the Data Source Manager

(DSM) to fetch the requested data. DSM probes in the order of (1) cache, (2) local source, and (3)

remote source. The local and remote source components in DSM are placeholders pointing to external

sources (denoted by dotted lines in Figure 1). In case of the cache hit, DMS fetches data from the

cache. Else if the web source data is brought into a local repository (data warehouse), then DSM

fetches data from the local source. If all fails, DSM needs to fetch data from the web source. The

purpose of the local source in IVY is twofold; (1) it is a repository for the data warehousing approach,

containing data directly loaded or subscribed from the web source, and (2) it is an additional bu�er

containing data over
owed from the cache. The overall architecture of the wrapper is depicted in

Figure 1.

Query Engine

Data Source Manager

Cache Data
Warehouse WWW

 Wrapper
Memory Space

Query Result

 Fetch
Request

Fetched
 Data

Local Remote

Figure 1: IVY wrapper architecture.

3
Current IVY implementation supports only SPJ (Select-Project-Join) type SQL.

5

4 Query Naturalization

Upon receiving an input query, IQ,4 from the mediator, the wrapper needs to pre-process it before

submitting it to the web source. This is because web sources typically use di�erent terminologies and

have di�erent query processing capabilities due to security or performance concern, etc. [FLM98].

Such pre-processing between the wrapper and web sources include:

Translation : to provide one-to-one mapping between two parties, the wrapper needs to schemati-

cally translate the input query. Since we are not addressing schema-level translation, we assume

that such mechanisms for performing this task are available. (e.g., [GMHI+95, CGM98]).

Augmentation & Filtration : when there is no one-to-one mapping, but the web source has a

stronger (returning more results than requested) query processing capability, the wrapper

needs to augment the input query. To �lter out the extra data, the wrapper also provides

�ltering information. For instance, a predicate (name = 'sylvie') can be augmented to the

stronger (name LIKE 'sylvie') with the additional �lter (name = 'sylvie').

Simulation : when there is no one-to-one mapping, but the web source has a weaker (returning less

results than requested) query processing capability, the wrapper needs to simulate the input

query. For instance, a range predicate (1 < x < 4) can be simulated by a disjunctive predicate

(x = 2 _ x = 3) provided that x is an integer type. In IVY, all incoming range or negation

queries are converted into point or positive queries.

[De�nition 4.1] The pre-processing tasks of translation, augmentation & filtration, and

simulation are collectively referred to as a Query Naturalization. An Input Query (IQ) is the

input request in CONJ from the mediator to the wrapper. A newly generated query after the query

naturalization is referred to as a Native Query (NQ), while additional �ltering information is

referred to as a Filter Query (FQ)
5. Their relationship is shown in Figure 2. 2

IQ

NQ

FQ

Figure 2: Ven diagram representation of the relationship among IQ, NQ, and FQ. Without a query

naturalization, NQ would be same as IQ with an empty FQ.

4
We assume that the original query is satis�able [Cha92] and do not try to check its validity.

5
We adopt terms, NQ and FQ, from [CGMP96].

6

attribute in out op any domain

group opt man =, LIKE null set('infant', 'toddler', 'pre-school')

name man man LIKE null null

gender opt man = Both set('boy', 'girl')

age opt man = null list(3, 36, 1)

height opt man = null interval(1, 1)

weight opt man = null interval(1, 1)

Table 2: CDV (Child): web source should be given binding for the name attribute in accepting the

input query, but not others. An attribute gender has a wildcard value as \Both". Hence, (gender

= 'girl') can be, for instance, augmented to a (gender = 'Both').

4.1 Query Capability Description

In order for the wrapper to conduct the query naturalization, it needs to know additional information

with respect to a query processing capability of the target web source. IVY use a simple description

vector for this purpose. Its expressive power is much less than that of the [VP97], but equivalent to

that of the [LRO96]. Unlike [LRO96] where query capabilities are described for a whole web source,

each attribute in IVY carries its own description. Formally,

[De�nition 4.2] A Capability Description Vector (CDV) is a 5-tuple vector, (in, out, op, any,

domain), declaratively describing the query processing capability of the web source. We denote an

attribute A's CDV as CDV (A) and a relation R's CDV as CDV (R).

in describes whether the web source must be given binding for this attribute or not

{ man for mandatory, opt for optional.

out describes whether this attribute will be shown in the results or not. It has same

values as �eld in.

op contains operators, from f=, LIKEg, being supported by the attribute.

any contains a string value to be used as a wildcard.

domain represents the complete domain values of the attribute.

Three types { list, interval, and set { are supported. (list(from, to, gap),

interval(from, to), and set(val1, val2, � � �, valn)).
2

[Example 4.1] An example of CDV for the Child relation is shown in Table 2. Suppose a user

wants to �nd \tall children named sylvie whose birthdays are near", which is in relational algebra

�
�
(�name=0sylvie0

^ageIN(11;23;35)^height>30(Child)). Then, Table 3 shows each step through the query

naturalization process. In the augmentation step, (name = 'sylvie') is translated to (name LIKE

'sylvie') since the operator = is not supported. Also, although the operator > is not supported for

the attribute height and since it is an optional attribute, we can gain the same results by dropping

the predicate (height > 30) completely while providing a right �lter. Note that if the upperbound

7

Input Query (IQ) name = 'sylvie' ^ age IN (11, 23, 35) ^ height > 30

After Augmentation name LIKE 'sylvie' ^ age IN (11, 23, 35)

Filter Query (FQ) name = 'sylvie' ^ height > 30

After Simulation name LIKE 'sylvie' ^ (age = 11 _ age = 23 _ age = 35)

Native Query (NQ) (name LIKE 'sylvie' ^ age = 11) _ (name LIKE 'sylvie' ^ age = 23)

_ (name LIKE 'sylvie' ^ age = 35)

Table 3: A query naturalization example.

of the domain was not 1, then we would have to compare costs involved in the augmentation and

the simulation and choose the better one. 2

5 Semantic Caching

In IVY, semantic caching has mainly three components: (1) \semantic view", a description of the

contents of the cache using sub-expressions of the previous queries, (2) \semantic storage", a place-

holder for data satisfying the semantic view, and (3) \physical storage", a storage containing tuples

(or objects) and shared by all semantic storages in the cache. An entry in the cache shall henceforth

be denoted by (V, hV i), where V is a semantic view and hV i is a semantic storage associated with

V , excluding physical storage. All such semantic views are collectively denoted by a Cache Query

(CQ).

5.1 Caching Choices: IQ vs. NQ

There are two choices for caching the data: IQ (input query) vs. NQ (native query). The main

di�erence is that the former uses range, negative queries, whereas the latter uses only point, positive

(thus much smaller granualities) queries. If IQ is augmented into an NQ and FQ pair during query

naturalization, then hNQi � hIQi holds since hIQi � hNQi ^ hFQi. Thus if the cache stores only

the (IQ, hIQi) pair, it loses augmented data contained in hNQi ^:hIQi. Since query augmentation

and �ltration happens frequently, we believe it is preferable to retain the whole set by choosing (NQ,

hNQi) rather than to retain parts of the set by choosing (IQ, hIQi). Furthermore, IVY uses CONJ

parts of the the NQ in DNF format as cache entries. For instance, after input query name = 'sylvie'

^ age IN (11, 23, 35) is naturalized, three new entries broken from the NQ are added to the cache:

(1) name LIKE 'sylvie' ^ age = 11 , (2) name LIKE 'sylvie' ^ age = 23 , and (3) name LIKE 'sylvie'

^ age = 35 , instead of the original IQ: name = 'sylvie' ^ age IN (11, 23, 35).

8

5.2 Control Flow

The integrated query naturalization and semantic caching process therefore consist of the four distinct

states of the query. Its overall control
ow is shown in Figure 3.

Filter Query
 (FQ)

Cache Query
 (CQ)

WWW

Wrapper

Mediator

Input Query
 (IQ)

Query Engine

Native
Query
 (NQ)

Native
Result

Wrapper
Result

Figure 3: Control
ow among four query types (IQ;CQ;NQ, and FQ).

An IQ from the mediator is naturalized by the query engine in the wrapper and converted into

a NQ. Doing so, if needed, a FQ is also generated. Then, the query engine (DSM) checks the NQ

with previously stored CQs in the semantic cache to �nd matches. If the match is found, cached

results are returned to the mediator. Otherwise, the NQ is submitted to the web source. Upon

getting native results from the web source, the wrapper post-processes them by applying the FQ

and returns to the mediator. Finally the CONJs of the NQ are broken into pieces and inserted into

the cache properly.

5.3 Matching

We want to �nd semantic views which are \exactly" the same as or a \superset" of the input query

so that we can obtain answers from the cache. Although semantic views are described by point

predicates, issues similar to the classical query containment problem arise because of the missing

attributes in a query. For example, a predicate (x = 1 ^ y = 2) is contained in (x = 1) since the

attribute y is missing in the later predicate.

exact containing contained overlapping disjoint

<Q>

<V>

 V: x=1 x=1 x=1 & y=1 x=1 x=1 & y=1
 Q: x=1 x=1 & y=1 x=1 y=1 x=1 & y=2

Figure 4: Ven diagram of the �ve match types and examples with 2-dimensional attributes space (x

and y).

9

Type Property

CQE NQ � CQE, Answer hCQEi

CQC NQ � CQC , Answer NQ(hCQCi)

NQ � CQ:C ,

CQ:C
Overlapped answer hCQ:Ci, Missing answer hNQ ^ (:CQ:C)i,
Answer Overlapped answer _ Missing answer

(NQ 6� CQO) ^ (NQ 6� CQO) ^ (NQ ^ CQO 6= ;),
CQO

Overlapped answer NQ(hCQOi), Missing answer hNQ ^ (:CQO)i,
Answer Overlapped answer _ Missing answer

CQD NQ ^ CQD = ;, Answer ;

CQC 0 2 fCQCg; CQC 00 2 fCQCg; CQC 0 6� CQC 00,

CQC
min CQC 0 � CQC 00 ^ CQC 0 6� CQC 00 =) CQC

min = CQC 0,

Answer NQ(hCQC
mini)

CQC0

min 2 fCQ
C
ming; CQ

C
opt = opt(cost(NQ ^ CQC0

min)),

CQC
opt Answer NQ(hCQC

opti)

CQO0 2 fCQOg; CQO
opt = opt(cost(NQ ^ CQO0)),

CQO
opt Overlapped answer NQ(hCQO

opti), Missing answer hNQ ^ (:CQO
opt)i,

Answer Overlapped answer _ Missing answer

Table 4: Types of varying query matches and their properties.

First we assume that all predicates in the NQ (native query) and CQ (cache query) are: (1)

sorted in some pre-determined order, and (2) padded with a special don't care predicate,
N
, when

an attribute is missing in a predicate using the attribute order of that relation. For instance, a

predicate (height = 10 ^ name LIKE 'sylvie' ^ gender = 'girl') can be preprocessed into (
N
^

name LIKE 'sylvie' ^ gender = 'girl' ^ height = 10 ^
N
). These processings normalize all queries

in the same dimensions as the number of the attributes. Thus, 5 di�erent match types are possible

between a NQ and a CQ (Figure 4). Formally,

[De�nition 5.1] Given two n-ary queries, Q1 and Q2, if hQ1(D)i � hQ2(D)i, then the query Q1

is contained in the query Q2 and denoted by Q1 � Q2. If two queries contain each other, they are

equivalent and denoted by Q1 � Q2. When a CQ is equivalent to the NQ, it is an exact match ,

CQE, of the NQ. When a CQ contains the NQ, it is a containing match , CQC , of the NQ. In

contrast, when a CQ is contained in the NQ, it is a contained match , CQ:C , of the NQ. When a

CQ does not contain, but intersects with the NQ, it is an overlapping match , CQO, of the NQ.

Finally, when there is no intersection between NQ and CQ, the CQ is a disjoint match , CQD,

of the NQ. Furthermore, a minimally-containing match , CQC
min, of the NQ is the CQC of the

NQ, which does not contain any other CQC . An optimally-containing match , CQC
opt, of the

NQ is the CQC
min of the NQ, having \optimal" cost6. Finally, an optimally-overlapping match ,

6
By default, the cost may be based on the number of tuples in the physical storage of the minimally-containing

10

= LIKE

= � �
LIKE � �

Table 5: Containment relationship between = and LIKE operators.

CQO
opt, of the NQ is the CQO of the NQ, having \optimal" cost. Detailed properties of each match

type are shown in Table 4. 2

[Example 5.1] Given a NQ: (x = 1^y = 2^z = 3) and a cache with 3 entries, CQ1: (x = 1^y = 2),

CQ2: (x = 1 ^ z = 3), CQ3: (x = 1), all of CQ1, CQ2, and CQ3 are the containing matches of

the NQ, but only CQ1 and CQ2 are the minimally-containing matches, because CQ3 contains both

CQ1 and CQ2. If cost(CQ1 ^NQ) < cost(CQ2 ^NQ), then the optimally-containing match would

be only CQ1. 2

5.3.1 An exact and a disjoint match

Given an NQ and a CQ, if CQ is to be CQE, then it should have the (1) same operators, and (2)

same values for all sub-predicates while to be CQD, it should have the (1) same operators for all

sub-predicates, but (2) di�erent values in one or more of the sub-predicates. Finding CQE in the

cache is the ideal case of the cache hit and is tested �rst. In the case of CQD, accessing data from

the web source is unavoidable. Formally,

[Theorem 5.1] Given two positive selection predicate sets with n elements, fP1, ..., Png and fQ1, ...,

Qng, if P1 � Q1, P2 � Q2, ..., Pn � Qn, and CONJp = P1^P2^� � �^Pn, CONJq = Q1^Q2^� � �^Qn,

then CONJp � CONJq. 2

The Theorem 5.1 shows that the equivalence property is preserved over the conjunction. Recall

that the NQ and the CQ being compared are in CONJ format. Therefore, to �nd out the exact

or disjoint match, we can compare each sub-predicate of the NQ and CQ successively as shown in

Algorithm 1. Given n CQ entries in the cache and k sub-predicates in each CQ (i.e., there are k

attributes in the relation on the web source), the worst-case running time to �nd all the exact or

disjoint matches is O(nk) since each entry in the cache needs to be probed at least once and the

function ExactOrDisjointMatch() takes O(k). Its correctness stems from the Theorem 5.1 trivially.

11

Algorithm 1 ExactOrDisjointMatch(NQ, CQ);

INPUT: NQ;CQ

OUTPUT: F lag (fExact , Disjoint , Elseg;
1: P1 ^ ::: ^ Pk (NQ; Q1 ^ ::: ^Qk (CQ;

2: F lag (Exact;

3: for Pi = P1 to Pk; Qi = Q1 to Qk; do
4: if Pi:op 6= Qi:op then
5: F lag (Else; return F lag;

6: end if
7: if Pi:val 6= Qi:val then
8: F lag (Disjoint;

9: end if
10: end for
11: return F lag;

5.3.2 A containing match

There are two cases when a predicate P is contained in another predicate Q: (1) P 's operator is

contained in Q's operator while the value remains the same (e.g., (name = 'sylvie') � (name LIKE

'sylvie')) , or (2) Q is don't care (e.g., (name LIKE 'sylvie') �
N
). Furthermore, for two conjunctive

predicates, one is contained in another as long as each sub-predicate respects the same containment

relationship. A relationship among point operators that IVY uses is shown at Table 5. Formally,

[Theorem 5.2] Given two positive selection predicate sets with n elements, fP1, ..., Png and fQ1, ...,

Qng, if P1 � Q1, P2 � Q2, ..., Pn � Qn, and CONJp = P1^P2^� � �^Pn, CONJq = Q1^Q2^� � �^Qn,

then CONJp � CONJq. 2

Based on the Theorem 5.2, one can �nd if a CQ is the CQC of the NQ by probing each sub-

predicate step by step as shown in Algorithm 2. Given n CQ entries in the cache and k sub-predicates

in each CQ, the worst-case running time to �nd all the CQCs is O(nk) since each entry in the cache

needs to be probed at least once and the function ContainingMatch() takes O(k).

5.3.3 A minimally-containing and an optimally-containing match

The containing , minimally-containing , and optimally-containing match can also be described from

the lattice-theory point of views.

[De�nition 5.2] Suppose P is a predicate and the set U
P
corresponds to the set of all possible

ground terms for P. Then, an predicate containment lattice is de�ned to be a partially ordered set

match. For instance, the minimally-containing match with less number of tuples may be considered to be \optimal"

than the one with more number of the tuples.

12

Algorithm 2 ContainingMatch(NQ, CQ);

INPUT: NQ;CQ

OUTPUT: F lag (fContaining , Elseg;
1: P1 ^ ::: ^ Pk (NQ; Q1 ^ ::: ^Qk (CQ;

2: F lag (Containing;

3: for Pi = P1 to Pk; Qi = Q1 to Qk; do
4: if Pi:op 6� Qi:op & Qi 6�

N
then

5: F lag (Else; return F lag;

6: end if
7: end for
8: return F lag;

hP, �i where the ordering � forms a semi-lattice over the set U
P
[f?g. The special symbol ? is

the unique bottom element of the lattice. 2

The greatest lower bound (glb), ?, is same as the conjunction of don't care predicates (
N
^:::^
N
).

Figure 5 shows an example predicate containment lattice. For instance, all predicates under the

input query (x=1 ^ y=2 ^ z='C') at top of the lattice are the containing matches (e.g., (x=1 ^

y=2 ^ z='C') � (z LIKE 'C')). However, only predicates immediately under the input query are

the minimally-containing matches.

 x = 1 & y = 2 & z = ’C’

 x = 1 & y = 2 x = 1 & z = ’C’ y = 2 & z = ’C’

x = 1 y = 2 x = 1 & z LIKE ’C’ z = ’C’

 z LIKE ’C’

Figure 5: Example predicate containment lattice.

When there are several containing matches of the NQ, �nding an optimally-containing match is

important since it would incur only minimal e�ort in �ltering out the extra data. The Algorithm 3

�nds a unique CQC
opt of the NQ, provided CQC set, fCQC

1 ; :::; CQ
C
n g by the Algorithm 2. Lines 2 {

9 �nd all CQC
mins by eliminating all CQCs containing other CQC (thus not minimal). Then, lines

10 { 16 iterate through all CQC
mins and �nd a CQC with minimum cost (thus optimal).

In worst-case, if all the entries in the cache are the CQC , which is the case in the Algorithm 3,

then the nested for loops in lines 2 { 9 costs O(n2k) running time since the ContainingMatch() in

line 4 costs O(k) when there are k sub-predicates in CQ and lines 5 { 7 cost only constant time.

13

Algorithm 3 OptimallyContainingMatch(NQ, fCQC
1 ; :::; CQ

C
n g);

INPUT: NQ; fCQC
1 ; :::; CQ

C
n g

OUTPUT: CQC
opt

1: BUCKETC
min (fCQ

C
1 ; :::; CQ

C
n g;

2: for CQi = CQC
1 to CQC

n do
3: for CQj = CQC

1 to CQC
n ; i 6= j do

4: F lag (ContainingMatch(CQi, CQj);

5: if Flag = Containing then
6: BUCKETC

min -= CQj; fremove a redundant CQCg
7: end if
8: end for
9: end forfnow BUCKETC

min has only CQC
ming

10: CQC
opt (null; costmin (1;

11: for all CQi such that CQi 2 BUCKETC
min do

12: costi (NQ ^ CQi;

13: if costi < costmin then
14: CQC

opt (CQi; costmin (costi;

15: end if
16: end for
17: return CQC

opt;

Again in worst-case, if all the entries in the cache are the CQC
min (thus BUCKETC

min in line 11 has

n elements in it), then lines 11 { 16 take O(n) running time. Therefore, the worst-case running time

of the Algorithm 3 is O(n2k) +O(n) = O(n2k).

5.3.4 A contained and an overlapping match

Since a contained match is the special case of an overlapping match, without loss of generality, we

will only discuss the overlapping match.

After exact, disjoint , and containing matches are found, the rest of the queries are either contained

or overlapping matches. Unlike others, whether or not two point queries overlap cannot be determined

by algebraic comparison; rather, it requires the examination of the tuples stored in the semantic

storage. For instance, given two 2-dimensional queries Q1: (x = 1 ^
N
) and Q2: (

N
^ y = 1), we

need to intersect the corresponding tuples of Q1 and Q2 to determine if they are overlapping. To

handle an overlapping match, we have two strategies;

Strategy 1. Based on the properties in Table 4, reuse overlapped answers in the cache and submit

a modi�ed NQ to fetch the missing answers from the web source. This strategy has been

used in [DFJS96], based on the assumption that fetching missing answers using NQ ^ :CQO

yields a lower cost than fetching the entire query answer. This is not always true in WebDB

context since negation in front of CQO is usually a very expensive operation for IR systems.

14

Typically it becomes an \unsafe" operator due to its unbounded nature (e.g., x 6= 10 is not

computable in an in�nite integer domain). Also, �nding the optimally-overlapping match in

the Section 5.3.5 becomes important since it would maximize the reuse of the stored data in

the cache and minimize costs to fetch the missing data from the web source.

Strategy 2. Ignore the overlapped answers in the cache and re-submit the NQ to the web source.

Although this is a simple and feasible approach, considering that the overlapping match is likely

the most frequently-occurring match type in the semantic caching, this signi�cantly decreases

the e�ectiveness of the caching itself.

There are certain circumstances where an overlapping match can play an important role in query

optimization, even without acquiring missing data [DFJS96, GG97].

� [WZ98] introduces the early return, whereby partial results are returned during the computa-

tion of user-de�ned aggregates. The user decides whether to continue the computation or not

based on the partial results. The user is also able to specify the cardinality of the tolerable

answer sets in CoSQL [CYC+96]. In such an environment, if the number of the tuples in an

overlapping match meets the speci�cations, one doesn't need to retrieve missing data.

� Certain web search engines return partial results to the user as soon as they are available, while

the remaining results are being computed. In such a user-oriented interactive querying system,

fast query response time is crucial and an overlapping match in the cache is helpful to give the

user an illusion of the fast query response.

� An overlapping match can be a \semantically" containing match. For instance, an NQ: (group

= 'toddler' ^ name = 'sylvie') is semantically contained in a CQ: (group = 'toddler' ^ gender

= 'girl') if one knows \sylvie is the girl's name".

IVY retrieves answers solely from the overlapping matches for special cases like the above three

examples. Otherwise if the web source supports negation, then use the strategy (1), else use the

strategy (2).

5.3.5 An optimally-overlapping match

Similar to the optimally-containing match in the Section 5.3.3, the optimally-overlapping match

enables to maximize the reuse of the cached overlapping data and can be found using Algorithm 4

in O(n) time.

15

Algorithm 4 OptimallyOverlappingMatch(NQ, fCQO
1 ; :::; CQ

O
n g);

INPUT: NQ; fCQO
1 ; :::; CQ

O
n g

OUTPUT: CQO
opt

1: CQO
opt (null; costmax (�1;

2: for CQi = CQO
1 to CQO

n do
3: costi (NQ ^ CQi;

4: if costi > costmax then
5: CQO

opt (CQi; costmax (costi;

6: end if
7: end for
8: return CQO

opt;

5.3.6 Combined Algorithm

Algorithm 5 depicts the combined algorithm to compute the input query in the presence of the

semantic caching in IVY. Symbolic functions in italic fonts are assumed to be implemented properly.

For instance, MatchType() function returns a correct type among �ve di�erent match types and can

be easily implemented using the Algorithm 1 and 2.

The input of the algorithm consists of three items; an input query (IQ), a semantic cache (whose

semantic views are fCQ1; :::; CQng), and a capability description vector (CDV) of the relation. In

lines 7 { 18, algorithm iterates through all the entries in the cache and attempts to �nd the exact

match. If there is the exact match, algorithm reuses the cached data. Otherwise, the contain-

ing and overlapping matches are accumulated into the coppresponding buckets, BUCKETC and

BUCKETO, respectively. After all the iterations, a containing match case is handled in lines 19 {

21 as described in the Section 5.3.2 and an overlapping match case is handled in lines 22 { 31 as

described in the Section 5.3.4.

5.4 Replacement Policy

Semantic storage is the minimum unit for replacement like in [DFJS96]. According to pre-determined

evaluation functions such as LRU, the replacement values are calculated and tagged to the entire

semantic storage. Individual tuples stored in the physical storage contain a reference counter. After

the semantic storage for replacement has been decided, all tuples in the semantic storage are examined

and checked by the reference counter. The tuples with counter value 1 (that is pointed to by only

one semantic storage) are safely removed from the cache. Otherwise the tuples remain in the cache

and their corresponding counters are decremented. Then, the semantic view and semantic storage

are removed from the cache entries. This example is depicted in Figure 6.

16

Algorithm 5 Compute hIQi

INPUT: IQ, fCQ1, ..., CQng, CDV (R)
OUTPUT: hIQi
1: hIQi (;; F lag (null;

2: (NQ;FQ)(QueryNaturalization(IQ;CDV (R));

3: NQ1 _ � � � _NQm (NQ;

4: BUCKETC (BUCKETO (;;
5: for NQi = NQ1 to NQm do
6: hNQii (;;
7: for CQj = CQ1 to CQn do
8: F lag (MatchType(NQi; CQj);

9: if F lag = Exact then
10: hNQii (hCQji; exit CQj loop;

11: else if F lag = Disjoint then
12: discard CQj;

13: else if F lag = Containing then
14: BUCKETC += CQj;

15: else fF lag = Overlappingg
16: BUCKETO += CQj;

17: end if
18: end forfCQj loopg
19: if BUCKETC 6= ; then
20: CQC

opt (OptimallyContainingMatch(NQi; BUCKETC);

21: hNQii (NQi(hCQ
C
opti);

22: else if BUCKETO 6= ; then
23: CQO

opt (OptimallyOverlappingMatch(NQi; BUCKETO);

24: if SpecialCases then
25: hNQii (hCQ

C
opti;

26: else if StrategyOne then
27: hNQii (FetchFromSource(NQi ^ :CQ

O
opt); InsertIntoCache(NQi; hNQii);

28: else fStrategyTwog
29: hNQii (FetchFromSource(NQi); InsertIntoCache(NQi; hNQii);
30: end if

31: end if
32: UpdateCacheReplacementV alues();

33: hNQi += hNQii;
34: end forfNQi loopg
35: hIQi (FQ(hNQi); return hIQi;

17

1 1 3

1 2 1

2 1 1

...

x y ref

a

b

c

Q1: x=1

Q2: x=1, y=1

Q3: y=1

a

Semantic Semantic Physical
 view storage storage

1 1 2

1 2 0

2 1 1

...

x y ref

a

b

c

Q2: x=1, y=1

Q3: y=1
T1: Q1 replaced

b

c

a

c

1 1 2

2 1 2

2 2 1

...

x y ref

a

c

d

Q2: x=1, y=1

Q3: y=1

Q4: x=2

T2: Q4 inserted

a

c

d

T0: initial

Time

Figure 6: Cache replacement example: When Q1 is replaced, tuple b is deleted, but tuple a and

tuple c remain with the decremented reference counter. Upon Q4's insertion, tuple c and tuple

d are inserted to the semantic storage, but only tuple d is inserted to the physical storage. Note

that semantic storage can overlap, but not the physical storage. Also, there is no coalesce among

overlapping or containing semantic storages.

6 Related Work

Unlike conventional caching schemes (e.g., [ABGM90, FCL93]), semantic caching has received rel-

atively little attention. Among a few previous attempts, our work is more closely related to the

[Sel88, AK94, KB96, DFJS96, GG97].

[Sel88] requires the cached results be exactly matched with the input query. [AK94] stores

carefully chosen sub-queries in the cache and views them as information sources in the domain

model, even including them in query planning. In [KB96], predicate description derived from previous

queries is used to match an input query with the emphasis on updates in client-server environment.

[DFJS96] introduces the notion of semantic region from which our semantic view and semantic

storage concepts can be derived. [GG97] extends the previous works to a heterogeneous database

environment, but lacks detail.

Our work di�ers from the prior works in the following aspects; (1) our method is suitable for

WebDB, especially for information retrieval applications, (2) we combine semantic caching with query

naturalization, which enables us to use point predicates to describe semantic caching in detail, and

(3) we provide detail analysis on various match types in semantic caching.

Finding proper match types for the input query in the semantic cache is analogous to rewriting

input query via materialized view [LY85, GM95, Qia96], or the query containment problem [Ull88,

Cha92, LMSS95]. The major focus of these works is to reduce the number of database relation literals

in the rewritten query using \materialized" view relation literals. Therefore, caching was not their

primary concern. Our work more focuses on the point predicate containment for a single relation.

18

7 Conclusion and Future Work

In summary, we have proposed a semantic caching scheme for WebDB, which uses query naturaliza-

tion. We also discussed issues of �nding optimal content matches in semantic caching.

The semantic caching scheme presented in this paper is being implemented and integrated to

the fully functioning IVY prototype. We plan to conduct various performance experimentation with

varying cost factors. Issues like cache coherence, cache merge/purge, fault-tolerance, etc. need to be

investigated further.

Mediator-level semantic caching is more general than that of the wrapper-level, creating complex

horizontal and vertical partition of a query as well as complicated cache matching [GG97]. We

consider this as one of the important directions for future work.

8 Acknowledgment

Authors wish to thank H. Jean Oh at USC/ISI for her helpful comments regarding initial design.

References

[ABGM90] R. Alonso, D. Barbara, and H. Garc��a-Molina. \Data Caching Issues in an Information

Retrieval System". ACM Trans. on Database Systems (TODS), 15(3):359{384, September

1990.

[AK94] Y. Arens and C. A. Knoblock. \Intelligent Caching: Selecting, Representing, and Reusing

Data in an Information Server". In ACM Proc. of the 3rd Int'l Conf. on Information and

Knowledge Management (CIKM), 1994.

[CGM98] C-C. K. Chang and H. Garc��a-Molina. \Conjunctive Constraint Mapping for Data Trans-

lation". In ACM Proc. of the 3rd Int'l Conf. on Digital Libraries (DL), pages 49{58, 1998.

[CGMP96] C-C. K. Chang, H. Garc��a-Molina, and A. Paepcke. \Boolean Query Mapping Across

Heterogeneous Information Sources". IEEE Trans. on Knowledge and Data Engineering

(TKDE), 8(4):515{521, August 1996.

[Cha92] E. P. F. Chan. \Containment and Minimization of Conjunctive Queries in OODB's". In

ACM SIGACT-SIGMOD Symp. on Principles of Database Systems (PODS), San Diego,

California, June 1992.

[CYC+96] W. W. Chu, H. Yang, K. Chiang, M. Minock, G. Chow, and C. Larson. \CoBase: A Scal-

able and Extensible Cooperative Information System". Journal of Intelligent Information

Systems (JIIS), 6(11), 1996.

19

[CZ97] W. W. Chu and G. Zhang. \Associative Query Answering via Query Feature Similarity".

In Proc. of the Int'l Conf. on Intelligent Information Systems (IIS), The Bahamas, 1997.

[DFJS96] S. Dar, M. J. Franklin, B. T. Jonsson, and D. Srivastava. \Semantic Data Caching and

Replacement". In Proc. of the 22nd Int'l Conf. on Very Large Data Bases (VLDB), pages

330{341, Mumbai (Bombay), India, 1996.

[FCL93] M. J. Franklin, M. J. Carey, and M. Livny. \Local Disk Caching for Client-Server Database

Systems". In Proc. of the 19th Int'l Conf. on Very Large Data Bases (VLDB), pages 641{

654, Dublin, Ireland, 1993.

[FLM98] D. Florescu, A. Y. Levy, and A. Mendelzon. \Database Techniques for the World-Wide

Web: A Survery". ACM The SIGMOD Record, 1998.

[GG97] P. Godfrey and J. Gryz. \Semantic Query Caching for Heterogeneous Databases". In Proc.

of the 4th Knowledge Representation Meets Databases Workshop (KRDB), Athens, Greece,

August 1997.

[GM95] A. Gupta and I. S. Mumick. \Maintenance of Materialized Views: Problems, Techniques,

and Applications". In IEEE Proc. of the 11th Int'l Conf. on Data Engineering (ICDE),

June 1995.

[GMHI+95] H. Garc��a-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. D. Ullman, and

J. Widom. \Integrating and Accessing Heterogeneous Information Sources in TSIMMIS".

In AAAI Spring Symp. on Information Gathering, 1995.

[KB96] A. M. Keller and J. Basu. \A Predicate-based Caching Scheme for Client-Server Database

Architectures". The VLDB Journal, 5(1):35{47, January 1996.

[KLSS95] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. \The Information Manifold". In AAAI

Spring Symposium on Information Gathering, 1995.

[LMSS95] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. \Answering Queries Using

Views". In ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems,

(PODS), volume 14, pages 95{104, San Jose, California, 1995.

[LRO96] A. Y. Levy, A. Rajaraman, and J. Ordille. \Querying Heterogeneous Information Sources

Using Source Descriptions". In Proc. of the 22nd Int'l Conf. on Very Large Data Bases

(VLDB), Mumbai (Bombay), India, 1996.

[LSV98] D. Lee, D. Srivastava, and D. Vista. \Generating Advanced Query Interfaces". In Proc. of

the 7th Int'l Conf. of World Wide Web (WWW), Australia, April 1998.

[LY85] P.-A. Larson and H. Z. Yang. \Computing Queries from Derived Relations". In Proc. of the

11th Int'l Conf. on Very Large Data Bases (VLDB), pages 259{269, Stockholm, Sweden,

August 1985.

20

[McC86] E. J. McCluskey. \Logic Design Principles". Prentice-Hall, 1986.

[Qia96] X. Qian. \Query Folding". In IEEE Proc. of the 12th Int'l Conf. on Data Engineering

(ICDE), pages 48{55, February 1996.

[Sal89] G. Salton. \Automatic Text Processing". Addison-Wesley, 1989.

[Sel88] T. Sellis. \Intelligent Caching and Indexing Techniques For Relational Database Systems".

Information Systems (IS), 13(2):175{185, 1988.

[Ull88] J. D. Ullman. \Principles of Database and Knowledge-Base Systems. Volume II: The New

Technologies". Computer Science Press, 1988.

[Ull97] J. D. Ullman. \Information Integration Using Logical Views". In Proc. of the 22nd Int'l

Conf. on Database Theory (ICDT), Delphi, Greece, 1997.

[VP97] V. Vassalos and Y. Papakonstantinou. \Describing and Using Query Capabilities of Het-

erogeneous Sources". In Proc. of the 23rd Int'l Conf. on Very Large Data Bases (VLDB),

pages 256{265, 1997.

[WZ98] H. Wang and C. Zaniolo. \User-De�ned Aggregates for Logical Data Languages". In

Proc. of the 6th Int'l Workshop on Deductive Databases and Logic Programming (DDLP),

Manchester, UK, June 1998.

21

