
A Semantic Caching Scheme for Wrappers in Web Databases

Dongwon Lee

Department of Computer Science

University of California at Los Angeles

dongwon@cs.ucla.edu

Wesley W. Chu

Department of Computer Science

University of California at Los Angeles

wwc@cs.ucla.edu

Last Revised: February 20, 1999

Abstract

We present a new semantic caching scheme suitable for wrappers in web databases. Since the web

sources in web databases have typically weaker querying capabilities than conventional databases, it

is not trivial to apply existing semantic caching schemes directly. We provide a seamlessly integrated

query translation and capability mapping between the wrappers and web sources in the semantic caching

to cope with such di�culties and describe several related issues. In addition, an analysis on the match

types between the user's input query and queries stored in the cache is presented. We show how to use

semantic knowledge acquired from the data to avoid unnecessary access to web sources by transforming

the cache miss to the cache hit. Further, a polynomial time algorithm based on the extended and

knowledge-based matching is proposed to �nd the best matched query in the cache. Finally, experimental

results are presented to illustrate the e�ectiveness of our proposed semantic caching scheme.

UCLA-CS-TR-990004

1

1 Introduction

Web databases allow users to pose queries to and retrieve answers from distributed, heterogeneous sources.

Such systems usually consist of three components [ACPS96, GMHI+95]; 1) mediators to provide a dis-

tributed, heterogeneous data integration, 2) wrappers to provide a local translation and extraction, and

3) web sources which contain raw data to be queried and extracted. In the virtual approach [FLM98],

the queries are posed to a uniform interface and submitted to multiple sources at runtime. Such querying

can be very costly due to run-time costs.

An e�ective way to reduce costs in such an environment is to cache the results of the prior queries

and to reuse them ([ABGM90, FCL93]). Semantic caching (e.g., [LY85, Sel88, KB96, DFJS96, RD98])

exploits the semantic locality of the queries by caching a set of semantically associated results, instead

of a tuple or page which is used in conventional caching. Most semantic caching schemes in client-server

architectures are based on the assumption that all participating components are full-edged database

systems. Thus, when a user asks A^ B, but the cache contains A^B ^ C, then the system sends a

more complicated query (A^ B)� C to retrieve a remaining portion of the answers. However, in web

databases, web sources such as plain web pages or form-based IR systems have very limited querying

capabilities and can not easily support such complicated queries. Figure 1 illustrates the di�erence in

semantic caching between client-server and web database architectures.

Server

Query

Answer Cache

Client
Query

Answer Cache

Wrapper

Web Source

Translation/Mapping

(a) Client-server architecture (b) Web database architecture

Figure 1: Semantic caching in two architectures.

Our proposed semantic caching scheme is based upon the following three key ideas. First, since the

querying capability of web sources is weaker than the user's queries, query translation and capability

mapping need to be considered in the semantic caching. Second, when the number of queries stored

in the cache increases, methods need to be developed to locate the best matched query from the set of

candidates. This is because the time to �nd the best matched query in the cache is CPU-bounded, while

the time to retrieve data from the web source is I/O-bounded. Third, a cache miss in a conventional

caching scheme may be transformed into a cache hit via semantic knowledge.

This paper is organized as follows. In section 2, we introduce some background. In section 3, we

describe our proposed semantic caching model and other related issues. In section 4, query matching

between an input query and queries stored in the cache is presented. Then, experimental results follow

in section 5. Finally, related works and conclusions are discussed in sections 6 and 7, respectively.

2

2 Background

Our caching scheme is implemented in a testbed web database called CoWeb (Cooperative Web Database)

at UCLA. The architecture consists of mediator and wrapper components [GMHI+95, ACPS96]. The

focus of the system is to use knowledge for providing cooperative capabilities such as conceptual and

approximate web query answering, knowledge-based semantic caching [LC98], and web triggering with

fuzzy threshold conditions [CYM99]. CoWeb uses the global-as-view approach where for each relation

R in the mediated schema, we write a query over the web source relations specifying how to obtain

R's tuples from the web source [FLM98]. The input query is expressed in the SQL1 language based on

the mediator schema. The mediator decomposes the input SQL into sub-queries for the wrappers by

converting the WHERE clause into disjunctive normal form, DNF (the logical OR of the logical AND

clauses), and disjoining conjunctive predicates. CoWeb handles selection and join predicates with any of

following operators f>;�; <;�;=g.

Our semantic caching approach is closely related to the query satis�ability and query containment

problems [Ull89, GSW96]. Given a database D and query Q, let applying Q on D be denoted as Q(D).

Then, hQ(D)i, or hQi for short, is the n-ary relation obtained by evaluating the query Q on D. Given two

n-ary queries, Q1 andQ2, if hQ1(D)i � hQ2(D)i for any database D, then the queryQ1 is contained in the

query Q2, that is Q1 � Q2. If two queries contain each other, they are equivalent , that is Q1 � Q2. The

solutions to both problems vary depending on the exact form of the predicate. If a conjunctive query has

only selection predicates with the �ve operators f>;�; <;�;=g, the query satis�ability problem can be

solved in O(jQj) time for the query Q and the query containment problem can be solved in O(jQ1j
2+jQ2j)

for the Q1 � Q2 [GSW96]. However, when the operator 6= is added, it can be shown that the problem

becomes NP -complete [CM77].

3 A Semantic Caching Scheme

3.1 Semantic Caching Model

A semantic cache is a hash table with a key and value pair entries. The key is the semantic description

based on the previous queries. The value is a set of answers that satis�es the key. We denote the semantic

description made of prior query by semantic view , V. Then a semantic cache with n such entries fEg

can be described as:

semantic cache = fEijEi = (Vi; hVii); 1 � i � ng

To represent a SQL query, we need: 1) relation names, 2) attributes used in the WHERE clause, 3)

projected attributes, and 4) conditions in the WHERE clause [LY85, RD98]. For semantic caching in

CoWeb, we use only \conditions in the WHERE clause" for the following reasons. Since there is a 1-to-1

1Current CoWeb implementation supports only SPJ (Select-Project-Join) type SQL.

3

mapping between the wrapper and the web source in CoWeb, the relation name is not needed. In addition,

the majority of the web sources have a �xed output xml/html page format from which the wrapper (i.e.,

extractor) extracts the speci�ed data. That is, whether or not the input SQL query wants to project

some attributes, the output web page that the wrapper receives always contains a set of pre-de�ned

attribute values. Since retrieval cost is the dominating factor in web databases, CoWeb chooses to store

all attribute values contained in the output web page in the cache. Thus the attributes used in conditions

and the projected attributes do not need to be stored.

Queries stored in the semantic cache at the wrapper of the CoWeb has the form \select * from

web source where condition". By storing all attribute values in the cache, CoWeb completely avoids

the unrecoverability problem which can be occurred when query results can not be recovered from the

cache even if they are found due to the lack of some logical information [GG98]. Hereafter, we only use

the conditions in the WHERE clause to represent the user's query.

3.2 Query Naturalization

Di�erent web sources use di�erent ontology. Due to security or performance concerns [FLM98], web

sources provide di�erent query processing capabilities. Therefore, the wrapper needs to pre-process the

input query before submitting it to the web source.

Translation: To provide a 1-to-1 mapping between the wrapper and the web source, the wrapper needs

to schematically translate the input query.

Generalization & Filtration: When there is no 1-to-1 mapping between the wrapper and the web

source the wrapper can generalize the input query to return more results than requested and �lter

out the extra data later. For instance, a predicate (5 < age < 10) can be generalized into the

predicate (3 � age < 10) with an additional �lter (age > 5).

Specialization: When there is no 1-to-1 mapping between the wrapper and the web source the wrapper

can specialize the input query with multiple sub-queries and then merge the results. For instance,

a predicate (1 < x < 4) can be specialized by a disjunctive predicate (x = 2_ x = 3) provided that

x is an integer type and its value is incremented by 1.

The original query from the mediator is called the input query . The generated query after pre-processing

the input query is called the native query , since it is supported by the web source in a native man-

ner [CGMP96]. Such pre-processing is called the query naturalization. The query used to �lter out

irrelevant data from the native query results is called the �lter query [CGMP96]. When the translation is

not applicable due to the lack of 1-to-1 mapping, CoWeb applies generalization or specialization based on

the knowledge regarding the querying capability of the web source. This information is pre-determined

by a domain expert. For further information on such schemes to represent querying capabilities, refer

to [VP97], for instance.

4

3.3 Format of Semantic View

The format of the semantic views change when an input query is naturalized to a native query. Therefore,

the question arises whether to use the input query format before the naturalization or the native query

format after the naturalization as the semantic view.

Input query as semantic views: It is easier to �nd a match since the incoming query has the same

format as the semantic view. However, this approach can not handle the generalization process

well. When an input query A is generalized into a native query A _ B, the native query retrieves

more answers than requested from the web source. But since the semantic view uses the input

query format A, it loses the additional data retrieved by B.

Native query as semantic views: The query needs to be naturalized �rst before it is compared to the

semantic view since the incoming query has a di�erent format from the semantic view. However,

unlike input query case, the generalization can be easily handled.

We choose the second approach for trading space for speed; we store additional data retrieved from the

web source by using the native query format as the semantic view when the generalization process occurs.

Note that while the input query and �lter query are always a conjunction of predicates, the native query

can be in DNF . If such case occurs, we partition the native query into conjunctive parts and save them

separately.

Example 1: Suppose since a web source A does not support range operators for attribute x, an

input query Q: 1 � x � 3 ^ y = 1 needs to be naturalized (i.e., specialized) into a native query V:

(x = 1 ^ y = 1) _ (x = 2 ^ y = 1) _ (x = 3 ^ y = 1). Further, since semantic views use only conjunctive

predicates, the native query V is partitioned into three conjunctive parts, V1: x = 1 ^ y = 1, V2:

x = 2 ^ y = 1, and V3: x = 3 ^ y = 1. Thus, three entries (V1, hV1i), (V2, hV2i), and (V3, hV3i) are saved

as semantic views in the cache. �

3.4 The Control Flow in the Wrapper with Semantic Cache

 Cache

Web Source

Wrapper

Mediator
 Cache
Manager

Native
Query

Native
Result

Wrapper
Result

Naturalization
 Manager

 Filtration
 Manager

Input
Query

Native
Query

Filter

Native
Result

Figure 2: The control ow in the wrapper with semantic cache.

The control ow among the mediator, wrapper, and web source is illustrated in Figure 2. An input

query from the mediator is naturalized in the wrapper and converted to a native query. A �lter query

5

can be generated. The cache manager then checks the native query against the semantic views stored in

the cache to �nd a match. If a match is found but no �lter query was generated for the query, results

are retrieved from the cache and returned to the mediator. If there was a �lter query generated, then

the results need to be �ltered through to remove extra data. If no match is found, the native query is

submitted to the web source. After obtaining native results from the web source, the wrapper performs

post-processing and returns the �nal results to the mediator. Finally the proper form of the native query

(i.e., disjunctive predicates are broken into conjunctive ones) is saved in the cache for future use.

3.5 Semantic View Overlapping

A semantic view creates a spatial object2 in a n-dimensional hyperspace. Excessive overlapping of the

semantic views may waste the cache space for duplicate answers. When overlapping is not allowed,

di�erent approaches can be adopted to cope with the newly inserted semantic view overlapping with

the existing ones. Figure 3 illustrates three di�erent approaches to the semantic view overlapping issue.

Figure 3.a shows the approach which allows overlapping among semantic views. Although the overlapped

portion among semantic views are redundantly stored in the cache, this is a straightforward scheme. In

the physical layer of the cache, redundant answers can be stored as pointers to avoid duplicate copies (e.g.,

[KB96, LC98]). In general, the insertion of a semantic view that overlaps n semantic views in the cache

can result in the formation of n + 1 semantic views. Figure 3.b and Figure 3.c show approaches which

do not allow overlapping among semantic views. In Figure 3.b, the overlapped portions are coalesced to

the new semantic view and the remaining semantic views are modi�ed appropriately. For instance, the

semantic view V1 was modi�ed to V1�Q to take out the overlapped portion. The insertion of a semantic

view that overlaps with n semantic views in the cache causes the formation of n+ 1 semantic views. In

Figure 3.c, the overlapped portions become separate semantic views. The insertion of a semantic view

overlaps n semantic views in the cache results in the formation of 2n + 1 semantic views. An adaptive

approach between Figure 3.b and Figure 3.c is also possible; semantic views are coalesced if either one of

them is smaller than 1% of the cache size [DFJS96].

CoWeb uses the approach shown in Figure 3.a for following reasons. 1) The original form of the

semantic views are retained while in other approaches the existing semantic views that overlap with

the new one need to be modi�ed. (e.g., in Figure 3.b, V1 changes to V1 � Q). Often this modi�cation

involves a set di�erence (negation) operator which is di�cult to support by the web source, which has

limited querying capabilities. In addition, as the semantic views get more complicated, it becomes more

expensive to �nd a match, since the modi�ed semantic view may no longer be a conjunctive form. 2)

Since the semantic views retain the original form, they do not lose the user's querying pattern. If the

semantic view of the frequently asked pattern V1 is modi�ed to V1�Q as in Figure 3.c, then a subsequent

query V1 can not be answered e�ciently. 3) By using a reference counter to keep track of the references

of the answer tuples in implementing the cache, CoWeb can avoid the problem of the storing redundant

2This is called a semantic region in [DFJS96] and a semantic segment in [RD98].

6

V1

V2

Q

V1-Q

V2-Q

Q

V1-Q

V2-Q

Q-(v1&Q)-
(V2&Q)

V1&Q V2&Q

3.a overlapping 3.b non-overlapping, 3.c non-overlapping,

full-coaleasing no-coaleasing

Figure 3: Di�erent approaches to semantic view overlapping issue. V1 and V2 are two semantic views in

the cache and Q is a new semantic view inserted into the cache.

Match Types Properties Answers

Exact match V � Q hVi

Containing match V 6� Q ^Q � V hQ(hVi)i

Contained match V � Q ^Q 6� V hVi [hQ ^ :V i,

Overlapping match V 6� Q ^Q 6� V hQ(hVi)i [hQ ^ :Vi,

Disjoint match Q ^ V is unsatis�able ;

Table 1: Query match types and their properties. V is a semantic view and Q is a user query.

answers in the cache [KB96, LC98].

3.6 Match Types

When a query is compared to a semantic view, there can be �ve di�erent match types. Consider a

semantic view V in the cache and a user query Q. When V is equivalent to Q, V is an exact match

of Q. When V contains Q, V is a containing match of Q. In contrast, when V is contained in Q, V

is a contained match of Q. When V does not contain, but intersects with Q, V is an overlapping

match of Q. Finally, when there is no intersection between Q and V, V is a disjoint match of Q. The

exact match and containing match are called the full match since all answers are in the cache while the

overlapping and contained match are called the partial match since some answers need to be retrieved

from the web sources.

The detailed properties of each match type are shown in Table 1. Note that for the contained and

overlapping match, computing answers requires the union of the partial answers from the cache and from

the web source. When a query Q is compared to a set of semantic views, there may be several containing,

contained, or overlapping matches. Then, the best one is the one which yields the least overhead cost to

answer the given query. Our approach is to construct a lattice among many candidates and �nd the best

one. Suppose Q is a query and UQ corresponds to the set of all the containing or contained matches of

Q found in the cache. Then, the query containment lattice is de�ned to be a partially ordered set hQ,

�i where the ordering � forms a lattice over the set UQ [f>;?g. For the containing match case, the

greatest lower bound (glb) of the lattice is the special symbol ? and the least upper bound (lub) of the

7

lattice is the query Q itself. For the contained match case, the lub of the lattice is the special symbol >

and the glb of the lattice is the query Q itself.

Once we have constructed the lattice over candidate matches, we need a concept of minimality and

maximality to �nd the best one. A containing match of Q, say A, is called the minimally-containing

match of Q if and only if there is no other containing match of Q, say B, such that A � B � Q in Q's

query containment lattice. Symmetrically, a contained match of Q, say A0, is called the maximally-

contained match of Q if and only if there is no other contained match of Q, say B0, such that A0 �

B0 � Q in Q's query containment lattice.

Example 2: A query containment lattice for Q: (1 < x < 4^ 3 < y � 5^ z = 0C 0) and their containing

matches are illustrated in Figure 4. �

 1<x<=4 & 3<=y<=5 1<=x<4 & 3<y<=6 & z=’C’

0<x<=4 1<=x<=4 & z=’C’ 2<=y<=6 3<y<9 & z=’C’

 z=’C’

 x=2 ... y=1 z=’C’ & w=’D’ ...

input query

minimally-containing
 match

containing match

semantic views

1<x<4 & 3<y<=5 & z=’C’

Figure 4: A query containment lattice example.

4 Query Matching between an Input Query and Semantic Views

4.1 Extended Matching

In matching an input query with a semantic view, the best case is the exact match which is equivalent to

the conventional cache hit. The next best case is the containing match since it only contains some extra

answers. After that, the contained match case is considered to be slightly better than the overlapping

match case3. Although both have to retrieve partial answers from the cache as well as the web source,

the contained match does not contain extra answers in the cache (see Table 1).

4.1.1 The MatchType Algorithm

Given a semantic view V and input query Q, the MatchType algorithm returns the proper match type

using the properties in Table 1. Using algorithms developed for solving the satis�ability and containment

3The comparison is based on the case when the amount of the contained answers and the overlapped answers is same.

8

problem in the literature [Ull89, GSW96], the computation complexity of the MatchType algorithm is

O(jQj2 + jVj2).

4.1.2 The BestContainingMatch and BestContainedMatch Algorithms

Given an input query and many candidate containing matches, the BestContainingMatch algorithm

�nds a containing match that incurs minimal e�ort to �lter out extra answers. The algorithm �rst

�nds all minimally-containing matches by eliminating containing matches which contain other containing

matches. Then, the algorithm selects the best one from all the minimally-containing matches. Note that

for a given query Q, there can be several minimally-containing matches found in the cache. In such cases,

the best minimally-containing match can be selected based on heuristics.

Input : fV1; :::;VNg

Output: Best = Vi 2 fV1; :::;VNg

Best = ;, Bucket(C)min = fV1; :::;VNg;

for Vi = V1 to VN do

for Vj = V1 to VN ; i 6= j do

if MatchType(Vi, Vj) = containing match then Bucket(C)min -= Vj;

for Vi 2 Bucket(C)min do Best = choose one from Bucket(C)min;

return Best;

Algorithm 1: The BestContainingMatch

If jVmaxj denotes the length of the longest containing match and there are N containing matches, then

the computation takes O(N2jVmaxj
2) without any indexing on the semantic views. Observe that the

BestCotainingMatch algorithm is only justi�ed when �nding the best containing match with minimal

e�ort to �lter out the extra answers is better than selecting an arbitrary containing match followed by

�ltering. The The BestContainedMatch algorithm is the symmetric case of the BestContainingMatch

algorithm.

4.1.3 The BestOverlappingMatch Algorithm

For the overlapping matches, we can not construct the query containment lattice. Thus, in choosing the

best overlapping match, we use a simple heuristic: Choose the overlapping match which overlaps most

with the given query. There are many ways to determine the meaning of overlapping. For instance, one

can compute the overlapped region between two queries in n-dimensional spaces or compare the number

of associated answers and select the one with maximum answers.

4.2 Knowledged-based Matching

According to our experiments, partial matches constitute about 40% of all match types for given test sets

(see Table 3). Interestingly, a partial match can be a full match in certain cases. For instance, for the

9

employee(name,gender,addr) relation, a semantic view V: gender = 0male0 is the overlapping match

of a query Q: name = 0john0. However if we know in fact that john is a male employee (supposedly),

then V is a containing match of Q since Q � V. Since full matches eliminate the need to access the web

source, transforming a partial match into a full match can improve the performance signi�cantly.

4.2.1 Semantic Knowledge Acquisition

Obtaining semantic knowledge from the web source and maintaining it properly is an important issue. In

general, such knowledge can be obtained by a human expert from the application domain. In addition,

database constraints such as inclusion dependencies can be used. Knowledge discovery and data mining

techniques are useful to obtain such knowledge (semi-)automatically. Rule induction also provides a way

to acquire such semantic knowledge. For instance, a rule (0201 � sonar.class � 0215 ! sonar.type =

'SSN') implying that all sonar objects whose class values are between 0201 and 0215 must be 'SSN' type

can be automatically acquired [CCH94].

4.2.2 Semantic Knowledge Notation

We use a generic notation derived from [CCH94] to denote the containment relationship between two

fragments of relations. A fragment inclusion dependency (FIND) assures that values in the columns of

one fragment must also appear as values in the columns of other fragment. Formally, a FIND has a form

�P 3 �Q where 3 2 f�;�g and P and Q are conjunctive WHERE conditions. Often LHS or RHS is

used to denote the left or right hand side of the FIND. A set of FIND is denoted by � and assumed

to be closed under its consequences (i.e., � = ��).

4.2.3 Transforming Partial Matches to Full Matches

Our goal is to transform as many partial matches to full matches as possible with the given dependency

set �. The overlapping match can be transformed into four other match types, while the contained match

can only be transformed into the exact match if possible.

1. Overlapping Match: Given a query Q, its overlapping match V and a dependency set �,

� If fLHS � RHSg 2 �;Q � LHS;V � RHS, then V is the exact match of the Q.

� If fLHS � RHSg 2 �;Q � LHS;RHS � V, then V is the containing match of the Q.

� If fLHS � RHSg 2 �;V � LHS;RHS � Q, then V is the contained match of the Q.

� If fLHS � RHSg 2 �;Q � LHS;V ^ RHS is unsatis�able, or fLHS � RHSg 2 �;V �

RHS;Q ^ LHS is unsatis�able, then V is the disjoint match of the Q.

2. Contained Match: Given a query Q, its contained match V and a dependency set �, if fLHS �

RHSg 2 �;Q � LHS;V � RHS, then V is the exact match of the Q.

10

Example 3: Suppose we have a query Q: (x = 1) and a semantic view V: (y = 2). Given a �:

f�0�x�2 � �y=2g, V becomes a containing match of Q since Q � LHS;RHS � V, and fLHS � RHSg 2

�. �

4.2.4 The �-MatchType Algorithm

Let us �rst de�ne an augmented containment in the presence of the dependency set �. Given two n-ary

queries, Q1 and Q2, if hQ1(D)i � hQ2(D)i for an arbitrary relation D obeying the fragment inclusion

dependency set �, then the query Q1 is �-contained in the query Q2 and denoted by Q1 �� Q2. If two

queries �-contain each other, they are �-equivalent and denoted by Q1 �� Q2.

Then, the �-MatchType algorithm can be easily implemented by modifying the MatchType algorithm;

add additional input, �, and change all � to �� and � to ��. The computational complexity of

Q ��0 V where �0 contains single FIND = LHS 3 RHS is then O(jQj2+ jVj2+ jLHSj2+ jRHSj2). Let

jLmaxj and jRmaxj denote the length of the longest LHS and RHS in � and let j�j denotes the number

of FIND in �, then total computational complexity of the �-MatchType algorithm is O(j�j(jQj2 +

jVj2 + jLmaxj
2 + jRmaxj

2)) in the worst case when all semantic views in the cache are either overlapping

or contained matches. Since the gain from transforming partial matches to full matches is I/O-bounded

and the typical length of the conjunctive query is relatively short, it is a good performance trade-o� in

many applications to pay overhead cost for the CPU-bounded �-MatchType algorithm.

4.3 The BestMatch Algorithm: Putting It All Together

The BestMatch algorithm �nds the best semantic view in the cache for a given input query in the order

of the exact match, containing match, contained match and overlapping match. If all semantic views

turn out to be disjoint matches, it returns a null answer. It takes into account not only na��ve con-

tainment relationships but also knowledge-based containment relationships. If jVmaxj denotes the length

of the longest semantic views, then the for loop takes O(N j�j(jQj2 + jVmaxj
2 + jLmaxj

2 + jRmaxj
2))

time at most. Assuming that in general jVmaxj is longer than others, we can rewrite the complex-

ity as O(N j�jjVmaxj
2). In addition, the BestContainingMatch and BestContainedMatch takes at

most O(N2jVmaxj
2). Therefore, the total computational complexity of the BestMatch algorithm is

O(N j�j(jQj2 + jVmaxj
2 + jLmaxj

2 + jRmaxj
2)) +O(N2jVmaxj

2) � O(N j�jjVmaxj
2) +O(N2jVmaxj

2).

5 Experiments: Performance Evaluation

The experiments were performed on a Sun Sparc 20 machine. Each test run was scheduled as a cron job

and executed between midnight and 6am to minimize the e�ect of the load at the web site. The testbed,

CoWeb, was implemented in Java using jdk1.1.7.

11

Input : Q, UV = fV1; :::;VNg, �

Output: Best = Vk 2 UV

Best = null , Bucket(C) = Bucket(:C) = Bucket(O) = ;;

for Vi = V1 to VN do

switch �-MatchType(Q, Vi, �) do

case exact match return Vi;

case containing match Bucket(C) += Vi;

case contained match Bucket(:C) +=Vi;

case overlapping match Bucket(O) +=Vi; otherwise skip;

if Bucket(C) 6= ; then Best = BestContainingMatch(Bucket(C));

else if Bucket(:C) 6= ; then Best = BestContainedMatch(Bucket(:C));

else if Bucket(O) 6= ; then Best = BestOverlappingMatch(Bucket(O));

return Best;

Algorithm 2: The BestMatch

5.1 Experimental Setup

We set up a wrapper which wraps up the USAir4 web site and provides a local view:

USAir(org, dst, airline, stp, aircraft, flt, meal)

to the mediator. Among 7 attributes, both org and dst are mandatory attributes, thus they should

always be bounded in a query. To �nd out the e�ectiveness of our scheme, we generated test sets having

di�erent semantic localities. Test SQL queries in a given test set di�er only in their WHERE clause while

SELECT and FROM clauses are identical. We manipulated two factors to generate di�erent semantic

localities: 1) the number of attribute conditions and 2) the name of the attributes. If users ask short

queries more frequently rather than long ones (i.e., fewer conditions), then we can manipulate the �rst

factor to di�erentiate the generated test set. Also, if certain attributes in a schema are asked more

frequently than others, we can manipulate the second factor. Using the above USAir schema having 7

attributes, for instance, the �rst input f0:30%, 1:20%, 2:15%, 3:13%, 4:12%, 5:6%, 6:3%, 7:1%g can be

read as \Generate more queries with short conditions than ones with long conditions. The probability

distributions are 30%, 20%, 15%, 13%, 12%, 6%, 3%, 1%, respectively". For the second input, forg:14.3%,

dst:14.3%, airline:14.3%, stp:14.3%, aircraft:14.3%, t:14.3%, meal:14.3%g can be read as \When selecting

the attribute, all 7 attributes have same probability of being chosen".

We have generated four test sets, uni-uni, uni-sem, sem-uni, and sem-sem, by giving di�erent values

for the two inputs. The uni and sem stand for a uniform and semantic distribution, respectively. The

total number of the possible distinct queries that our query generator can make was set to about 32,400

and 1,000 queries for each test set were randomly picked based on the two inputs. Actual values used

4Flight schedule site at http://www.usair.com. Experiments were performed during Oct. and Nov. period in 1998. At

the time of writing, we noticed that the web site has slightly changed its web interface and schema since then.

12

Scheme
Number of the attributes in conditions Name of the attributes in conditions

2 3 4 5 6 7 airline stp aircraft t meal

uniform 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 20% 20% 20% 20% 20%

semantic 40% 25% 15% 10% 5% 5% 40% 25% 10% 5% 20%

Table 2: Uniform and semantic distribution values for two factors for generating four test sets.

in our experiments are shown in Table 2. The �rst semantic scheme values are set to mimic the Zipf

distribution [Zip49], where it is shown that human tends to ask short and simple questions more often

than long and complex ones. The second semantic scheme values are set arbitrarily assuming that airline

or stopover information will be more frequently asked than others. As long as it is a semantically skewed

test set, it su�ce our purpose to test semantic caching. Following is a typical test query generated.

SELECT * FROM USAir

WHERE org = 'LAX' AND dst = 'JFK'

AND stp <= 1 AND airline = 'US Express'

AND meal = 'S/S' AND aircraft = 'Boeing 757-200'

5.2 Performance Metrics

We use two metrics to evaluate the e�ectiveness of the caching scheme.

1. ART (Average Response Time):
total response time for N queries

N
. Note that if we want to

eliminate the initial noise when an experiment �rst starts, then we can use ART of the last k queries

(sliding window) in the query set.

2. CCR (Cache Coverage Ratio): Since the traditional cache hit ratio metric misses the e�ect of

the partial matching in the semantic caching, we use a cache coverage ratio instead. Given a query set

consisting of N queries q1; :::; qN , let Ai be the number of answers found in the cache for the query qi,

and let Bi be the total number of answers for the query qi for 1 � i � N . Then CCR =
P

N

i=1
QCRi
N

,

where 1) QCRi =
Ai
Bi

if Bi > 0 and 2) QCRi = c for 0 � c � 1 if Bi = 05. The QCR (query coverage

ratio) of the exact match and containing match is 1 since all answers must come from the cache, while

the QCR of the disjoint match is 0, since all answers must be retrieved from the web source.

5.3 Experimental Results

First, in Figure 5, we compared the performance di�erence of three cases: 1) no caching (NC), 2)

conventional caching using exact match only (CC), and 3) semantic caching (SC). Both cache sizes were

set to 200KB. Regardless of the type of the test set, NC shows no di�erence. CC shows only a little

improvement over NC since the number of the exact matches was very small in all test sets. Note that

if the small set of queries are very frequently asked, then CC will capture the semantic locality and may

perform as good as SC. However, in our experiments, because of the randomness of test sets and large

5In the experiments, c was set to 0.5 for the overlapping and contained match when Bi = 0.

13

number of containing matches, SC exhibits signi�cant performance improvement over the others. The

more semantics the test set has (thus more similar queries are found), the less time it takes to process.

����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
ill

is
ec

)

Test Sets
uni-uni uni-sem sem-uni sem-sem

NC
CC
SC Average response time (millisec)

Test cases

Test sets NC CC SC

uni-uni 3,868 3,531 2,213

uni-sem 3,516 3,478 1,213

sem-uni 3,734 3,198 538

sem-sem 3,720 3,154 281

Figure 5: Performance comparison of three test cases.

Next, we tested how the semantic caching behaves di�erently with respect to the cache size. For this

test, we set the replacement algorithm as LRU and run four test sets with varying cache sizes, 50KB,

100KB, 150KB, and unlimited, respectively. Because the USAir web site returns a small number of

answers for an average query, the cache size was set very small If the average size of the answers to be

stored in the cache becomes much bigger, then the cache size would be also increased to the MB level.

Each test set contains 1,000 syntactic queries. Figure 6.a and Figure 6.b show the ART and the CCR

of the semantic caching with varying size, respectively. Note that ART and CCR graph is symmetric.

They show that as the cache size increases, the ART decreases and the CCR increases proportionally,

since there are likely fewer cache replacements. The degree of the semantic locality in the test set plays

important role; the more semantics the test set has, the better performance it has. The reason that there

is little di�erence for the unlimited cache size in the CCR graph is due to no cache replacements. The

same behavior occurs for the cache size 150KB for the sem-uni and sem-sem test sets for the CCR graph

(Figure 6.a and Figure 6.b).

Next, we compared the performance di�erence between the LRU and MRU algorithm. The low-level

memory management uses the strategy that uses a reference counter developed in [LC98]. Due to space

limitation, we only show here uni-uni and sem-sem test set results. For this comparison, 10,000 syntactic

queries are generated in each set and cache size is �xed to 150KB. Figure 7.a shows the ART of the two

replacement algorithms. For both test sets, LRU outperforms MRU. Further, the ART gap between LRU

and MRU increases as the semantic locality increases. This is because when there is a higher semantic

locality, it is very likely that there is also a higher temporal locality. Figure 7.b shows the CCR of the two

replacement algorithms. Like the ART case, LRU outperforms MRU. Note that the CCR graph of the

LRU for sem-sem case slightly increases as the number of test queries increases while it stays fairly at

for uni-uni case. This is because when there is a higher degree of semantic locality in the test set such as

sem-sem case and the replacement algorithm does not lose querying pattern (i.e., semantic locality) such

14

����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

0

500

1000

1500

2000

2500

3000

3500

4000
A

ve
ra

ge
 R

es
po

ns
e

T
im

e
(m

ill
is

ec
)

Test Sets
uni-uni uni-sem sem-uni sem-sem

size 50KB
size 100KB
size 150KB

size unlimited

������

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 C

ov
er

ag
e

R
at

io

Test Sets
uni-uni uni-sem sem-uni sem-sem

size 50KB
size 100KB
size 150KB

size unlimited

6.a Average response time 6.b Cache coverage ratio

Figure 6: Performance comparison for selected test sets with varying cache size.

as LRU, the number of the exact and containing matches are so high that most answers are found in the

cache instead of the web source (Both cases constitute about 60% combined in Table 3). On the other

hand, the CCR graph of the MRU for sem-sem case decreases as the number of test queries increases

because MRU loses the querying pattern by swapping out the most recently used item from the cache.

0

500

1000

1500

2000

2500

3000

3500

4000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
ill

is
ec

)

Number of Queries

LRU,sem-sem
MRU,sem-sem

LRU,uni-uni
MRU,uni-uni

0

0.2

0.4

0.6

0.8

1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
ac

he
 C

ov
er

ag
e

R
at

io

Number of Queries

LRU,sem-sem
MRU,sem-sem

LRU,uni-uni
MRU,uni-uni

7.a Average response time 7.b Cache coverage ratio

Figure 7: Performance comparison between LRU and MRU algorithms.

Table 3 shows the average percentages of the �ve match types for four test sets each with 1,000

queries. The fact that partial matches (contained and overlapping matches) constitute about 40% on

average shows the potential usage of the knowledge-based matching technique. Figure 8.a shows an ex-

ample of the knowledge-based matching using semantic knowledge, which is in this case a set of induced

rules acquired by techniques developed in [CCH94]. Figure 8.b shows knowledge-based matching ratio

(
knowledge-based matches

partial matches
) with varying semantic knowledge sizes. The size is represented in percent-

age against the number of the semantic views. Despite large number of the partial matches in uni-uni

and uni-sem sets shown in Table 3, the ratios are almost identical for all test sets. This is mainly because

15

Match types

Test sets Exact match Containing match Contained match Overlapping match Disjoint match

uni-uni 0.4% 13.5% 7.8% 32.1% 46.2%

uni-sem 0.5% 27.7% 12.8% 36.8% 22.2%

sem-uni 5.1% 44.6% 12.0% 25.1% 13.2%

sem-sem 6.1% 52.0% 15.1% 18.0% 13.6%

Average 3.025% 34.35% 11.925% 28.0% 23.8%

Table 3: Five match type breakdown in the semantic caching.

many of the partially matched semantic views in uni-uni and uni-sem sets have very long conditions,

they fail to match the rules. Predictably, the degree of the knowledge-based matching is dependent on

the size of the semantic knowledges.

Q: org = 0LAX 0 ^ dst = 0JFK 0 ^ 87 � flt � 88

V: aircraft = 0Boeing757 � 2000

Rules:

1: (70 <= t <= 79) => (aircraft = 'Boeing 747-200')

2: (80 <= t <= 89) => (aircraft = 'Boeing 757-200')

3: ...

8.a User asks ight schedule from LAX to JFK with a

range-speci�ed ight number, but semantic cache has only

overlapping match V. However, according to the induced

rule 2, V is transformed into the containing match.

0

0.2

0.4

0.6

0.8

1

25 50 75 100

K
no

w
le

dg
e-

ba
se

d
M

at
ch

in
g

R
at

io

Semantic Knowledge Size (%)

uni-uni
uni-sem
sem-uni

sem-sem

8.b Knowledge-based matching

Figure 8: Performance of the knowledge-based matching.

6 Related Works

Several areas related with the semantic caching have been studied extensively in the past: conventional

caching (e.g., [ABGM90, FCL93]), query satis�ability and containment problems (e.g., [Ull89, GSW96]),

view materialization (e.g., [LY85, LMSS95]), semantic query optimization (e.g., [CCH94, GGM96]), mul-

tiple query optimization, etc. Recently, semantic caching in client-server or multi-database architecture

has received attention [KB96, DFJS96, GG98, RD98, AKS98]. Our scheme is, however, more suitable for

web databases where the querying capability of the sources (i.e., web sites) is not compatible with the

clients (i.e., wrappers).

[Sel88] discusses semantic caching and its indexing techniques, but it requires the cached results to

be exactly matched with the input query. Our approach supports non-exact matches by using semantic

knowledge. [CR94] approaches the semantic caching from the query planning and optimization point of

16

view. [DFJS96] maintains cache space by coalescing or splitting the semantic regions while we main-

tains cache space by reference counters with the allowed overlapping of the semantic regions. Further,

we present technique to �nd the best matched query under di�erent circumstances via extended and

knowledge-based matching. In [KB96], predicate descriptions derived from previous queries are used

to match an input query with the emphasis on updates in the client-server environment. Reference

counters were used to reclaim cache space without the usage of the concept analogous to the semantic

region [DFJS96].

[ACPS96] discusses semantic caching in the mediator environment with knowledge called invariants

although their focus is on cost model-based query optimization. Although invariants are more powerful

than FIND due to their support of arbitrary user-de�ned function as conditions, they are mainly used

for substituting a domain call. On the contrary, FIND is simpler yet easier to express a fragment

containment relationship on relations. Also FIND can be acquired (semi)-automatically. In [AKS98],

selectively chosen sub-queries are stored in the cache and are treated as information sources in the

domain model. To minimize the expensive cost for containment checking, they reduce the number of

semantic regions by merging them whenever possible similar to [KB96]. [RD98] de�nes a semantic caching

formally and addresses query processing techniques derived from [LY85]. They introduce additional

query trimming techniques which use the amending query in addition to the probe and remainder query

developed in [DFJS96]. [GG98] introduces a comprehensive formal framework in which they illustrate

issues such as when answers are in the cache, when answers in the cache can be recovered, etc. Also, they

identify applications for which semantic caching can be useful.

7 Conclusions & Future Works

Semantic caching techniques for wrappers in web databases are presented. Our scheme utilizes the query

naturalization to cope with the schematic, semantic, and capability di�erence between the wrapper and

web source. Further, we developed a polynomial time algorithm to �nd the best matched query from

the cache using semantic knowledge. Even if the conventional caching scheme would yield a cache miss,

our scheme could potentially locate a cache hit via semantic knowledge. Our algorithm guarantees to

�nd the best matched query from many candidates based on the algebraic comparison of the queries and

heuristics of the application. To prove the validity of our proposed scheme, we conducted a comprehensive

set of experiments for di�erent test queries with di�erent degrees of semantic locality. Our experimental

results con�rm the e�ectiveness of our scheme for di�erent cache sizes, cache replacement algorithms and

semantic locality of test queries; the performance substantially improved as the cache size increased, as

the cache replacement algorithm retained more querying pattern like in LRU, and as the degree of the

semantic locality in the test queries increased. Finally, about 15 to 20 % performance improvement was

con�rmed with the usage of knowledge-based matching.

Semantic caching at the mediator-level requires communication with multiple wrappers and creates

horizontal and vertical partitions of input queries [GG98], resulting in more complicated cache matching.

17

Further research in this area is needed. Other cache issues which were not covered in this paper including

selective caching, consistency maintainence, or indexing need to be studied further. For instance, due to

the autonomous and passive nature of the web source, wrappers and their semantic caches are not aware

of web source changes. An e�cient way is needed to incorporate such changes of web sources into the

cache in web databases.

References

[ABGM90] R. Alonso, D. Barbara, and H. Garc��a-Molina. \Data Caching Issues in an Information

Retrieval System". ACM Trans. on Database Systems (TODS), 15(3):359{384, September

1990.

[ACPS96] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. \Query Caching

and Optimization in Distributed Mediator Systems". In ACM Proc. of the Int'l Conf. on

Management of data (SIGMOD), pages 137{148, 1996.

[AKS98] N. Ashish, C. A. Knoblock, and C. Shahabi. \Intelligent Caching for Information Mediators:

A KR Based Approach. In Proc. of the 5th Knowledge Representation Meets Databases

Workshop (KRDB), Seattle, May 1998.

[CCH94] W. W. Chu, Q. Chen, and A. Huang. \Query Answering via Cooperative Data Inference".

Journal of Intelligent Information Systems (JIIS), (3):57{87, feb 1994.

[CGMP96] C-C. K. Chang, H. Garc��a-Molina, and A. Paepcke. \Boolean Query Mapping Across Hetero-

geneous Information Sources". IEEE Trans. on Knowledge and Data Engineering (TKDE),

8(4):515{521, August 1996.

[CM77] A. K. Chandra and P. M. Merlin. \Optimal Implementation of conjunctive Queries in

Relational Databases". In Proc. of the 9th ACM Symp. on the Theory of Computing, pages

77{90, 1977.

[CR94] C. M. Chen and N. Roussopoulos. \The Implementation and Performance Evaluation of the

ADMS Query Optimizer: Integrating Query Result Caching and Matching". In ACM Proc.

of the 4th Int'l Conf. on Extending Database Technology (EDBT), Cambridge, UK, 1994.

[CYM99] W. W. Chu, X. Yang, and W. Mao. \CoSent: A Cooperative Sentinel for Database Systems".

Technical Report 990002, UCLA-CS-TR, 1999.

[DFJS96] S. Dar, M. J. Franklin, B. T. Jonsson, and D. Srivastava. \Semantic Data Caching and

Replacement". In Proc. of the 22nd Int'l Conf. on Very Large Data Bases (VLDB), pages

330{341, Mumbai (Bombay), India, 1996.

18

[FCL93] M. J. Franklin, M. J. Carey, and M. Livny. \Local Disk Caching for Client-Server Database

Systems". In Proc. of the 19th Int'l Conf. on Very Large Data Bases (VLDB), pages 641{654,

Dublin, Ireland, 1993.

[FLM98] D. Florescu, A. Y. Levy, and A. Mendelzon. \Database Techniques for the World-Wide Web:

A Survery". ACM The SIGMOD Record, 1998.

[GG98] P. Godfrey and J. Gryz. \Answering Queries by Semantic Caches". Submitted for review,

1998.

[GGM96] P. Godfrey, J. Gryz, and J. Minker. \Semantic Query Optimization for Bottom-Up Eval-

uation. In Proc. of the 9th Int'l Symp. on Methodologies for Intelligent Systems (ISMIS),

pages 561{571, 1996.

[GMHI+95] H. Garc��a-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. D. Ullman, and

J. Widom. \Integrating and Accessing Heterogeneous Information Sources in TSIMMIS".

In AAAI Spring Symp. on Information Gathering, 1995.

[GSW96] S. Guo, W. Sun, and M. A. Weiss. \Solving Satis�ability and Implication Problems in

Database Systems". ACM Trans. on Database Systems (TODS), 21(2):270{293, jun 1996.

[KB96] A. M. Keller and J. Basu. \A Predicate-based Caching Scheme for Client-Server Database

Architectures". The VLDB Journal, 5(1):35{47, January 1996.

[LC98] D. Lee and W. W. Chu. \Conjunctive Point Predicate-based Semantic Caching for Wrappers

in Web Database". In ACM Int'l Workshop on Web Information and Data Management

(WIDM'98), Washington DC, USA, November 1998.

[LMSS95] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. \Answering Queries Using

Views". In ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems,

(PODS), volume 14, pages 95{104, San Jose, California, 1995.

[LY85] P.-�A. Larson and H. Z. Yang. \Computing Queries from Derived Relations". In Proc. of

the 11th Int'l Conf. on Very Large Data Bases (VLDB), pages 259{269, Stockholm, Sweden,

August 1985.

[RD98] Q. Ren and M. H. Dunham. \Semantic Caching and Query Processing". In Southern

Methodist University, Dept. of Computer Science and Engineering, Technical Report 98-

CSE-04, May 1998.

[Sel88] T. Sellis. \Intelligent Caching and Indexing Techniques For Relational Database Systems".

Information Systems (IS), 13(2):175{185, 1988.

19

[Ull89] J. D. Ullman. \Principles of Database and Knowledge-Base Systems. Volume II: The New

Technologies". Computer Science Press, 1989.

[VP97] V. Vassalos and Y. Papakonstantinou. \Describing and Using Query Capabilities of Hetero-

geneous Sources". In Proc. of the 23rd Int'l Conf. on Very Large Data Bases (VLDB), pages

256{265, 1997.

[Zip49] G. K. Zipf. \Human Behaviour and the Principle of Least E�ot". Addison-Wesley, 1949.

20

