
TBE: Trigger-By-Example

Dongwon Lee Wenlei Mao Wesley W. Chu

Department of Computer Science

University of California, Los Angeles

Los Angeles, CA 90095, USA

Email: fdongwon,wenlei,wwcg@cs.ucla.edu

Last Revised: August 3, 1999

Abstract

Triggers have been adopted as an important database feature and implemented by most major

database vendors. Despite their diverse potential usages, one of the obstacles that hinder the trig-

gers from its wide deployment is the lack of tools that aid users to create complex trigger rules in a

simple manner. Although the majority of the users of triggers are DBAs or savvy end-users, writing

trigger rules is still a daunting task.

On the other hand, QBE (Query-By-Example) has been very popular as a user interface for creating

queries in an interactive and intuitive manner since its introduction decades ago. It is being used in

most modern database products in its disguised form. Since its underlying theory is based on the

relational calculus, its expressive power is proved to be equivalent to that of SQL. Therefore, it is an

ideal tool for novice users to create simple queries in visual fashion. At the same time, expert users do

not have to compromise anything because QBE supports full capability to create complex queries.

In this paper, we shall present a novel user interface for creating trigger rules, called TBE (Trigger-

By-Example), by marrying the triggers and QBE in a seamless fashion. The visual nature of the TBE

makes writing trigger rules much easier. We show how trigger rules in the emerging SQL standard

(SQL3) can be represented using the TBE with minimal introduction of new constructs. Further, an

algorithm to translate from the TBE to SQL3 triggers is developed and illustrated along with examples.

Finally, a preliminary implementation of the TBE is presented as a proof of the concept.

UCLA-CS-TR-990029

1

Contents

1 Introduction 3

1.1 SQL3 Triggers . 3

1.2 QBE (Query-By-Example) . 4

2 TBE: Trigger-By-Example 4

2.1 Di�culty of Expressing Procedural Triggers in Declarative QBE 5

2.2 Trigger Name . 5

2.3 Event-Condition-Action Triggers . 5

2.4 Triggers Event Types . 6

2.5 Triggers Activation Time and Granularity . 6

2.6 Transition Values . 7

2.7 The REFERENCING Construct . 9

2.8 Procedural Statements . 9

2.9 The Order among Action Trigger Statements . 9

2.10 Expressing Conditions in the TBE . 9

3 Complex SQL3 Triggers Examples 10

3.1 Integrity Constraint Triggers . 11

3.2 View Maintenance Triggers . 12

3.3 Replication Maintenance Triggers . 12

4 Generating Trigger Rules from the TBE 13

4.1 Algorithm Outline: tbe2triggers . 13

5 Implementation 15

6 Applications 15

6.1 Declarative Constraints in SQL3 . 15

6.2 Universal Triggers Construction Tool . 16

7 Related Works 17

8 Conclusion 17

A Appendix 19

A.1 Simple Queries . 19

A.2 Grouping Queries . 22

2

1 Introduction

Triggers provide a facility to autonomously react to events occurring on the data, by evaluating a data-

dependent condition, and by executing a reaction whenever the condition evaluation yields a truth value.

Such triggers have been adopted as an important database feature and implemented by most major

database vendors. Despite their diverse potential usages, however, one of the obstacles that hinder the

triggers from its wide deployment is the lack of tools that aid users to create complex trigger rules in

a simple manner. In many environments, the correctness of the written trigger rules is very crucial

since the semantics encoded in the trigger rules are shared by many applications (known as knowledge

independence) [16]. Although the majority of the users of triggers are DBAs or savvy end-users, writing

correct and complex trigger rules is still a daunting task.

On the other hand, QBE (Query-By-Example) has been very popular since its introduction decades

ago and its variants are currently being used in most modern database products. As it is based on the

domain relational calculus, its expressive power is proved to be equivalent to that of SQL that is based

on the tuple relational calculus [2]. As opposed to SQL by which the user has to conform to the phrase

structure strictly, the QBE user may enter any expression as an entry insofar as it is syntactically correct.

That is, since the entries are bound to the table skeleton, the user can only specify admissible queries [15].

In this paper, we propose to use the established QBE as a user interface for writing trigger rules. Since

most trigger rules are complex combinations of SQL statements, by using the QBE as a user interface

for triggers, the user may create only admissible trigger rules. The main idea is to use the QBE in a

declarative fashion for writing the procedural trigger rules [6]. The main contributions of this paper are:

� Using the QBE as an interface for writing triggers.

� Developing the TBE scheme by extending the QBE with minimal introduction of new constructs for

ECA model-based SQL3 triggers.

� Developing a translation algorithm from the proposed TBE to SQL3 triggers.

To ease discussion, we shall briey remind SQL3 triggers and QBE in the following subsections.

1.1 SQL3 Triggers

In SQL3, triggers, sometimes called event-condition-action rules or ECA rules, mainly consist of three

parts to describe the event, condition, and action, respectively. Since SQL3 is still evolving at the time of

writing this paper, albeit close to its �nalization, we base our discussion on the latest ANSI X3H2 SQL3

working draft [11]. The following is a de�nition of SQL3:

Example 1: SQL3 triggers de�nition.

<SQL3-trigger> ::= CREATE TRIGGER <rule-name>

fAFTER j BEFOREg <trigger-event> ON <table-name>

[REFERENCING <references>]

[FOR EACH fROW j STATEMENTg]

[WHEN <SQL-statements>]

3

<SQL-procedure-statements>

<trigger-event> ::= INSERT j DELETE j UPDATE [OF <column-names>]

<reference> ::= OLD [AS] <old-value-tuple-name> j NEW [AS] <new-value-tuple-name> j

OLD TABLE [AS] <old-value-table-name> j NEW TABLE [AS] <new-value-table-name>

1.2 QBE (Query-By-Example)

The QBE is a query language as well as a visual user interface. In the QBE, programming is done

within two-dimensional skeleton tables. This is accomplished by �lling in an example of the answer in

the appropriate table spaces (thus the name \by-example"). Another kind of two-dimensional object

is the condition box , which is used to express one or more desired conditions di�cult to express in the

skeleton tables. By the QBE convention, variable names are lowercase alphabets pre�xed with \ ", system

commands are uppercase alphabets su�xed with \.", and constants are denoted without quote unlike

SQL3. Let us see the QBE example. We use the following schema throughout the paper by default.

Example 2: De�ne the emp and dept relations with keys underlined. emp.DeptNo and dept.MgrNo are foreign

keys referencing to dept.Dno and emp.Eno attributes, respectively.

emp(Eno, Ename, DeptNo, Sal)

dept(Dno, Dname, MgrNo)

Then, Example 3 shows two equivalent representations of the query in SQL3 and QBE.

Example 3: Who is being managed by the manager 'Tom'?

SELECT E2.Ename

FROM emp E1, emp E2, dept D

WHERE E1.Ename = 'Tom' AND E1.Eno = D.MgrNo AND E2.DeptNo = D.Dno

emp Eno Ename DeptNo Sal

e Tom

P. d

dept Dno Dname MgrNo

d e

The organization of this paper is as follows. Section 2 proposes our TBE for SQL3 triggers and discusses

several related issues. A few complex SQL3 trigger examples are illustrated in Section 3. A translation

algorithm from the TBE to triggers and its preliminary implementation are presented in Section 4 and

Section 5. Section 6 illustrates potential applications of the TBE. Related works and concluding remarks

are given in Section 7 and Section 8.

2 TBE: Trigger-By-Example

We propose to use the QBE as a user interface for creating trigger rules. Our tool is called the TBE,

standing for Trigger-By-Example, implying that ours is in the same spirit as the classical QBE. The

philosophy of the QBE is to require the user to know very little in order to get started and to minimize

the number of concepts that he or she subsequently has to learn in order to understand and use the whole

language [15]. We attain the same bene�ts by using the QBE as an interface for creating trigger rules.

4

2.1 Di�culty of Expressing Procedural Triggers in Declarative QBE

Triggers in SQL3 are in nature procedural. As shown in Example 1, triggers action can be arbitrary

SQL procedural statements, allowing not only SQL data statements (i.e., select, project, join) but also

transaction, connection, session statements1. Also, the order among action statements needs to be obeyed

faithfully to preserve the correct semantics.

On the contrary, the QBE is a declarative query language. While writing a query, the user does not

have to know if the �rst row in skeleton tables needs to be executed before the second row or not. That

is, the order is immaterial. Also the QBE is speci�cally designed as a tool for only 1) data retrieval

queries (i.e., SELECT), 2) data modi�cation queries (i.e., INSERT, DELETE, UPDATE), and 3) schema

de�nition and manipulation queries. Therefore, the QBE cannot really handle other procedural SQL

statements such as transaction or user-de�ned functions in a simple manner.

Thus, our goal is to develop a tool that can represent the procedural SQL3 triggers in its entirety

while retaining the declarative nature of the QBE as much as possible.

In what follows, we shall describe how the QBE was extended to be the TBE, what design options were

available, and which option was chosen by what rationale, etc.

2.2 Trigger Name

A unique name for each trigger rule needs to be set in a special input box, called the name box , where

the user can �ll in arbitrary identi�er as shown below:

<TriggerRuleName>

Typically, the user �rst decides the trigger name and then proceeds to the subsequent tasks. There are

often cases when multiple trigger rules are written together in a single TBE query (see Example 12 for

instance). For such cases, the user needs to provide a unique trigger name for each rule in the TBE query

separately. In what follows, when there is only a single trigger rule in the example, we take the liberty

of not showing the trigger name for briefness.

2.3 Event-Condition-Action Triggers

SQL3 triggers use the ECA model. Therefore, triggers are represented by mainly three isolated E, C, A

parts. In the TBE, each E, C, A part maps to the corresponding skeleton tables separately. To di�erentiate

among three parts, three pre�x ags, E., C., A., are introduced. That is, in skeleton tables, table name

is pre�xed with one of these ags. The condition box in the QBE is also similarly extended. For instance,

a condition statement ia speci�ed in the C. pre�xed skeleton table and condition box as depicted below.

C.emp Eno Ename DeptNo Sal C.conditions

1SQL3 triggers de�nition in [11] leaves it implementation-de�ned whether the transaction, connection, or session state-

ments shall not be generally contained in the action part or not.

5

2.4 Triggers Event Types

SQL3 triggers allow only the INSERT, DELETE, and UPDATE as legal event types. Coincidentally, the

QBE has constructs I., D., and U. for each event type to describe the data manipulation query. The TBE

uses these constructs to describe the trigger event types. Since the INSERT and DELETE always a�ect

the whole tuple, not individual columns, I. and D. must be �lled in the leftmost column of skeleton table.

When the UPDATE trigger is described as to particular column, then U. is �lled in the corresponding

column. Otherwise, U. is �lled in the leftmost column. Consider the following example.

Example 4: The �rst and second skeleton tables depict triggers that monitor the INSERT and DELETE events,

respectively. The third one depicts the UPDATE event of the column Dname and MgrNo. Thus, changes occurring

in other columns do not �re the trigger. The last one depicts the UPDATE event of any columns on the dept table.

Note that all table names are pre�xed with E. ags.

E.dept Dno Dname MgrNo

I.

E.dept Dno Dname MgrNo

D.

E.dept Dno Dname MgrNo

U. U.

E.dept Dno Dname MgrNo

U.

Note that since SQL3 triggers de�nition limits that only a single event be monitored per single rule, there

can not be more than one row having I., D., or U. ag unless multiple trigger rules are written together.

Therefore, same trigger actions for di�erent events (e.g., \abort when either INSERT or DELETE occurs")

need to be expressed as separate trigger rules in SQL3 triggers.

2.5 Triggers Activation Time and Granularity

The SQL3 triggers have a notion of the event activation time that speci�es if the trigger is executed

before or after its event and the granularity that de�nes how many times the trigger is executed for the

particular event.

1. The activation time can have two modes, before and after . The before mode triggers execute before

their event and are useful for conditioning of the input data. The after mode triggers execute after

their event and are typically used to embed application logic [6]. In the TBE, two corresponding

constructs, BFR. and AFT., are introduced to denote these modes. The \." is appended to denote

that these are built-in system commands.

2. The granularity of a trigger can be speci�ed as either for each row or for each statement , referred to

as row-level and statement-level triggers, respectively. The row-level triggers are executed after each

modi�cation to tuple whereas the statement-level triggers are executed once for an event regardless

of the number of the tuples a�ected. In the TBE notation, R. and S. are used to denote the row-level

and statement-level triggers, respectively.

6

Consider the following illustrating example.

Example 5: SQL3 and TBE representation for a trigger with after activation time and row-level granularity.

CREATE TRIGGER AfterRowLevelRule AFTER UPDATE OF Ename, Sal ON emp

FOR EACH ROW

E.emp Eno Ename DeptNo Sal

AFT.R. U. U.

2.6 Transition Values

When an event occurs and values change, trigger rules often need to refer to the before and after values

of certain attributes. These values are referred to as the transition values. In SQL3, these transition

values can be accessed by either transition variables (i.e., OLD, NEW) or tables (i.e., OLD TABLE, NEW TABLE)

depending on the type of the triggers, whether row-level or statement-level.

Furthermore, in SQL3, the INSERT event trigger can only use NEW or NEW TABLE while the DELETE

event trigger can only use OLD or OLD TABLE to access transition values. However, the UPDATE event

trigger can use both transition variables and tables.

We have considered the following two approaches to introduce the transition values in the TBE.

1. Using new built-in functions: Special built-in functions (i.e., OLD TABLE() and NEW TABLE() for

statement-level, OLD() and NEW() for row-level) are introduced. The OLD TABLE() and NEW TABLE()

functions return a set of tuples with values before and after the changes, respectively. Similarly

the OLD() and NEW() return a single tuple with value before and after the change, respectively.

Therefore, applying aggregate functions such as CNT. or SUM. to the OLD() or NEW() is meaningless

(i.e., CNT.NEW(s) is always 1 or SUM.OLD(s) is always same as s). Using new built-in functions,

for instance, the event \every time more than 10 new employees are inserted" can be represented

as follows:

E.emp Eno Ename DeptNo Sal

AFT.I.S. n

E.conditions

CNT.ALL.NEW TABLE(n) > 10

Also the event \when salary is doubled for each row" can be represented as follows:

E.emp Eno Ename DeptNo Sal

AFT.U.R. s

E.conditions

NEW(s) > OLD(s) * 2

It is illegal to apply the NEW() or NEW TABLE() to the variable de�ned on the DELETE event.

Likewise for the application of OLD() or OLD TABLE() to the variable de�ned on the INSERT event.

Asymmetrically, it is redundant to apply the NEW() or NEW TABLE() the variable de�ned on the

INSERT event. Likewise for the application of OLD() or OLD TABLE() to the variable de�ned on

the DELETE event. For instance, in the above event \every time more than 10 new employees

are inserted", n and NEW TABLE(n) are equivalent. Therefore, the condition expression at the

condition box can be rewritten as \CNT.ALL. n > 10" It is ambiguous, however, to simply refer to

7

the variable de�ned in the UPDATE event without the built-in functions. That is, in the event

\when salary is doubled for each row", s can refer to values both before and after the UPDATE.

That is, \ s > s * 2" at the condition box would cause an error due to its ambiguity. Therefore,

for the UPDATE event case, one needs to explicitly use the built-in functions to access transition

values.

2. Using modi�ed skeleton tables: Depending on the event type, skeleton tables are modi�ed accord-

ingly; additional columns may appear in the skeleton tables2. For the INSERT event, a keyword

NEW is prepended to the existing column names in the skeleton table to denote that these are newly

inserted ones. For the DELETE event, a keyword OLD is prepended similarly. For the UPDATE

event, a keyword OLD is prepended to the existing column names whose values are updated in the

skeleton table to denote values before the UPDATE. At the same time, additional columns with a

keyword NEW appear to denote values after the UPDATE. If the UPDATE event is for all columns,

then OLD column-name and NEW column-name appear for all columns.

Example 6: Consider an event \when John's salary is doubled within the same department". Here, we need to

monitor two attributes { Sal and DeptNo. First, the user may type the event activation time and granularity

information at the leftmost column as shown in the �rst table. Then, the skeleton table changes its format

to accommodate the UPDATE event e�ect as shown in the second table. That is, two more columns appear

and the U. construct is relocated to the leftmost column.

E.emp Eno Ename DeptNo Sal

AFT.R. U. U.

E.emp Eno Ename OLD DeptNo NEW DeptNo OLD Sal NEW Sal

AFT.U.R.

Then, the user �lls in variables into the proper columns to represent the conditions. For instance, \same

department" is expressed by using same variable d in both OLD DeptNo and NEW DeptNo columns.

E.emp Eno Ename OLD DeptNo NEW DeptNo OLD Sal NEW Sal

AFT.U.R. John d d o n

E.conditions

n > o * 2

We chose the approach using new built-in functions to introduce transition values into the TBE. Although

there is no di�erence with respect to the expressive power between two approaches, the �rst one does not

incur any modi�cations to the skeleton tables, thus minimizing the cluttering of the user interface.

2We have also considered modifying tables, instead of columns. For instance, for the INSERT event, a keyword NEW is

prepended to the table name. For the UPDATE event, a keyword OLD is prepended to the table name while new table with

a NEW pre�x is created. This approach, however, was not taken because we wanted to express column-level UPDATE event

more explicitly. That is, for an event \update occurs at column Sal", we can add only OLD Sal and NEW Sal attributes to

the existing table if we use the \modifying columns" approach. If we take the \modifying tables" approach, however, we

end up with two tables with all redundant attributes whether they are updated or not (e.g., two attributes OLD emp.Ename
and NEW emp.Ename are unnecessarily created although one attribute emp.Ename is su�cient because no update occurs for

this attribute).

8

2.7 The REFERENCING Construct

SQL3 allows to rename the transition variables or tables using the REFERENCING construct for the user's

convenience. In the TBE, this construct is not needed since the transition values are directly referred to

by the variables �lled in the skeleton tables.

2.8 Procedural Statements

When arbitrary SQL procedural statements (i.e., IF, CASE, assignment statements, etc.) are written in

the action part of the trigger rules, it is not straightforward to represent them in the TBE due to their

procedural nature. Because their expressive power is beyond what the declarative QBE, and thus the

TBE described so far, can achieve, we instead provide a special kind of box, called statement box , similar

to the condition box. The user can write arbitrary SQL procedural statements delimited by \;" in the

statement box. Since the statement box is only allowed for the action part of the triggers, the pre�x A.

is always prepended. An example is:

A.statements

IF (X > 10)

ROLLBACK;

2.9 The Order among Action Trigger Statements

SQL3 allows multiple action statements in triggers, each of which is executed according to the order they

are written. To represent triggers whose semantics depend on the assumed sequential execution, the TBE

uses an implicit agreement; like prolog, execution order follows from top to bottom. Special care needs

to be taken in translation time for such action statements as follows:

� The action skeleton tables appearing before are translated prior to that appearing after.

� In the same action skeleton tables, action statements written at the top row are translated prior to

that written at the bottom one.

2.10 Expressing Conditions in the TBE

In most active database triggers languages, the event part of the triggers language is exclusively concerned

with what has happened and cannot perform tests on values associated with the event. Some triggers

languages (e.g., Ode [1], SAMOS [9], Chimera [5]), however, provide �ltering mechanisms that perform

tests on event parameters (see [12], chapter 4). Event �ltering mechanisms can be very useful in optimizing

trigger rules; only events that passed the parameter �ltering tests are sent to the condition module to

avoid unnecessary expensive condition evaluations.

In general, we categorize condition de�nitions of the triggers into 1) parameter �lter (PF) type and 2)

general constraint (GC) type. SQL3 triggers de�nition does not have PF type; event language speci�es

only the event type, activation time and granularity information, and all conditions (both PF and GC

types) need to be expressed in the WHEN clause. In the TBE, however, we decided to allow users to be able

9

to di�erentiate PF and GC types by providing separate condition boxes (i.e., E. and C. pre�xed ones)

although it is not required for SQL3. This is because we wanted to support other triggers languages who

have both PF and GC types in future3.

1. Parameter Filter Type: Since this type tests on the event parameters, the condition must use the

transition variables or tables. Event examples such as \every time more than 10 new employees

are inserted" or \when salary is doubled" in Section 2.6 are these types. In the TBE, this type is

typically represented in the E. pre�xed condition box.

2. General Constraint Type: This type expresses general conditions regardless of the event type. In

the TBE, this type is typically represented in the C. pre�xed condition boxes. One such example is

illustrated in Example 7.

Example 7: When an employee's salary is increased more than twice within the same year (a variable CUR-

RENT YEAR contains the current year value), record changes into the log(Eno, Sal) table. Assume that

there is another table sal-change(Eno, Cnt, Year) to keep track of the employee's salary changes.

CREATE TRIGGER TwiceSalaryRule AFTER UPDATE OF Sal ON emp

FOR EACH ROW

WHEN EXISTS (SELECT * FROM sal-change

WHERE Eno = NEW.Eno AND Year = CURRENT YEAR AND Cnt >= 2)

BEGIN ATOMIC

UPDATE sal-change SET Cnt = Cnt + 1

WHERE Eno = NEW.Eno AND Year = CURRENT YEAR;

INSERT INTO log VALUES(NEW.Eno, NEW.Sal);

END

E.emp Eno Ename DeptNo Sal

AFT.R. n U. s

C.sal-change Eno Cnt Year

NEW(n) c CURRENT YEAR

C.conditions

c >= 2

A.sal-change Eno Cnt Year

U. c + 1

NEW(n) c CURRENT YEAR

A.log Eno Sal

I. NEW(n) NEW(s)

Here, the condition part of the trigger rule (i.e., WHEN clause) checks the Cnt value of the sal-change

table to check how many times salary was increased in the same year, and thus, does not involve

testing any transition values. Therefore, it makes more sense to represent such condition as GC

type, not PF type. Note that the headers of the sal-change and condition box have the C. pre�xes.

3 Complex SQL3 Triggers Examples

In this section, we show a few complex SQL3 triggers and their TBE representations. These examples are

adopted from [8, 16].

3By being able to di�erentiate PF and GC types, the user has more freedom to explicitly express trigger rules in a �ner

granularity. In fact, the TBE translation algorithm can determine if the given condition de�nition is of PF or GC type.

Future implementation will include an optimization that automatically generates PF type conditions for the systems that

support PF type.

10

3.1 Integrity Constraint Triggers

Triggers to maintain the foreign key constraint are shown below.

Example 8: When a manager is deleted, all employees in his or her department are deleted too.

CREATE TRIGGER ManagerDelRule AFTER DELETE ON emp

FOR EACH ROW

DELETE FROM emp E1 WHERE E1.DeptNo =

(SELECT D.Dno FROM dept D WHERE D.MgrNo = OLD.Eno)

E.emp Eno Ename DeptNo Sal

AFT.D.R. e

A.dept Dno Dname MgrNo

d e

A.emp Eno Ename DeptNo Sal

D. d

In this example, the WHEN clause is missing on purpose; that is, the trigger rule does not check if the deleted

employee is in fact a manager or not because the rule deletes only the employee whose manager is just deleted.

Note that how e variable is used to join the emp and dept tables to �nd the department whose manager is just

deleted. Same query could have been written with a condition test in a more explicit manner as follows:

E.emp Eno Ename DeptNo Sal

AFT.D.R. e

C.dept Dno Dname MgrNo

d m

C.conditions

OLD(e) = m

A.emp Eno Ename DeptNo Sal

D. d

Another example is shown below.

Example 9: When employees are inserted to the emp table, abort the transaction if there is one violating the

foreign key constraint.

CREATE TRIGGER AbortEmp AFTER INSERT ON emp

FOR EACH STATEMENT

WHEN EXISTS (SELECT * FROM NEW TABLE E WHERE NOT EXISTS

(SELECT * FROM dept D WHERE D.Dno = E.DeptNo))

ROLLBACK

E.emp Eno Ename DeptNo Sal

AFT.I.S. d

C.dept Dno Dname MgrNo

: d

A.statements

ROLLBACK

In this example, if the granularity were R. instead of S., then same TBE query would represent di�erent SQL3

triggers. That is, row-level triggers generated from the same TBE representation would have been:

CREATE TRIGGER AbortEmp AFTER INSERT ON emp

FOR EACH ROW

WHEN NOT EXISTS (SELECT * FROM dept D WHERE D.Dno = NEW.DeptNo)

ROLLBACK

11

3.2 View Maintenance Triggers

Suppose a company maintains the following view derived from the emp and dept schema.

Example 10: Create a view HighPaidDept that has at least one \rich" employee earning more than 100K.

CREATE VIEW HighPaidDept AS

SELECT DISTINCT D.Dname

FROM emp E, dept D

WHERE E.DeptNo = D.Dno AND E.Sal > 100K

The straightforward way to maintain the views upon changes to the base tables is to re-compute all views

from scratch. Although incrementally maintaining the view is more e�cient than this method, for the

sake of trigger example, let us implement the naive scheme below.Following is only for UPDATE event

case.

Example 11: Refresh the HighPaidDept when UPDATE occurs on emp table.

CREATE TRIGGER RefreshView AFTER UPDATE OF DeptNo, Sal ON emp

FOR EACH STATEMENT

BEGIN ATOMIC

DELETE FROM HighPaidDept;

INSERT INTO HighPaidDept

(SELECT DISTINCT D.Dname FROM emp E, dept D WHERE E.DeptNo = D.Dno AND E.Sal > 100K);

END

E.emp Eno Ename DeptNo Sal

AFT.S. U. U.

A.emp Eno Ename DeptNo Sal

d > 100K

A.dept Dno Dname MgrNo

d n

A.HighPaidDept Dname

D.

I. n

By the implicit ordering of the TBE, the DELETE statement executes prior to the INSERT statement.

3.3 Replication Maintenance Triggers

Now let us consider the problem of maintaining replicated copies in synchronization with the original copy. Suppose

that all changes are made to the primary copy while the secondary copy is asynchronously updated by triggering

rules. Actual changes to the primary copy are recorded in Delta tables. Then, deltas are applied to the secondary

copy. This logic is implemented by �ve trigger rules below. The �rst three rules monitor the base table for INSERT,

DELETE, UPDATE events, respectively and the last two rules implement actual synchronization.

Example 12: Maintain the replicated copy dept copy when the original dept table changes.

Rule 1: CREATE TRIGGER CaptureInsertRule AFTER INSERT ON dept FOR EACH STATEMENT

INSERT INTO PosDelta (SELECT * FROM NEW TABLE)

Rule 2: CREATE TRIGGER CaptureDeleteRule AFTER DELETE ON dept FOR EACH STATEMENT

INSERT INTO NegDelta (SELECT * FROM OLD TABLE)

Rule 3: CREATE TRIGGER CaptureUpdateRule AFTER UPDATE ON dept FOR EACH STATEMENT

BEGIN ATOMIC

12

INSERT INTO PosDelta (SELECT * FROM NEW TABLE);

INSERT INTO NegDelta (SELECT * FROM OLD TABLE);

END

Rule 4: CREATE TRIGGER PosSyncRule AFTER INSERT ON PosDelta FOR EACH STATEMENT

INSERT INTO dept copy (SELECT * FROM PosDelta)

Rule 5: CREATE TRIGGER NegSyncRule AFTER INSERT ON NegDelta FOR EACH STATEMENT

DELETE FROM dept copy WHERE Dno IN (SELECT Dno FROM NegDelta)

E.dept Dno Dname MgrNo

AFT.I.S. i1 i2 i3

AFT.D.S. d1 d2 d3

AFT.U.S. u1 u2 u3

A.PosDelta Dno Dname MgrNo

I. i1 i2 i3

I. NEW TABLE(u1) NEW TABLE(u2) NEW(TABLE u3)

A.NegDelta Dno Dname MgrNo

I. d1 d2 d3

I. OLD TABLE(u1) OLD TABLE(u2) OLD TABLE(u3)

E.PosDelta Dno Dname MgrNo

AFT.I.S. p1 p2 p3

E.NegDelta Dno Dname MgrNo

AFT.I.S. n1

A.dept copy Dno Dname MgrNo

I. p1 p2 p3

D. n1

Note that how multiple trigger rules (i.e., 5 rules) can be written in a uni�ed TBE representation. This

feature is particularly useful to represent multiple yet \related" trigger rules. The usage of the distinct

variables for di�erent trigger rules (e.g., i1, d1, u1) enables to distinguish di�erent trigger rules in rule

generation time.

4 Generating Trigger Rules from the TBE

In this section, we discuss about the algorithm to generate trigger rules from the TBE. Ours is an extension

of the algorithm by McLeod [10], which describes a translation from the QBE to SQL. Its input is a list of

skeleton tables and the condition boxes and its output is a SQL query string. Let us denote the McLeod's

algorithm as qbe2sql(<input>) and ours as tbe2triggers4.

4.1 Algorithm Outline: tbe2triggers

Let us assume that var is an example variable �lled in some column of the skeleton table. colname(var)

is a function to return the column name given the variable name var. Skeleton tables, condition or

statement boxes are collectively called as entry .

1. Preprocessing: This step does two tasks: 1) reducing the TBE query to an equivalent, but simpler

form (i.e., move the condition box entries that can be moved to the skeleton tables), and 2) par-

titioning the TBE query into distinct groups when multiple trigger rules are written in the query

4qbe2sql algorithm considers only SELECT statement, excluding INSERT, DELETE, UPDATE statements. Due to the

nature of the triggers, TBE heavily uses such data modi�cation statements. In this algorithm, we assume that McLeod's

qbe2sql(<input>) algorithm can handle not only SELECT but also INSERT, DELETE, UPDATE statements. The extension

is trivial. For details, refer ro [10].

13

together (i.e., Example 12). This can be done easily by comparing variables �lled in the skeleton

tables and collect those entries with the same variables being used into the same group. Then, the

following steps 2, 3, and 4 are applied to each distinct group repeatedly to generate separate trigger

rules.

2. Build event clause: Input all the E. pre�xed entries. The \CREATE TRIGGER <rule-name>" clause

is generated by the trigger name <rule-name> �lled in the name box. By checking the constructs

(e.g., AFT., R.), system can determine the activation time and granularity of the triggers. Event

type can also be detected by constructs (e.g., I., D., U.). If U. event is �lled in individual columns,

then \AFTER UPDATE OF <column-names>" clause is generated by enumerating all column names

in an arbitrary order. Then,

(a) Convert all variables vari used with I. event into NEW(vari) (if row-level) or NEW TABLE(vari)

(if statement-level) accordingly.

(b) Convert all variables vari used with D. event into OLD(vari) (if row-level) or OLD TABLE(vari)

(if statement-level) accordingly.

(c) If there is a condition box or a column having comparison operators (e.g., <, �) or aggregation

operators (e.g., AVG., SUM.), then it is the \parameter �lter (PF)" type conditions. Since SQL3

use the WHEN clause to represent this type, gather all the related entries and pass them over to

step 3.

3. Build condition clause: Input all the C. pre�xed entries as well as the E. pre�xed entries passed

from the previous step.

(a) Convert all built-in functions for transition values and aggregate operators into SQL3 format.

For instance, OLD(var) and SUM. var are converted into OLD.name and SUM(name) respec-

tively, where name = colname(var).

(b) Fill P. command in the table name column (i.e., leftmost one) of all the C. pre�xed entries

unless the entry already contains P. command. This will result in creating \SELECT table1.*,

..., tablen.* FROM table1, ..., tablen" clause.

(c) Gather all entries into <input> list and call qbe2sql(<input>) algorithm. Let the returned

SQL string as<condition-statement>. For row-level triggers, create \WHEN EXISTS (<condition-

statement>)" clause. For statement-level triggers, create \WHEN EXISTS (SELECT * FROM

NEW TABLE (or OLD TABLE) WHERE (<condition-statement>))"

4. Build action clause: Input all the A. pre�xed entries.

(a) Convert all built-in functions for transition values and aggregate operators into SQL3 format

like step 3.(a).

(b) Partition the entries into distinct groups. That is, gather entries with identical variables

being used into the same group. Each group will have one data modi�cation statement such

14

as INSERT, DELETE, or UPDATE. Preserve the order semantics among partitioned groups

such that 1) an entry appearing prior to another entry has higher order, 2) a group appearing

prior to another group has higher order, and 3) a group having higher ordered entry than

another group's entry has higher order.

(c) For each group Gi, call qbe2sql(< Gi >) algorithm according to the order decided in the pre-

vious step. Let the resulting SQL string for Gi as <action-statement>i. Note that statement

box entries are not passed into qbe2sql algorithm since they are procedural. Instead, its con-

tents are literally copied to <action-statement>i. Then, �nal action statements for triggers

would be \BEGIN ATOMIC <action-statement>1; ..., <action-statement>n; END".

5 Implementation

A preliminary version of the TBE prototype is being implemented using jdk 1.2.1. Although the underlying

concept is the same as what we have presented so far, we added several bells and whistles (e.g., context

sensitive pop-up menu) for better human-computer interaction.

The main screen consists of two sections { one for input and another for output. The input section is

where the user creates trigger rules by the QBE mechanism and the output section is where the interface

generates trigger rules in the target trigger syntax. Further, the input section consists of three panes for

event, condition, action, respectively. The main screen of the prototype is shown in Figure 1, where the

query in Example 7 is shown.

A query wizard like feature (to show users all the available yet valid options at the particular time

and have them select one) is introduced in the implementation via context-sensitive pop-up menus. For

instance, the implementation �rst shows all available table names to the user when empty skeleton table

is inserted. After the user picks one table, its attribute names appear in the skeleton table automatically.

Also, when the right mouse button is clicked at some columns of the skeleton table, valid behavior options

(e.g., insert example variable, insert transition variable) are listed in the pop-up menu to aid the user's

selection. One such pop-up menu is shown in Figure 1 as well. After �lling data in the input section,

when the user clicks the down arrow button, the equivalent trigger rule is generated at the output section.

6 Applications

Not only is the TBE useful for writing trigger rules, but it can also be used for other applications with a

few modi�cations. Two such applications are illustrated in this section.

6.1 Declarative Constraints in SQL3

SQL3 has the ASSERTION to enforce any condition expression that can follow WHERE clause to embed some

application logic. The form of an assertion is:

CREATE ASSERTION <assertion-name> CHECK <condition-statement>

Note the similarity between the assertion and triggers syntax in SQL3. Therefore, a straightforward

extension of the TBE can be used as a tool to enforce assertion constraints declaratively. In fact, since the

15

Figure 1: Main screen dump.

ASSERTION in SQL3 only permits declarative constraints, the TBE suits the purpose perfectly.

6.2 Universal Triggers Construction Tool

Although SQL3 is close to its �nal form, many database vendors are already shipping their products with

their own proprietary triggers syntaxes and implementations. When multiple databases are used together

or one database needs to be migrated to another, these diversities can introduce signi�cant problems.

To remedy this problem, one can use the TBE as a universal triggers construction tool. That is, the user

creates triggers using the TBE interface and saves it as the TBE's internal format5. When one database

is changed to another, the user can simply reset one of the preference information of the TBE (e.g., from

Oracle to DB2) to re-generate new trigger rules. Extending the TBE to support all unique features of

diverse database products is not a trivial task. Nevertheless, we believe that retaining the visual nature of

the triggers construction with the TBE can be quite useful in coping with heterogeneous database systems.

5This can be a modi�ed domain relational calculus format or linearized QBE format [10].

16

7 Related Works

Past active database research has focused on active database rule language (e.g., [1]), rule execution

semantics (e.g., [6]), or rule management and system architecture issues (e.g., [13]). In addition, research

on visual querying has been done in traditional database research (e.g., [7, 15]). To a greater or lesser

extent, all these research focused on devising novel visual querying schemes to replace data retrieval

aspects of the SQL language. Although some has considered data de�nition aspects [3] or manipulation

aspects, none has extensively considered the trigger aspects of the SQL, especially from the user interface

point of view.

Other works (e.g., IFO2 [14], IDEA [5]) have attempted to build graphical triggers description tools,

too. Using IFO2, one can describe how di�erent objects interact through events, thus giving priority to

an overview of the system. Argonaut from the IDEA project [5] focused on the automatic generation

of active rules that correct integrity violation based on declarative integrity constraint speci�cation, and

active rules that incrementally maintain materialized views based on view de�nition. The TBE, on the

other hand, tries to help users to directly design active rules with minimal learning.

Other than the QBE skeleton tables, forms have been popular building blocks for visual querying

mechanism as well. For instance, [7] proposes the NFQL as a communication language between human

and database system. It uses forms in a strictly nonprocedural manner to represent query. Other works

using forms are mostly for querying aspect of the visual interface [3].

To the best of our knowledge, the only work that is directly comparable to ours is RBE [4]. Although

RBE also uses the idea of the QBE as an interface for creating trigger rules, there are following signi�cant

di�erences:

� Since the TBE is carefully designed with SQL3 triggers in mind, it is capable of creating all the

complex SQL3 trigger rules. Since RBE's capability is, however, limited to OPS5-style produc-

tion rules, it cannot express, for instance, the subtle di�erence of the trigger activation time nor

granularity.

� Since RBE focuses on building an active database system in which RBE is only a small part, no

evident suggestion of the QBE as a user interface to trigger construction is given. On the contrary,

the TBE is speci�cally aimed for that purpose.

� The implementation of RBE is tightly coupled with the underlying rule system and database so that

it cannot easily support multiple heterogeneous database triggers. Since the TBE implementation

is a thin layer utilizing a translation from a visual representation to the underlying triggers, it is a

loosely coupled with the database.

8 Conclusion

A novel user interface called TBE for creating triggers is proposed. TBE borrows the visual querying mech-

anism from the QBE and applies it to triggers construction application in a seamless fashion. An array

of new constructs are introduced to extend the QBE to support triggers semantics and syntaxes properly.

17

In addition, a translation algorithm from the visual representation of the TBE to the underlying SQL3

triggers is developed. Furthermore, to prove the concept, a prototype is implemented and demonstrated

the feasibility and bene�ts of applying the QBE to the trigger rule writing.

References

[1] R. Agrawal, N. Gehani, \Ode (Object Database and Environment): The Language and the Data

Model", Proc. SIGMOD , Portland, Oregon, 1989.

[2] E. F. Codd, \Relational Completeness of Data Base Languages", Data Base Systems, Courant Com-

puter Symposia Series, Prentice-Hall, 6:65-98, 1972.

[3] C. Collet, E. Brunel, \De�nition and Manipulation of Forms with FO2", Proc. IFIP Visual Database

Systems, 1992.

[4] Y.-I. Chang, F.-L. Chen, \RBE: A Rule-by-example Action Database System", Software { Practice

and Experience, 27(4):365-394, 1997.

[5] S. Ceri, P. Fraternali, S. Paraboschi, L. Tanca, \Active Rule Management in Chimera", In J. Widom

and S. Ceri (ed.), Active Database Systems: Triggers and Rules for Active Database Processing ,

Morgan Kaufmann, 1996.

[6] R. Cochrane, H. Pirahesh, N. Mattos, \Integrating Triggers and Declarative Constraints in SQL

Database Systems", Proc. VLDB , 1996.

[7] D. W. Embley, \NFQL: The Natural Forms Query Language", ACM TODS , 14(2):168-211, 1989.

[8] S. M. Embury, P. M. D. Gray, \Database Internal Applications", In N. W. Paton (ed.), Active Rules

In Database Systems, Springer-Verlag, 1998.

[9] S. Gatziu, K. R. Dittrich, \SAMOS", In N. W. Paton (ed.), Active Rules In Database Systems,

Springer-Verlag, 1998.

[10] D. McLeod, \The Translation and Compatibility of SEQUEL and Query by Example", Proc. Int'l

Conf. Software Engineering , San Francisco, CA, 1976.

[11] J. Melton (ed.), \(ANSI/ISO Working Draft) Foundation (SQL/Foundation)", ANSI X3H2-99-

079/WG3:YGJ-011 , March, 1999. (ftp://jerry.ece.umassd.edu/isowg3/dbl/BASEdocs/public/sql-

foundation-wd-1999-03.pdf)

[12] N. W. Paton (ed.), \Active Rules in Database Systems", Springer-Verlag , 1998.

[13] E. Simon, A. Kotz-Dittrich, \Promises and Realities of Active Database Systems", Proc. VLDB

1995.

[14] M. Teisseire, P. Poncelet, R. Cichetti, \Towards Event-Driven Modelling for Database Design", Proc.

VLDB , 1994.

[15] M. M. Zloof, \Query-by-Example: a data base language", IBM System J., 16(4):342-343, 1977.

18

[16] C. Zaniolo, S. Ceri, C. Faloutsos, R. R. Snodgrass, V.S. Subrahmanian, R. Zicari, \Advanced

Database Systems", Morgan Kaufmann, 1997.

A Appendix

McLeod's original paper has a QBE to SQL translation algorithm in notations somewhat di�erent (and

obsolete) from what most current DB textbooks use. In this section, we clear up those confusions and

re-write all example queries in the paper in a familiar notation. First, examples are based on following

schema:

emp(Ename, Sal, Mgr, Dept)

sales(Dept, Item)

supply(Item, Supplier)

type(Item, Color, Size)

In what follows, both the recommended QBE and SQL representations of the given query are presented.

Note that there could be many other representations equivalent to what is presented here. We only

showed here what we believe the most reasonable ones.

A.1 Simple Queries

In this section, basic QBE queries and their SQL translation are introduced. The �rst qbe2sql implemen-

tation needs to be able to handle at least all the simple queries in this section.

Query 1: Print the red items.

type Item Color

P. red

SELECT Item

FROM type

WHERE Color = 'red'

Query 2: Find the departments that sell items supplied by 'parker'.

sales Dept Item

P. i

supply Item Supplier

i parker

SELECT S.Dept

FROM sales S, supply T

WHERE S.item = T.item AND T.supplier = 'parker'

Query 3: Find the names of employees who earn more than their manager.

emp Name Sal Mgr

P. e1 m

m e2

conditions

e1 > e2

SELECT E1.Name

19

FROM emp E1, emp E2

WHERE E1.Mgr = E2.Name AND E1.Sal > E2.Sal

Query 4: Find the departments that sell pens and pencils.

sales Dept Item

P. d pen

d pencil

SELECT S1.Dept

FROM sales S1, sales S2

WHERE S1.Dept = S2.Dept AND S1.Item = 'pen' AND S2.Item = 'pencil'

In QBE, same query can be expressed using condition box as follows.

sales Dept Item

P. i

conditions

i = (pen AND pencil)

Note that this query should not be translated into the following SQL:

SELECT Dept

FROM sales

WHERE Item = 'pen' AND Item = 'pencil'

Instead, the following SQL using INTERSECT is the correct translation.

(SELECT Dept FROM sales WHERE Item = 'pen')

INTERSECT

(SELECT Dept FROM sales WHERE Item = 'pencil')

Query 5: Find the departments that sell pens or pencils.

sales Dept Item

P. d1 pen

P. d2 pencil

(SELECT Dept FROM sales WHERE Item = 'pen')

UNION

(SELECT Dept FROM sales WHERE Item = 'pencil')

In QBE, same query can be expressed using condition box as follows.

Query 6: Same query as Query 5.

sales Dept Item

P. i

conditions

i = (pen OR pencil)

SELECT Dept

FROM sales

WHERE Item = 'pen' OR Item = 'pencil'

Query 7: Print all the department, supplier pairs such that the department sells an item that the

supplier supplies.

20

sales Dept Item

P. d i

supply Item Supplier

i P. s

SELECT S.Dept, T.Supplier

FROM sales S, supply T

WHERE S.Item = T.Item

Query 8: List all the items except the ones which come in green.

type Item Color

P. : green

SELECT Item

FROM type

WHERE Color <> 'green'

All following QBE and SQL expressions are equivalent.

type Item Color

P. i

: i green

type Item Color

P. i

: i green

(SELECT Item FROM type)

EXCEPT

(SELECT Item FROM type WHERE Color = 'green')

SELECT Item FROM type WHERE Item NOT IN

(SELECT Item FROM type WHERE Color = 'green')

Query 9: Find the departments each of which sells items supplied by parker and bic.

sales Dept Item

P. d i1

d i2

supply Item Supplier

i1 parker

i2 bic

SELECT S1.Dept

FROM sales S1, sales S2, supply T1, supply T2

WHERE S1.Dept = S2.Dept AND S1.Item = T1.Item AND S2.Item = T2.Item

AND T1.Supplier = 'parker' AND T2.supplier = 'bic'

This could have been written using [] notation (i.e., set) as follows:

sales Dept Item

P. d [i1, i2]

supply Item Supplier

[i1, i2] [parker,bic]

Query 10: Find the departments that sell items each of which is supplied by parker and bic.

sales Dept Item

P. d i

supply Item Supplier

i [parker,bic]

SELECT S.Dept

FROM sales S, supply T1, supply T2

WHERE S.Item = T1.Item AND S.Item = T2.Item

AND T1.Supplier = 'parker' AND T2.supplier = 'bic'

21

A.2 Grouping Queries

In this section, more complex QBE queries and their SQL translation are introduced using grouping and

aggregation on the groups. Queries are ordered according to their complexities.

Query 11: Count employees by departments and manager.

emp Name Dept Mgr

P.CNT.ALL. n P.G. P.G.

SELECT Dept, Mgr, COUNT(Name)

FROM emp

GROUP BY Dept, Mgr

In QBE, aggregate operators (i.e., CNT., SUM., AVG., MIN., MAX.) can only be applied to \set". Hence, CNT.All. n

is used instead of CNT. n, where ALL. ensures returning a set of employee names. In addition, in QBE, duplicates are

automatically eliminated unless stated otherwise. Since the query asks the total number of all the employees regardless

of their names being identical, we add ALL. to ensure not to eliminate duplicates.

Query 12: Among all departments with total salaries greater than 22,000, �nd those which sell pens.

emp Sal Dept

s P.G. d

sales Dept Item

d pen

conditions

SUM.ALL. s > 22000

SELECT E.Dept

FROM emp E, sales S

WHERE E.Dept = S.Dept AND S.Item = 'pen'

GROUP BY E.Dept

HAVING SUM(E.Sal) > 22000

Query 13: List the name and department of each employee such that his department sells less than

three items.

emp Name Dept

P. P. d

sales Dept Item

G. d i

conditions

CNT.UNQ.ALL. i < 3

SELECT E.Dept, E.Name

FROM emp E, sales S

WHERE E.Dept = S.Dept

GROUP BY S.Dept

HAVING COUNT(DISTINCT S.Item) < 3

To count the distinct names of the department, since QBE automatically eliminates duplicates, CNT. i should be enough.

However, CNT. operator can only be applied to a set, we need to append UNQ.ALL. after CNT. operator.

Query 14: Find the departments that sell all the items of all the suppliers.

We need to check two conditions: 1) the item being sold by the department is actually supplied by some supplier, and

2) the total number of items being sold by the department is same as the total number of items of all the suppliers.

22

sales Dept Item

P.G. d i1

supply Item Supplier

i1

i2

conditions

CNT.UNQ.ALL. i1 = CNT.UNQ.ALL. i2

SELECT S.Dept

FROM sales S, supply T

WHERE S.Item = T.Item

GROUP BY S.Dept

HAVING COUNT(DISTINCT S.Item) =

(SELECT COUNT(DISTINCT Item) FROM supply)

Query 15: Find the departments that sell all the items supplied by 'parker' (and possibly some

more).

sales Dept Item

P.G. [ALL. i,*]

supply Item Supplier

ALL. i parker

This query �rst �nds all the items supplied by 'parker'. ALL. ensures that duplicates are kept (i.e., multi-set). Then,

for each dept (i.e., G.), �nd department who has items that contain all the items supplied by the 'parker' (i.e., i) and

some more (i.e., *). We can translate this into two di�erent SQL expressions as follows:

1. When CONTAINS operator is supported:

SELECT Dept

FROM sales

GROUP BY Dept

HAVING Item CONTAINS

(SELECT Item FROM supply WHERE Supplier = 'parker')

2. When CONTAINS operator is not supported: use the equivalence that "A contains B" is same as "not

exists (B except A)". Since CONTAINS operator is not part of the standard SQL and supported by only a

few vendors, this case should be a default.

SELECT Dept

FROM sales

GROUP BY Dept

HAVING NOT EXISTS

((SELECT Item FROM supply WHERE Supplier = 'parker') EXCEPT (Item))

Query 16: Find the departments that sell all the items supplied by 'parker' (and nothing more).

sales Dept Item

P.G. ALL. i

supply Item Supplier

ALL. i parker

Here, we need to express set equality situation. To express \A = B", we can use \A�B = ; and B �A = ;".

SELECT Dept

FROM sales

GROUP BY Dept

HAVING COUNT((SELECT Item FROM supply WHERE Supplier = 'parker') EXCEPT (Item)) = 0

23

AND COUNT((Item) EXCEPT (SELECT Item FROM supply WHERE Supplier = 'parker')) = 0

Query 17: Find the departments that sell all the items supplied by 'Hardware' dept (and possibly

more).

sales Dept Item

P.G. d [ALL. i,*]

Hardware ALL. i

conditions

d <> Hardware

Similar to Query 15, the set containment concept needs to be used. Here, we show only the SQL using the CONTAINS

operator and omit the SQL without using it for briefness.

SELECT Dept

FROM sales

GROUP BY Dept

HAVING Dept <> 'Hardware' AND Item CONTAINS

(SELECT Item FROM sales WHERE Dept = 'Hardware')

24

