
TBE: A Graphical Interface for Writing Trigger Rules in

Active Databases

Dongwon Lee Wenlei Mao Henry Chiu Wesley W. Chu

Department of Computer Science

University of California, Los Angeles

Los Angeles, CA 90095, USA

Email: fdongwon,wenlei,hychiu,wwcg@cs.ucla.edu

Last Revised: September 13, 1999

Abstract

Triggers have been adopted as an important database feature and implemented by most major

database vendors. Despite their diverse potential usages, one of the obstacles that hinder the trig-

gers from their wide deployment is the lack of tools that aid users to create trigger rules. Similar to

understanding and specifying database queries in SQL3, it is di�cult to visualize the meaning of the

written trigger rules. Furthermore, it is even more di�cult to write trigger rules using such text-based

trigger rule language as SQL3. On the other hand, QBE (Query-By-Example) has been very popular

as a user interface for creating queries in an interactive manner since its introduction decades ago. It

is being used in most modern database products in its disguised form. QBE simpli�es database query

understanding and speci�cation by helping the users visualize the querying process.

Following the same philosophy, in [LMC 99], we proposed TBE (Trigger-By-Example), a graphical

trigger rule speci�cation language and system, to help the users understand and specify active database

triggers. Since TBE borrowed its basic idea from QBE, it retained the much bene�ts of QBE while

extending the features to support triggers. Hence, TBE is a useful tool for novice users to create simple

triggers in a visual and intuitive manner. Further, since TBE is designed to insulate the details of

underlying trigger systems from users, it can be used as a universal trigger interface for rule formation.

In this paper, we discuss the design and implementation issues of TBE. The design to make TBE a

universal trigger rule formation tool is presented as well.

UCLA-CS-TR-990041

1



Contents

1 Introduction 3

1.1 The SQL3 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 QBE (Query-By-Example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 TBE (Trigger-By-Example) Overview 5

2.1 TBE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Triggers Activation Time and Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Transition Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 TBE Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 A Sample TBE Session 8

4 Design and Implementation Issues 12

4.1 Internal Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Translation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 The qbe2sql Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.2 The tbe2triggers Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 TBE as a Universal Trigger Rule Formation Tool 16

5.1 Trigger Syntax Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2 Trigger Composition Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Backward Translation: Triggers To TBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Related Works 19

7 Conclusion 20

2



1 Introduction

Triggers provide a facility to autonomously react to events occurring on the data by evaluating a data-

dependent condition and by executing a reaction whenever the condition is satis�ed. Such triggers have

been adopted as an important database feature and implemented by most major database vendors.

Despite their diverse potential usages, one of the obstacles that hinder the triggers from their wide

deployment is the lack of tools that aid users to create complex trigger rules in a simple manner. In many

environments, the correctness of the written trigger rules is very crucial since the semantics encoded in the

trigger rules are shared by many applications. Although the majority of the users of triggers are DBAs

or savvy end-users, writing correct and complex trigger rules is still a daunting task, not to mention

maintaining written trigger rules.

On the other hand, QBE (Query-By-Example) has been very popular since its introduction decades

ago and its variants are currently being used in most modern database products. As it is based on the

domain relational calculus, its expressive power is proved to be equivalent to that of SQL that is based

on the tuple relational calculus [Codd 72]. As opposed to SQL, which the user has to conform to the

phrase structure strictly, QBE user may enter any expression as an entry insofar as it is syntactically

correct. That is, since the entries are bound to the table skeleton, the user can only specify admissible

queries [Zloof 77].

We proposed TBE (Trigger-By-Example) [LMC 99] as a novel graphical interface for writing triggers.

Since most trigger rules are complex combinations of SQL statements, by using QBE as a user interface

for triggers the user may create only admissible trigger rules. TBE uses QBE in a declarative fashion for

writing the procedural trigger rules [CPM 96]. In this paper, we discuss the design and implementation

issues of TBE. Further, our design to make TBE a universal trigger rule formation tool that hides much of

the peculiarity of the underlying trigger systems is presented.

To facilitate discussion, we shall brie
y remind SQL3 triggers and QBE in the following subsections.

1.1 The SQL3 Triggers

In SQL3, triggers, sometimes called event-condition-action rules or ECA rules, mainly consist of three

parts to describe the event, condition, and action, respectively. Since SQL3 is still evolving at the time of

writing this paper, albeit close to its �nalization, we base our discussion on the latest ANSI X3H2 SQL3

working draft [Melton 99]. The following is a de�nition of SQL3:

Example 1: SQL3 triggers de�nition.

<SQL3-trigger> ::= CREATE TRIGGER <rule-name>

fAFTER j BEFOREg <trigger-event> ON <table-name>

3



[REFERENCING <references>]

[FOR EACH fROW j STATEMENTg]

[WHEN <SQL-statements>]

<SQL-procedure-statements>

<trigger-event> ::= INSERT j DELETE j UPDATE [OF <column-names>]

<reference> ::= OLD [AS] <old-value-tuple-name> j NEW [AS] <new-value-tuple-name> j

OLD TABLE [AS] <old-value-table-name> j NEW TABLE [AS] <new-value-table-name>

1.2 QBE (Query-By-Example)

QBE is a query language as well as a visual user interface. In QBE, programming is done within two-

dimensional skeleton tables. This is accomplished by �lling in an example of the answer in the appropriate

table spaces (thus the name \by-example"). Another kind of two-dimensional object is the condition box ,

which is used to express one or more desired conditions di�cult to express in the skeleton tables. By QBE

convention, variable names are lowercase alphabets pre�xed with \ ", system commands are uppercase

alphabets su�xed with \.", and constants are denoted without quote unlike SQL3. Let us see a QBE

example. The following schema is used throughout the paper.

Example 2: De�ne the emp and dept relations with keys underlined. emp.DeptNo and dept.MgrNo are foreign

keys referencing to dept.Dno and emp.Eno attributes, respectively.

emp(Eno, Ename, DeptNo, Sal)

dept(Dno, Dname, MgrNo)

Then, Example 3 shows two equivalent representations of the query in SQL3 and QBE.

Example 3: Who is being managed by the manager 'Tom'?

SELECT E2.Ename

FROM emp E1, emp E2, dept D

WHERE E1.Ename = 'Tom' AND E1.Eno = D.MgrNo AND E2.DeptNo = D.Dno

emp Eno Ename DeptNo Sal

e Tom

P. d

dept Dno Dname MgrNo

d e

The rest of this paper is organized as follows. Section 2 gives a brief introduction of the TBE. Section 3 is

a simulation of a user session with TBE. The design and implementation of TBE is discussed in Section 4.

Section 5 presents the design of some extensions that we are planning for the TBE. Related works and

concluding remarks are given in Section 6 and Section 7, respectively.

4



2 TBE (Trigger-By-Example) Overview

TBE is a user interface for creating trigger rules. Similar to QBE [Zloof 77], the philosophy of TBE is to

minimize the number of concepts that has to be learned in order to understand and use the whole trigger

language [Zloof 77].

2.1 TBE Model

SQL3 triggers use the ECA (Event, Condition and Action) model. Therefore, triggers are represented by

mainly three independent E, C, A parts. In TBE, each E, C, A part maps to the corresponding skeleton

tables separately. To di�erentiate among three parts, each skeleton table name is pre�xed with one of

these 
ags, E., C., or A.. That is, The condition box in QBE is extended similarly. For instance, a

condition trigger statement is speci�ed in the C. pre�xed skeleton table and/or condition box as depicted

below.

C.emp Eno Ename DeptNo Sal C.conditions

SQL3 triggers allow only INSERT, DELETE, and UPDATE as legal event types. QBE uses I., D.,

and U. to describe the corresponding data manipulations. TBE thus uses these constructs to describe

the trigger event types. Since INSERT and DELETE always a�ect the whole tuple, not individual

columns, I. and D. must be �lled in the leftmost column of skeleton table. When the UPDATE trigger

is described as to particular column, then U. is �lled in the corresponding column. Otherwise, U. is �lled

in the leftmost column to represent that the UPDATE event is monitored for all columns. Consider the

following example.

Example 4: Both skeleton tables (1) and (2) depict that the triggers monitor INSERT and DELETE events on

the dept table, respectively. (3) depicts UPDATE event of the column Dname and MgrNo. Thus, changes occurring

in other columns do not �re the trigger. (4) depicts the UPDATE event of any columns on the dept table.

(1)
E.dept Dno Dname MgrNo

I.
(2)

E.dept Dno Dname MgrNo

D.

(3)
E.dept Dno Dname MgrNo

U. U.
(4)

E.dept Dno Dname MgrNo

U.

Note also that since SQL3 triggers de�nition limits that only single event be monitored per rule, there

cannot be more than one row having an I., D., or U. 
ag. Therefore, the same trigger action for di�erent

5



events (e.g., \abort when either INSERT or DELETE occurs") needs to be expressed as separate trigger

rules in SQL3 triggers.

2.2 Triggers Activation Time and Granularity

The SQL3 triggers have a notion of event activation time that speci�es if the trigger is executed before

or after its event and granularity that de�nes how many times the trigger is executed for a particular

event.

1. The activation time can have two modes, before and after . The before mode triggers execute before

their events and are useful for conditioning of the input data. The after mode triggers execute after

their events and are typically used to embed application logic [CPM 96]. In TBE, two corresponding

constructs (BFR. and AFT.) are introduced to denote these modes. The appended \." denotes that

these are built-in system commands by QBE convention.

2. The granularity of a trigger can be speci�ed as either for each row or for each statement , referred

to as row-level and statement-level triggers, respectively. The row-level triggers are executed once

for each modi�cation to tuple whereas the statement-level triggers are executed once for an event

regardless of the number of the tuples a�ected. In TBE notation, R. and S. are used to denote the

row-level and statement-level triggers, respectively.

Users express triggers activation time and granularity at the leftmost column of the event skeleton tables

using the introduced constructs.

2.3 Transition Values

When an event occurs and values change, trigger rules often need to refer to the before and after values

of certain attributes. These values are referred to as the transition values. In SQL3, these transition

values can be accessed by either transition variables (i.e., OLD, NEW) for row-level triggers or tables (i.e.,

OLD TABLE, NEW TABLE) for statement-level triggers. Furthermore, in SQL3, INSERT event trigger can

only use NEW or NEW TABLE while DELETE event trigger can only use OLD or OLD TABLE to access transition

values. However, UPDATE event trigger can use both transition variables or tables. In TBE, a couple

of special built-in functions (i.e., OLD TABLE() and NEW TABLE() for statement-level, OLD() and NEW()

for row-level) are introduced. The OLD TABLE() and NEW TABLE() functions return a set of tuples with

values before and after the changes, respectively. Similarly the OLD() and NEW() functions return a single

tuple with value before and after the change, respectively. Therefore, applying aggregate functions such

as CNT. or SUM. to the OLD() or NEW() is meaningless (i.e., CNT.NEW( s) is always 1 and SUM.OLD( s) is

6



always same as s). Using these built-in functions, for instance, an event \every time more than 10 new

employees are inserted" can be represented as follows:

E.emp Eno Ename DeptNo Sal

AFT.I.S. n

E.conditions

CNT.ALL.NEW TABLE( n) > 10

When arbitrary SQL procedural statements (i.e., IF, CASE, assignment statements, etc.) are written

in the action part of the trigger rules, it is not straightforward to represent them in TBE due to their pro-

cedural nature. Because their expressive power is beyond what the declarative QBE (thus TBE described

so far) can achieve, we instead provide a special kind of box, called statement box , similar to the condition

box. The user can write arbitrary SQL procedural statements delimited by \;" in the statement box.

Since statement box is only allowed for the action part of the triggers, the pre�x A. is always prepended.

An example is:

A.statements

IF (X > 10)

ROLLBACK;

2.4 TBE Examples

Let us wrap up this section with two illustrating examples. These are typical trigger rules to maintain

database integrity constraints.

Example 5: When a manager is deleted, all employees in his or her department are deleted too.

CREATE TRIGGER ManagerDelRule AFTER DELETE ON emp

FOR EACH ROW

DELETE FROM emp E WHERE E.DeptNo IN

(SELECT D.Dno FROM dept D WHERE D.MgrNo = OLD.Eno)

E.emp Eno Ename DeptNo Sal

AFT.D.R. e

A.dept Dno Dname MgrNo

d e

A.emp Eno Ename DeptNo Sal

D. d

In this example, the WHEN clause is missing on purpose. That is, the trigger rule does not check if the deleted

employee is in fact a manager or not because the rule deletes only the employee whose manager is just deleted.

Note that how e variable is used to join the emp and dept tables to �nd the department whose manager is just

deleted. The same query could have been written with a condition test in a more explicit manner as follows:

7



E.emp Eno Ename DeptNo Sal

AFT.D.R. e

C.dept Dno Dname MgrNo

d m

C.conditions

OLD( e) = m

A.emp Eno Ename DeptNo Sal

D. d

Example 6: When employees are inserted to the emp table, abort the transaction if there is one violating the

foreign key constraint.

CREATE TRIGGER AbortEmp AFTER INSERT ON emp

FOR EACH STATEMENT

WHEN EXISTS (SELECT * FROM NEW TABLE E WHERE NOT EXISTS

(SELECT * FROM dept D WHERE D.Dno = E.DeptNo))

ROLLBACK

E.emp Eno Ename DeptNo Sal

AFT.I.S. d

C.dept Dno Dname MgrNo

: d

A.statements

ROLLBACK

In this example, if the granularity were R. instead of S., then the same TBE query would represent di�erent SQL3

triggers. That is, row-level triggers generated from the same TBE representation would have been:

CREATE TRIGGER AbortEmp AFTER INSERT ON emp

FOR EACH ROW

WHEN NOT EXISTS (SELECT * FROM dept D WHERE D.Dno = NEW.DeptNo)

ROLLBACK

Please refer to [LMC 99] for detail discussion and more examples of TBE.

3 A Sample TBE Session

To give a 
avor of TBE, we describe a sample session in this section. Consider the following example.

Example 7: When an employee's salary is changed more than twice within the same year (a variable

CURRENT YEAR contains the current year value), record new values of Eno and Sal into the log(Eno,

Sal) table. Assume that there is another table sal-change(Eno, Year, Cnt) to keep track of the

employee's salary changes. �

Human expert would have written the trigger rule as follows:

CREATE TRIGGER TwiceSalaryRule AFTER UPDATE ON emp

FOR EACH ROW

WHEN EXISTS (SELECT * FROM sal-change

8



WHERE Eno = NEW.Eno AND Year = CURRENT YEAR AND Cnt >= 2)

BEGIN ATOMIC

UPDATE sal-change SET Cnt = Cnt + 1

WHERE Eno = NEW.Eno AND Year = CURRENT YEAR;

INSERT INTO log VALUES(NEW.Eno, NEW.Sal);

END

Figure 1: Initial screen.

Initially, TBE looks like Figure 1. Descriptions on the panel are only added for explanation purpose.

The main screen consists of two sections { one for input and the other for output. The input section

is where the user creates trigger rules by QBE mechanism and the output section is where the interface

generates trigger rules in the target trigger syntax (default is SQL3). Further, the input section consists

of three panels for event, condition, and action, respectively. The user �rst chooses the target system.

Then, TBE adjusts its behavior according to the selected target system speci�cs. Current implementation

supports only SQL3 triggers.

At its start-up time, TBE �rst loads schema information and keeps table, attribute, and type related

information. These information are used to guide users to write only admissible trigger rules. For

9



instance, when the user tries to insert an empty skeleton table at one of the three panels, TBE shows all

the available table names to aid user's selection (Figure 2). After the user picks the table, an empty table

appears in the currently active panel.

Figure 2: Inserting new skeleton tables.

In our example, the user creates the trigger event . From the query description, the user knows

that the activation time and the granularity of the triggers are \after" and \for each row", respectively.

Furthermore, whole tuple is monitored for the \update" event (Figure 3). All these commands are

provided by TBE and can be chosen from the pop-up menu.

Figure 3: Event construction.

Next, the user constructs the trigger condition { \salary is increased more than twice within the same

year". To do this, the user can use the fact that \when an employee's salary is updated, if the Cnt

attribute of the sal-change of the same person has value greater than or equal to 2 within the same

year, then his update event satis�es the condition". Since emp table needs to be joined with sal-change

table to �nd the candidate employees, the user put variable n in the key attribute (i.e., Eno) of the emp

table. (Figure 4).

Figure 4: A variable inserted at key attribute.

In sal-change table, to specify the same year, CURRENT YEAR is inserted at Year attribute. In

addition, to refer to the Cnt value later, a new variable c is inserted. Finally, the join condition between

emp and sal-change tables is expressed by entering the variable n in the Eno attribute of the sal-change

10



table (i.e., equi-join). After constructing \changed more than twice" phrase using the special condition

box , TBE looks like Figure 5.

Figure 5: Condition construction.

To facilitate the user's job, TBE provides a feature that shows the user all the valid context-sensitive

options available at any particular time for the user to select one. For instance, when the user right-clicks

after positioning the cursor in the Eno attribute, a pop-up menu appears (Figure 6).

Figure 6: Pop-up menu.

Now, the user constructs the trigger action. Two actions are required according to the query de-

scription: 1) system maintains Cnt value in the sal-change, and 2) system logs the information of the

employee whose salary has been changed more than twice within the same year. Since two actions operate

on di�erent tables, the user creates two empty skeleton tables at event panel. Then, using the variable

n de�ned in the emp table, the user increase the Cnt value by one (Figure 7).

Figure 7: Action construction for sal-change table.

Second, the user needs to insert his employee number and his new salary into the log table. The

user enters another variable in the Sal attribute of the emp table to refer to the employee's salary value.

Furthermore, to retrieve a new salary value after update, the user uses the NEW() function explicitly

11



(Figure 8).

Figure 8: Action construction for log table.

Finally, after the user clicks the down-arrow button to generate the SQL3 trigger rule, the correspond-

ing rule in SQL3 triggers syntax is generated at the output section. Figure 9 shows the �nal screen after

rule generation.

4 Design and Implementation Issues

In this section, we discuss some of the interesting aspects of the TBE implementation. A preliminary

version of TBE prototype is being implemented in Java using jdk 1.2.1 and swing 1.1. The main issues

that we encountered in designing and implementing TBE are:

� How to represent TBE internally?

� How to implement the translation algorithm?

4.1 Internal Representation

Each of the three panels in the GUI (event, condition, and action) holds a vector of tables as created by

the user. Before passing the vectors to the translation module, the GUI processes sets (i.e., \[ ]" notation

in QBE), removing bracketed entries and replacing them with constants and simple example elements.

The modi�ed tables are then used to create internal representations of the tables for the translation

module (called TBETables). It contains the column header and a vector of non empty �elds. Other

useful information such as the �elds row and column are stored as well.

The whole session of TBE can be stored on disk using Java's serialization feature to become persistent.

Therefore, current implementation uses the TBETable as an in-memory representation while the serialized

object as an on-disk representation of TBE.

For each clause and various checks in the translation algorithm, a linear iteration through the TBETa-

bles is required. That is, every time a scan that costs O(N � �M), where N is the total number of rows

in all TBETables and �M is the average number of non-empty �elds in the rows. Since the queries (i.e.,

trigger rules) remain relatively small, this is not a serious performance problem. One might minimize

12



Figure 9: Final screen.

the constant factor by performing doing multiple tasks through iterations, but this comes as a cost to

modularity.

4.2 Translation Algorithm

Our algorithm is an extension of the algorithm by [McLeod 76], which describes a translation from the

QBE to SQL. Its input is a list of skeleton tables and the condition boxes while its output is a SQL query

string. Let us denote the McLeod's algorithm as qbe2sql(<input>) and ours as tbe2triggers1.

1qbe2sql algorithm considers only SELECT statement, excluding INSERT, DELETE, UPDATE statements. Due to the

nature of the triggers, TBE heavily uses such data modi�cation statements. In this algorithm, we assume that McLeod's

qbe2sql(<input>) algorithm can handle not only SELECT but also INSERT, DELETE, UPDATE statements. The extension

is trivial. For details, refer to [McLeod 76].

13



4.2.1 The qbe2sql Algorithm

We have implemented basic features of the qbe2sql algorithm in [McLeod 76], except queries having the

GROUP-BY construct. The �rst thing the algorithm determines is the type of query statement. The

basic cases involve operators, such as the SELECT, UPDATE, INSERT, and DELETE. Special cases

use the UNION, EXCEPT, and INTERSECT operators where the statements are processed recursively.

General steps of the translation implemented in TBE are as follows:

1. Duplicate tables are renamed. (e.g., \FROM supply, supply" is converted into \FROM supply S1,

supply S2")

2. SELECT clause (or other type) is printed by searching through TBETables' �elds for projection

(i.e., P. command).

3. FROM clause is printed from TBETable table names.

4. Example variables are extracted from TBETables by searching for tokens starting with " ".

5. Variables with same names indicate table joins; table names and corresponding column names of

the variables are stored.

6. Process conditions; variables are matched with previously extracted variables and replaced with

corresponding table and column names. (e.g., a variable n at column Eno of the table emp is

replaced to emp.Eno). Constants are handled accordingly as well.

4.2.2 The tbe2triggers Algorithm

Let us assume that var is an example variable �lled in some column of the skeleton table. colname( var)

is a function to return the column name given the variable name var. Skeleton tables and condition or

statement boxes are collectively called as entry .

1. Preprocessing: This step does two tasks: 1) reducing TBE query to an equivalent, but simpler form

(i.e., move the condition box entries that can be moved to the skeleton tables), and 2) partitioning

the TBE query into distinct groups when multiple trigger rules are written in the query together.

This can be done easily by comparing variables �lled in the skeleton tables and collect those entries

with the same variables being used into the same group. Then, the following steps 2, 3, and 4 are

applied to each distinct group repeatedly to generate separate trigger rules.

2. Build event clause: Input all the E. pre�xed entries. The \CREATE TRIGGER <rule-name>" clause is

generated by the trigger name <rule-name> �lled in the name box. By checking the constructs (e.g.,

14



AFT., R.), the system can determine the activation time and granularity of the triggers. Event type

can also be detected by constructs (e.g., I., D., U.). If U. event is �lled in the individual columns,

then \AFTER UPDATE OF <column-names>" clause is generated by enumerating all column names

in an arbitrary order. Then,

(a) Convert all variables vari used with I. event into NEW( vari) (if row-level) or NEW TABLE( vari)

(if statement-level) accordingly.

(b) Convert all variables vari used with D. event into OLD( vari) (if row-level) or OLD TABLE( vari)

(if statement-level) accordingly.

(c) If there is a condition box or a column having comparison operators (e.g., <, �) or aggregation

operators (e.g., AVG., SUM.), gather all the related entries and pass them over to step 3.

3. Build condition clause: Input all the C. pre�xed entries as well as the E. pre�xed entries passed

from the previous step.

(a) Convert all built-in functions for transition values and aggregate operators into SQL3 format.

For instance, OLD( var) and SUM. var are converted into OLD.name and SUM(name) respec-

tively, where name = colname( var).

(b) Fill P. command in the table name column (i.e., leftmost one) of all the C. pre�xed entries

unless the entry already contains P. command. This will result in creating \SELECT table1.*,

..., tablen.* FROM table1, ..., tablen" clause.

(c) Gather all entries into <input> list and call qbe2sql(<input>) algorithm. Let the returned

SQL string as<condition-statement>. For row-level triggers, create \WHEN EXISTS (<condition-

statement>)" clause. For statement-level triggers, create \WHEN EXISTS (SELECT * FROM

NEW TABLE (or OLD TABLE) WHERE (<condition-statement>))"

4. Build action clause: Input all the A. pre�xed entries.

(a) Convert all built-in functions for transition values and aggregate operators into SQL3 format

like step 3.(a).

(b) Partition the entries into distinct groups. That is, gather entries with identical variables

being used into the same group. Each group will have one data modi�cation statement such

as INSERT, DELETE, or UPDATE. Preserve the order semantics among partitioned groups

such that 1) an entry appearing prior to another entry has higher order, 2) a group appearing

15



prior to another group has higher order, and 3) a group having higher ordered entry than

another group's entry has higher order.

(c) For each group Gi, call qbe2sql(< Gi >) algorithm according to the order decided in the pre-

vious step. Let the resulting SQL string for Gi as <action-statement>i. Note that statement

box entries are not passed into qbe2sql algorithm since they are procedural. Instead, its con-

tents are literally copied to <action-statement>i. Then, �nal action statements for triggers

would be \BEGIN ATOMIC <action-statement>1; ..., <action-statement>n; END".

5 TBE as a Universal Trigger Rule Formation Tool

At present, TBE supports only SQL3 triggers syntax. Although SQL3 is close to its �nal form, many

database vendors are already shipping their products with their own proprietary triggers syntax. When

multiple databases are used together or one database needs to be migrated to another, these diversities

can introduce signi�cant problems. To remedy this problem, one can use TBE as a universal triggers

construction tool. That is, the user creates trigger rules using TBE interface and saves them as TBE's

internal format. When there is a need to change one database to another, the user can simply reset the

target system (e.g., from Oracle to DB2) to re-generate new trigger rules.

Ideally, we like to be able to add new type of database triggers in a declarative fashion. That is, given

a new triggers system, a user needs only to describe what kind of syntax the triggers use. Then, TBE

should be able to generate the target trigger rules without further user's intervention. Two inputs to

TBE are needed to add new database triggers; trigger syntax rule and trigger composition rule. In trigger

syntax rule, a detail description of the syntactic aspect of the triggers is encoded by the declarative

language. In trigger composition rule, information as to how to compose the trigger rule (i.e., English

sentence) using the trigger syntax rule is speci�ed. When a user chooses the target trigger system in the

interface, corresponding trigger syntax and composition rules are loaded from the meta rule database

into TBE system and since then, the behavior and output of TBE conforms to the speci�cs de�ned in the

meta rules of the selected target trigger system. The high-level overview is illustrated in Figure 10.

5.1 Trigger Syntax Rule

TBE provides a declarative language to describe trigger syntax, whose EBNF2 is shown below:

<Trigger-Syntax-Rule> ::= <event-rule> j <condition-rule> j <action-rule>

<event-rule> ::= 'event' 'has' <event-rule-entry> (',' <event-rule-entry>)* ';'

2
RT. for RETRIEVE, ISTD. for INSTEAD OF, DFT. for DEFERRED, IMM. for IMMEDIATE, and DTC. for DETACHED.

16



TBE System

TBE Input

Trigger Rule

SQL3 Oracle ...

SQL3
syntax
rule

SQL3
comp.
rule

 Oracle
syntax
rule

 Oracle
comp.
rule

Meta Rules

Figure 10: The architecture of TBE as a universal triggers construction tool.

<event-rule-entry> ::= <structure-operation> 'on' ('row' j 'attribute') j

<activation-time> j <granularity> j <evaluation-time>

<structure-operation> ::= ('I.' j 'D.' j 'U.' j 'RT.') 'as' <value>

<activation-time> ::= ('BFR.' j 'AFT.' j 'ISTD.') 'as' <value>

<granularity> ::= ('R.' j 'S.') 'as' <value>

<value> ::= <identi�er> j ' <identi�er> ' j 'null' j 'true'

<condition-rule> ::= 'condition' 'has' <condition-rule-entry> (',' <condition-rule-entry>)* ';'

<condition-rule-entry> ::= <condition-role> j <condition-context>

<condition-role> ::= 'role' 'as' ('mandatory' j 'optional')

<condition-context> ::= 'context' 'as'

'(' ('NEW j 'OLD j 'NEW TABLE j 'OLD TABLE) 'as' <value> ')'

<action-rule> ::= 'action' 'has' <action-rule-entry> (',' <action-rule-entry>)* ';'

<action-rule-entry> ::= <structure-operation> j <evaluation-time>

<evaluation-time> ::= ('DFR.' j 'IMM.' j 'DTC.') 'as' <value>

Although the detail discussion of the language constructs is beyond the scope of this paper, the essence of

the language has the form \command as value", meaning the trigger feature command is supported and

represented by the keyword value. For instance, a clause NEW TABLE as INSERTED for Starburst system

would mean that \Starburst supports statement-level triggering and uses the keyword INSERTED to access

transition values".

Example 8: SQL3 trigger syntax can be described as follows:

event has (

I. as INSERT on row, D. as DELETE on row, U. as UPDATE on attribute,

17



BFR. as BEFORE, AFT. as AFTER,

R. as ROW, S. as STATEMENT

) ;

condition has (

role as optional,

transition as (NEW as NEW, OLD as OLD,

NEW_TABLE as NEW_TABLE, OLD_TABLE as OLD_TABLE)

) ;

action has (

I. as INSERT, D. as DELETE, U. as UPDATE

) ;

The interpretation of this meta rule should be self-describing. For instance, the fact the there is no

clause S. as ... implies that SQL3 triggers do not support event monitoring on selection operation. In

addition, the clause T. as STATEMENT implies that SQL3 triggers support table-level event monitoring

using the keyword 'FOR EACH STATEMENT'. �

The partial comparison of the trigger syntax of SQL3, Starburst, Postgress, Oracle and DB2 system

is shown in Table 1. Using the language constructs de�ned above, these syntax can be easily encoded into

the trigger syntax rule. Note that our language is limited to the triggers based on ECA and relational

data model.

Triggers SQL3 Starburst Postgress Oracle DB2

structure operation

I. INSERT INSERTED INSERT INSERT INSERT
D. DELETE DELETED DELETE DELETE DELETE
U. UPDATE UPDATED UPDATE UPDATE UPDATE

RT. N/A N/A RETRIEVE N/A N/A

activation time

BFR. BEFORE N/A N/A BEFORE BEFORE
AFT. AFTER true true AFTER AFTER
ISTD. N/A N/A INSTEAD N/A N/A

granularity

R. ROW N/A TUPLE ROW ROW
S. STATEMENT true N/A true STATEMENT

role optional optional optional optional optional

transition

NEW NEW N/A NEW NEW NEW
OLD OLD N/A CURRENT OLD OLD

NEW TABLE NEW TABLE INSERTED, NEW-UPDATED N/A N/A NEW TABLE
OLD TABLE OLD TABLE DELETED, OLD-UPDATED N/A N/A OLD TABLE

Table 1: Syntax comparison of �ve triggers using the trigger syntax rule. The leftmost column contains

TBE commands while other columns contain equivalent keywords of the corresponding trigger system.

\N/A" means the feature is not supported and \true" means the feature is supported by default.

18



5.2 Trigger Composition Rule

After the syntax is encoded, TBE still needs the information as to how to compose English sentences for

trigger rules. This logic is speci�ed in the trigger composition rule. In trigger composition rule, macro

variable is surrounded by $ sign and substituted with actual values in rule generation time.

Example 9: The following is a SQL3 trigger composition rule:

CREATE TRIGGER $trigger-name$

$activation-time$ $structure-operation$ ON $table$

FOR EACH $granularity$

WHEN $condition-statement$

BEGIN ATOMIC

$action-statement$

END

In rule generation time, for instance, variable $activation-time$ is replaced with value either BEFORE or

AFTER since those two are only valid values according to the trigger syntax rule in Example 8. In addition,

variables $condition-statement$ and $action-statement$ are replaced with statements generated by the

translation algorithm in Section 4.2. �

5.3 Backward Translation: Triggers To TBE

Another kind of extension that we have in mind is a backward translation from triggers to TBE. That

is, TBE can import an existing trigger rule conforming to one particular trigger syntax into its internal

format. The tasks involved contain 1) writing parser for each trigger syntax, and 2) writing converter that

maps the parsed structure in parse tree to the internal structure of TBE. We are currently investigating a

way to (semi) automate these two tasks.

This feature can be especially useful in dealing with legacy trigger system. For instance, a company

has invested into Oracle system, writing all trigger rules using Oracle's trigger syntax. Now, when the

company decides to change to DB2 database, human expert should re-write all existing trigger rules

in DB2's trigger syntax again. This is not only time-consuming but also error-prone. To avoid such

di�culty, one can load trigger rules for Oracle into TBE using the backward translation feature and then

re-generate DB2 trigger rules using the forward translation feature.

6 Related Works

Past active database research has focused on active database rule language (e.g., [AG 89]), rule execu-

tion semantics (e.g., [CPM 96]), or rule management and system architecture issues (e.g., [SK 95]). In

19



addition, research on visual querying has been done in traditional database research (e.g., [Embley 89,

Zloof 77]). To a greater or lesser extent, all these research focused on devising novel visual querying

schemes to replace data retrieval aspects of the SQL language. Although some has considered data def-

inition aspects [CB 92] or manipulation aspects, none has extensively considered the trigger aspects of

the SQL, especially from the user interface point of view.

Other works (e.g., IFO2 [TPC 94], IDEA [CFPT 96]) have attempted to build graphical triggers

description tools, too. Using IFO2, one can describe how di�erent objects interact through events, thus

giving priority to an overview of the system. Argonaut from the IDEA project [CFPT 96] focused on

the automatic generation of active rules that correct integrity violation based on declarative integrity

constraint speci�cation and active rules that incrementally maintain materialized views based on view

de�nition. TBE, on the other hand, tries to help users to directly design active rules with minimal learning.

Other than QBE skeleton tables, forms have been popular building blocks for visual querying mecha-

nism as well. For instance, [Embley 89] proposes the NFQL as a communication language between human

and database system. It uses forms in a strictly nonprocedural manner to represent query. Other works

using forms are mostly for querying aspect of the visual interface [CB 92].

To the best of our knowledge, the only work that is directly comparable to ours is RBE [CC 97].

Although RBE also uses the idea of QBE as an interface for creating trigger rules, there are the following

signi�cant di�erences:

� Since TBE is carefully designed with SQL3 triggers in mind, it is capable of creating all the complex

SQL3 trigger rules. Since RBE's capability is limited to OPS5-style production rules, it cannot

express the subtle di�erence of the trigger activation time nor granularity.

� Since RBE focuses on building an active database system in which RBE is only a small part, no

evident suggestion of QBE as a user interface to trigger construction is given. On the contrary, TBE

is speci�cally aimed for that purpose.

� The implementation of RBE is tightly coupled with the underlying rule system and database so

that it cannot easily support multiple heterogeneous database triggers. Since TBE implementation

is a thin layer utilizing a translation from a visual representation to the underlying triggers, it is

loosely coupled with the database.

7 Conclusion

In this paper, we presented the design and implementation of TBE, a visual trigger rule speci�cation

interface. QBE was extended to handle features speci�c to ECA trigger rules. That is, TBE borrows

20



the visual querying mechanism from the QBE and applies it to triggers construction application in a

seamless fashion. Examples for SQL3 based trigger rule generation procedure as well as TBE to SQL3

trigger translation algorithm were shown. Extension to make TBE a universal trigger rule interface was

also discussed. For a trigger system s, we could declaratively specify the syntax mapping between TBE

and s, so that we can use TBE as not only a trigger rule formation tool, but also a universal intermediary

for translations between any supported systems.

References

[AG 89] R. Agrawal, N. Gehani, \Ode (Object Database and Environment): The Language and

the Data Model", Proc. SIGMOD , Portland, Oregon, 1989.

[Codd 72] E. F. Codd, \Relational Completeness of Data Base Languages", Data Base Systems,

Courant Computer Symposia Series, Prentice-Hall, 6:65-98, 1972.

[CB 92] C. Collet, E. Brunel, \De�nition and Manipulation of Forms with FO2", Proc. IFIP Visual

Database Systems, 1992.

[CC 97] Y.-I. Chang, F.-L. Chen, \RBE: A Rule-by-example Action Database System", Software

{ Practice and Experience, 27(4):365-394, 1997.

[CFPT 96] S. Ceri, P. Fraternali, S. Paraboschi, L. Tanca, \Active Rule Management in Chimera",

In J. Widom and S. Ceri (ed.), Active Database Systems: Triggers and Rules for Active

Database Processing , Morgan Kaufmann, 1996.

[CPM 96] R. Cochrane, H. Pirahesh, N. Mattos, \Integrating Triggers and Declarative Constraints

in SQL Database Systems", Proc. VLDB , 1996.

[Embley 89] D. W. Embley, \NFQL: The Natural Forms Query Language", ACM TODS , 14(2):168-

211, 1989.

[EG 98] S. M. Embury, P. M. D. Gray, \Database Internal Applications", In N. W. Paton (ed.),

Active Rules In Database Systems, Springer-Verlag, 1998.

[GD 98] S. Gatziu, K. R. Dittrich, \SAMOS", In N. W. Paton (ed.), Active Rules In Database

Systems, Springer-Verlag, 1998.

[LMC 99] D. Lee, W. Mao, W. W. Chu, \TBE: Trigger-By-Example", UCLA-CS-TR-990029, 1999.

(http://www.cs.ucla.edu/~dongwon/paper/)

[McLeod 76] D. McLeod, \The Translation and Compatibility of SEQUEL and Query by Example",

Proc. Int'l Conf. Software Engineering , San Francisco, CA, 1976.

[Melton 99] J. Melton (ed.), \(ANSI/ISO Working Draft) Foundation

(SQL/Foundation)", ANSI X3H2-99-079/WG3:YGJ-011 , March, 1999.

(ftp://jerry.ece.umassd.edu/isowg3/dbl/BASEdocs/public/sql-foundation-wd-1999-

03.pdf)

21



[Paton 98] N. W. Paton (ed.), \Active Rules in Database Systems", Springer-Verlag , 1998.

[SK 95] E. Simon, A. Kotz-Dittrich, \Promises and Realities of Active Database Systems", Proc.

VLDB 1995.

[TPC 94] M. Teisseire, P. Poncelet, R. Cichetti, \Towards Event-Driven Modelling for Database

Design", Proc. VLDB , 1994.

[Zloof 77] M. M. Zloof, \Query-by-Example: a data base language", IBM System J., 16(4):342-343,

1977.

[ZCFSSZ 97] C. Zaniolo, S. Ceri, C. Faloutsos, R. R. Snodgrass, V.S. Subrahmanian, R. Zicari, \Ad-

vanced Database Systems", Morgan Kaufmann, 1997.

22


