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1 Introduction

XML is rapidly becoming one of the most widely adopted technologies for information exchange and repre-
sentation on the World-Wide Web. With XML emerging as the data format of the Internet era, there is a
substantial increase in the amount of data encoded in XML. However, the majority of everyday data is still
stored and maintained in relational databases. Therefore, we expect the needs to convert such relational
data into XML documents to grow substantially as well. In this paper, we study the problems in this con-
version. Especially, we are interested in finding XML schema (e.g., DTD, XML-Schema, RELAX) that best
describes the existing relational schema. Having the XML schema that precisely describes the semantics and
structures of the original relational data is important to further maintain the converted XML documents in
future. We first present a straightforward relational to XML translation algorithm, called Flat Translation
(FT). Since FT maps the flat relational model to the flat XML model in a one-to-one manner, it does not
utilize the regular expression of element content models at all. Then, we present our ongoing work, called
Nesting-based Translation (NeT), to remedy the problems found in FT. NeT derives nested structures from a
flat relational model by the use of the nest operator so that the resulting DTD is more intuitive and precise
than otherwise.

Related Work: From XML to relational schema, several conversion algorithms have been proposed recently
(e.g., [7, 5]). In this paper, on the contrary, we mainly concern conversion issues in the reverse direction (e.g.,
DB2XML, Oracle8i iFS). In DB2XML [8], an algorithm similar to our FT (thus shares similar problems) is
introduced. In experimentation, we show NeT can generate a more precise DTD than DB2XML. In addition,
there have been other DTD inference algorithms that take as “input” a set of XML documents [3] or a view
description [6]. Unlike them, our approach takes a relational schema as input.

1.1 Input & Output Models

We first briefly define the input and output models for the translation. In relational databases, schema is
typically created by SQL DDL (e.g., CREATE) statements. Therefore, by examining such DDL statements,
one can find out the original schema information. Even if such DDL statements are not available, one can
still infer the schema information by examining database tables — table and column names, key and foreign
key information, etc. In this paper, regardless of how one acquired the schema information, we assume that
the schema information is encoded in a vector R defined below. R R

First, we assume that the existence of a set T' of table names, a set C' of column names and a set b of
atomic base types (e.g., integer, char, string). When the name collision occurs, a column name ¢ € C is
qualified by a table name ¢ € T using the “.” notation (e.g., t.c).

Definition 1 (Relational Schema) A relational schema R is denoted by 4-tuple R = (T, C, P, A), where:
(1) T is a finite set of table names in T, (2) C is a function from a table name ¢t € T to a set of column
names ¢ € C, (3) P is a function from a column name ¢ to its column type definition: i.e., P(c) = a, where

a is a 5-tuple (7,u,n,d, f), where 7 € E, u is either “unique” or “not_unique”, n is either “nullable” or
“not_nullable”, d is a finite set of valid domain values of ¢ or € if not known, and f is a default value of ¢
or € if not known, and (4) A is a finite set of integrity constraints. For practical reasons, A includes only



the constraints that can be retrieved from relational databases via ODBC/JDBC connection such as key

constraint ({¢;} hey t) and referential constraint (¢; C ¢2). O

Example 1. Consider two tables student(Sname, Gender, Advisor, Course) and professor (Pname,
Age) where keys are underlined, and Advisor is a foreign key referencing Pname column. The column Age
is integer type while the rest of the columns are string types. The column Gender can only be {M,F}. The
column Age can be null. When student’s advisor has not yet been decided, professor “J. Smith” will be the
initial advisor. Student can have many advisors and take zero or more courses. Then, the relational schema
can be denoted as Ry = (T,C, P, A), where

T = {student,professor}
C(student) = {Sname,Gender, Advisor,Course} C(professor) = {Pname, Age}
P(Gender) = (string,not_unique, nullable, {M, F},¢c) P(Sname) = (string, unique, not_nullable, ¢, €)
P(Advisor) = (string,not_unique,not_nullable,e, “J.Smith") P(Course) = (string, not_unique, nullable, ¢, )
P(Pname) = (string,unique,not_nullable, e, €) P(Age) = (integer, not_unique, nullable, €, €)
A = {{Sname, Advisor,Course} hey student, Pname hey professor, Advisor C Pname}

Next, let us define the output model. Among a dozen XML schema languages recently proposed (e.g.,
DTD, XML-Schema, RELAX, XDR), in this paper, we focus on DTD due to its simplicity and popularity.
Startlng from the notations in [1], we define the DTD schema below. We assume that the existence of a set
E of element names, a set A of attribute names and a set S of string values. When needed, an attribute
name a € Ais qualified by the element names using the path erpression notation (e.g., ej.es - - - ep.a, where
e € B,1<i< n). 7 denotes a data type for an attribute in DTD: 7 := S | ID | IDREF | IDREFS,
where S denotes a string type.

Definition 2 (DTD Schema) A DTD schema D is denoted by 6-tuple D = (E, A, M, P,r,X), where: (1)
E is a finite set of element names in E, (2) A is a function from an element name e € E to a set of attribute
names a € A, (3) M is a function from an element name e € E to its element type definition: i.e., M(e) = a,
where « is a regular expression: @ := S | e | e|a+a|a,a|a’|a* | at, where S € S, ¢ € E, €
denotes the empty element, “+” for the union, “,” for the concatenation, “a’” for zero or one occurrence,
“a*” for the Kleene closure, and “at” for “a,a*”, (4) P is a function from an attribute name a to its
attribute type definition: i.e., P(a) = 8, where § is a 4-tuple (¢, n,d, f), where ¢ € 7, n is either “nullable”
or “not_nullable”, d is a finite set of valid domain values of a or € if not known, and f is a default value of a
or € if not known, and (5) r is a finite set of root element name e € E; ¥ is a finite set of integrity constraints
that include only key and referential constraints. O

Example 2. An element book with attributes <!ATTLIST book ISBN ID #REQUIRED Title CDATA ‘Untitled’
Authors IDREFS #IMPLIED> can be encoded as Dy = (E, A, M, P,r,Y), where

E = {book} A(book) = {ISBN,Title, Authors}
M(book) = € P(ISBN) = (ID,not_nullable, e, ¢)
P(Title) = (S,nullable,¢, “Untitled”) P(Authors) = (IDREFS, nullable,e,¢)

r = {book} Y = {ISBN"¥ book}
2 Translation from R to D

XML model uses two basic building blocks to construct XML documents — attribute and element. A few
basic limitations inherited from XML model include: (1) attribute does not have order semantics while
element has, (2) both support a string type, and (3) element can express multiple occurrence better than
attribute. The detailed capabilities of those, however, vary depending on the chosen XML schema language.
In translating R to I, therefore, one can either use attribute or element in D to represent the same entity
in R (e.g, a column with string type in R can be translated to either attribute with CDATA type or element
with PCDATA type in D).

To increase the flexibility of the algorithms, we assume that there are two modes — “attribute-oriented”
and “element-oriented”. Depending on the mode, an algorithm can selectively translate an entity in R to
either attribute or element if both can capture the entity correctly. However, if the chosen XML schema
language requires attribute or element for an entity (e.g., a key column in R needs to be translated to an



attribute with ID type in D), we assume that algorithm follows the limitations. In addition, in this paper, we
focus on the separate conversion of the “single” table. Current naive algorithm to support the conversion of
“multiple” inter-connected tables has the following two simple heuristics: (1) convert each table separately
and glue them with concatenation operator (i.e., “,”) in the element definition, and (2) foreign key constraint
is handled by including the referencing element into the element type definition of the referenced element.

More sophisticated algorithms are currently under development.

2.1 Flat Translation

The simplest translation method is to translate (1) tables in R to elements in D and (2) columns in R to
attributes (in attribute-oriented mode) or elements (in element-oriented mode) in D. These two modes are
analogous except that element-oriented mode adds unnecessary order semantics to the resulting schema; note
that relational model has orderless set semantics. Since D represents the “flat” relational tuples faithfully, this
method is called Flat Translation (FT). The general procedure of the Flat Translation is straightforward
and omitted due to space constraints.

FT is a simple and effective translation algorithm, but it has some problems. As the name implies, FT
translates the “flat” relational model to “flat” XML model in one-to-one manner. Thus, for every tuple in
R, one corresponding element must be generated. Therefore, the “non-flat” features in XML model through
regular expressions (e.g., “*”, “+7) are not being utilized at all. Consider the case of paper where it can have a
single title, but multiple authors and keywords. In relational model, this can be modeled as paper(title,
author, keyword). Suppose this is translated to (1) <!ELEMENT paper (title, author, keyword)> and
(2) <!ELEMENT paper (title, author+, keyword+)>. In general, from the users’ perspective, the second
DTD is easier to understand than the first DTD, since it represents the real world more accurately: the
first DTD implies that paper can have only one author and keyword. The main reason of this discrepancy
between the users’ perception and the representation is that in relational model, concepts need to be flattened
out to fit into the model. Therefore, since XML model allows hierarchical nesting, it would be desirable to
unflatten concepts to make such structures if preferred so.

2.2 Nesting-based Translation

To remedy the problems of FT, one needs to utilize various element content models of XML. Towards this
goal, we propose to use the nest operator [4]. Our idea is to find a best element content model that uses
the a* or a™ using the nest operator. First, let us define the nest operator. Informally, for a table ¢t with
a set of columns C, nesting on a non-empty column X € C collects all tuples that agree on the remaining
columns C' — X into a set!. Formally,

Definition 3 (Nest) [4]. Let ¢ be a n-ary table with column set C. Let further X € C and X = C — X.
For each (n — 1)-tuple y € II(t), we define an n-tuple v* as follows:

] = v B }
] {k[X] |k €t AK[X] =7}

After nestx (t), if the column X has only a set with “single” value {v}, then we say that nesting failed and
treat {v} and v interchangeably (i.e., {v} = v). Thus when nesting failed, the following is true: nestx (t) = t.
Otherwise, if the column X has a set with “multiple” values {v1,...,vx} with k& > 2, we say that nesting
succeeded.

Example 3. Consider a table R in Table 1. In computing nest4(R) at (b), the first, third, and fourth
tuples of R agree on their values in columns (B, C) as (a, 10), while their values of the column A are all
different. Therefore, these different values are grouped (i.e., nested) into a set {1,2,3}. The result is the first
tuple of the table nest4(R) — ({1,2,3}, a, 10). Similarly, since the sixth and seventh tuples of R agree on
their values as (b, 20), they are grouped to a set {4,5}. In computing nestg(R) at (c), there are no tuples
in R that agree on the values of the columns (A, C). Therefore, nestg(R) = R. In computing nestc(R) at
(d), since the first two tuples of R — (1, a, 10) and (1, a, 20) — agree on the values of the columns (4, B),
they are grouped to (1, a, {10,20}). Nested tables (e) through (j) are constructed similarly.

7

v then,  mnestx(t) = {7" |y € lx(f)}

P

O

1Here, we only consider single attribute nesting.



A B C A B C
1 a 10 1 a 10 A B C+
1 a 20 At B © 1 a 20 1 a {10,20} A B C
5 o 10 {123} a 10 5 o 10 o o {123} a 10
3 a 10 411 ﬁ fg 3 a 10 3 a 10 411 la) fg
4 b 10 4 b 10 4 b {10,20}
4 b 20 {45} b 20 4 b 20 5 b 20 {45} b 20
5 b 20 5 b 20
nestg(nesta(R
(a) R (b) nesta(R) (c) nestn(R) = R (d) nestc(R) (@) :ne;;é(nesft‘i(}g))
AT B COf s B {15):;0} AT B C AT B COf
1 a  {10,20} 5 o {123} a 10 1 a  {10,20}
{23} a 10 1 a 20 {23} a 10
4 b {1020} Z 2 {10120} 4 b 10 4 b {1020}
5 b 20 s b o0 {45} b 20 5 b 20
(f) nest 4 (nestc (R)) (g) nestn(nesta(R))  (h) nestc(nestg(nesta(R))) @) nestp(nesta(nestc(R)))

= nestg(nestc(nesta(R))) = nest s (nestg(nestc(R)))
Table 1: A relational table R and its various nested forms. Column names containing a set after nesting
(i.e., nesting succeeded) are appended by “+” symbol.

Our idea of using the nest operator is as follows: If nesting on column X succeeded, then the column X
can be unflattened to contain multiple occurrences of values so that it can capture a more realistic model.
That is, we use the element content model of either * (if X is nullable) or + (if X is not nullable) if the
nesting on the column X succeeded. For instance, consider the nested tables in Table 1. Assuming columns
A, B, C are not nullable, if the nesting succeeded, the corresponding column names are appended by “+”
symbol.

Since the nest operator requires scanning of the entire tuples in a given table, it can be quite expensive.
In addition, as shown in Example 3, there are various ways to nest the given table. Therefore, it is important
to find the best element content model with the least number of nesting.

Lemma 1. Applying the nest operator on a non-prime column? X yields no changes. [

PRroOOF. Consider a table ¢ with columns C. If the column X is not part of key columns Z, then the
remaining columns X must contain Z (i.e., X D Z). Since the values of Z are unique by the definition of
the “key”, the values of Z’s superset, X, must be also unique (i.e., Z is a candidate key while X is a super
key). Thus, no tuples can agree on the values of X. By the definition of the nest operator, therefore, nesting
on X would yield the same table as before. (qe.d)

COROLLARY. For any nested table nestx(t), X — X holds. (q.e.d)

The Corollary states that after applying the nesting operation of column X, the remaining columns X
becomes a super key. Fischer et al. [2] have proved that functional dependencies are preserved against nesting
as follows:

Lemma 2. [2] If X, Y, Z are columns of t, then: t : X - Y => nestz(t) : X =Y n

Now, using Lemmas 1 and 2, we arrive at the following useful property:

Lemma 3. Using the falling factorial power notation “x to the m falling” as =™, for a table t with n
columns where m (m < n) columns constitute the key, the maximum number T of the necessary nesting is:

T =3, mt "

PROOF. Let us denote the n columns as C' and m key columns as K (i.e., K C C). By the definition
of the key, t : K — K. By Lemma 1, we first only need to nest along m columns in K, excluding the
remaining n — m columns. Suppose we pick the column X € K as the first one to nest. After nesting,

2A prime column is a column which participates in at least one key.



by Corollary and Lemma 2, we have nestx(t):{K — K, X — X}. In choosing a second column to nest
against the nestx(t), we need to select a key column Y that belongs to the left hand side of both of
the above constraints. That is, Y € KNX = K — X. Since K has m columns, K — X has m — 1
columns. Therefore, in choosing a second column, we have m — 1 columns to nest. Continuing this, we have:
m+mm—1)+--+mm-1)...(2)(1) = Y, mk (q.e.d)

Example 4. Consider a table R in Table 1 again. Now, suppose attributes A and C constitute a key
for R. Since nesting on the same column repeatedly is not useful [4], there is no need to construct, for
instance, nesta(nest4(R)). Since nesting on a non-key column is not useful by Lemma 1, nesting along the

column B (e.g., nestg(R) at (c)) can be avoided. Furthermore, the functional dependency (i.e., AC "“YR
= AC — AC = AC — B) persists after nesting on either the column A or C' by Lemma 2. Hence, by
Lemma 1 again, nesting on the column B is still not useful and can be avoided (e.g., nestg(nest4(R)) at (e),
nestg(nestc(R)) at (g), nestg(nestc(nesta(R))) at (h), nestg(nesta(nestc(R))) at (i)). Consequently,
one needs to construct only the following nested tables: nest4(R) at (b), nestc(R) at (d), nestc(nest4(R))
at (e), nest4(nestc(R)) at (f).

As we have shown, when the key information is available, the cost for nest operator can be minimized.
However, when such information is not known or when the given tables are intermediate ones generated by
queries, nest operation must be applied for all possible combinations. After applying the nest operator to
the given table repeatedly, there can be still several nested tables where the nesting succeeded. In general,
the choice of the final schema should take into consideration of the semantics and usages of the underlying
data or application. In this paper, for the sake of simplicity, we choose as the final schema the nested table
where the most number of nesting succeeded. The general procedure of the Nesting-based Translation
(NeT) is as follows:

1. Each table t; in R is translated to an element e; in D: E = |J,{e:}.

2. For each table t; in R, let us denote the final nested table as t;(c1, ..., Ck—1, Ck, ---, Cn), Where nesting
succeeded on the columns {c¢y,...,¢;_1}. If K =1 (i.e., no nesting succeeded), follow the flat translation.
Otherwise, do the following:

(a) For each column ¢; (1 < i < k—1), if ¢; was defined as “nullable” in P of R, then the content
model is M (e;) = (¢}, ...), otherwise M (e;) = (¢}, ...)
(b) For each column ¢; (k < j <n),
o (element-oriented mode) if ¢; was defined as “nullable” in P of R, the content model is
M(e;) = (...,c;’-), otherwise M (e;) = (..., ¢;).
e (attribute-oriented mode) if c; is translated to a;, then A(e;) = Uy,;{a;} and if ¢; was defined
as “nullable” in P of R, P(a;) = (S, nullable, d, f), otherwise P(a;) = (S, not_nullable, d,
f)

3. All elements e; in ID become roots: r = [Jy,;{e;}; Copy A in R into ¥ in D.

3 Experimental Results

In this section, we compare the preliminary results of FT and NeT with that of DB2XML v 1.3 [8]. Consider,
for instance, the Orders table (containing 830 tuples) found in MS Access NorthWind sample database.

Orders (CustomerID, EmployeelID, ShipVia, ShipAddress, ShipCity, ShipCountry, ShipPostalCode)

Table 2 shows the DTDs generated by DB2XML, FT in attribute-oriented mode, NeT in both element-
oriented mode and attribute-oriented mode, respectively.

In (a), DB2XML always uses element to represent columns of a table. To represent whether the column is
nullable or not, DB2XML adds a special attribute ISNULL to every element: i.e., “ISNULL = true” means the
column is nullable. In (b), FT in attribute-oriented mode uses #IMPLIED to represent whether the column is
nullable or not. Observe that both DB2XML and FT share the same problem of translating “flat” relational



<!ELEMENT Orders (CustomerID,EmployeeID,ShipVia,ShipAddress,

ShipCity,ShipCountry,ShipPostalCode)>
<!ELEMENT CustomerID (#PCDATA) > <!ELEMENT Orders (EMPTY)>
<!ATTLIST CustomerID ISNULL (true|false) #IMPLIED> <!ATTLIST Orders
<!ELEMENT EmployeeID (#PCDATA) > CustomerID CDATA #IMPLIED
<!'ATTLIST EmployeeID ISNULL (true|false) #IMPLIED> EmployeeID CDATA #IMPLIED
<!ELEMENT ShipVia (#PCDATA) > ShipVia CDATA #IMPLIED
<!ATTLIST ShipVia ISNULL (true|false) #IMPLIED> ShipAddress CDATA #IMPLIED
ShipCity CDATA #IMPLIED
<!ELEMENT ShipCountry (#PCDATA) > ShipCountry CDATA #IMPLIED
<!'ATTLIST ShipCountry ISNULL (truelfalse) #IMPLIED> ShipPostalCode CDATA #IMPLIED>
<!ELEMENT ShipPostalCode (#PCDATA)>
<!ATTLIST ShipPostalCode ISNULL (true|false) #IMPLIED>

(a) DB2XML (b) FT in attribute-oriented mode
<!ELEMENT Orders (CustomerlID,EmployeeID+,ShipVia*,ShipAddress?, <!ELEMENT Orders (EmployeeID+,ShipVia*)>
ShipCity?,ShipCountry?,ShipPostalCode?)> <!ATTLIST Orders
<!ELEMENT CustomerID (#PCDATA)> CustomerID CDATA #REQUIRED
<!ELEMENT EmployeeID (#PCDATA) > ShipAddress CDATA #IMPLIED
<!ELEMENT ShipVia (#PCDATA) > ShipCity CDATA #IMPLIED
<!ELEMENT ShipAddress (#PCDATA) > ShipCountry CDATA #IMPLIED
<!ELEMENT ShipCity (#PCDATA) > ShipPostalCode CDATA #IMPLIED>
<!ELEMENT ShipCountry (#PCDATA)> <!ELEMENT EmployeeID (#PCDATA)>
<!ELEMENT ShipPostalCode (#PCDATA)> <!ELEMENT ShipVia (#PCDATA) >
(c) NeT in element-oriented mode (d) NeT in attribute-oriented mode

Table 2: DTDs generated by different algorithms.

schema to “flat” XML schema. In both (c¢) and (d), NeT finds two columns EmployeeID amd ShipVia can
be nested. Intuitively, the new schema infers that for each CustomerID, multiple non-zero EmployeeID and
multiple ShipVia can exist. Also NeT finds that CustomerID is mandatory column. To ensure this property,
(c) adds no suffix such as ? or * to CustomerID sub-element and (d) uses #REQUIRED construct explicitly.
Not only DTDs found by NeT are more succinct than one by DB2XML, but we also found that they are
more accurate and intuitive.

4 Conclusion

We have presented two relational-to-XML conversion algorithms. Especially, NeT algorithm is capable of
generating a more precise and intuitive XML schema from relational inputs using the nest operator developed
in nested relational model. We show a proof of concept by comparing (and showing the superiority of) the
results of our implementation and that of DB2XML tool. Extension of the current work for schema with
multiple (inter-connected) tables is on-going.
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