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Abstract

A semantic caching scheme suitable for web database envi-
ronments is proposed. In our scheme, tasks for query trans-
lation/capability mapping (named as query naturalization)
between wrappers and web sources and tasks for semantic
caching are seamlessly integrated, resulting in easier query
optimization. A semantic cache consists of three compo-
nents: 1) semantic view , a description of the contents in
the cache using sub-expressions of the previous queries, 2)
semantic index , an index for the tuple IDs that satisfy the
semantic view, and 3) physical storage, a storage contain-
ing the tuples (or objects) that are shared by all semantic
views in the cache. Types of matching between the native
query and cache query are discussed. Algorithms for �nding
the optimal match of the input query in semantic cache and
for cache replacement are presented. The proposed tech-
niques are being implemented in a cooperative web database
(CoWeb) prototype at UCLA.

1 Introduction

Two techniques for implementing web database systems (here-
afterWebDB) are the warehousing and the virtual approaches
[8]. In the warehousing approach, data frommultiple sources
are prefetched into a local repository and queries are ap-
plied to the repository, making query response fast and reli-
able with the risk of obsolete data. In the virtual approach,
queries are posed to a uniform interface, which decomposes
and applies queries to multiple sources at run time. Query-
ing can be costly due to run-time costs or can not be an-
swered if the server is unavailable. However, this approach
always provides up-to-date data.

Given the vast amount of web sources and their au-
tonomous nature, an e�ective way to reduce costs in us-
ing the virtual approach is to cache the results of the prior
queries and reuse them. When a series of semantically as-
sociated queries are asked, the results may likely overlap or
contain one another. Caching can be e�ective in improving
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the performance for such cases, which often occur in appli-
cations like the cooperative database system [4], associative
query answering system [5], and geographical information
system.

Although caching techniques in distributed systems have
been extensively investigated in literature (e.g., [1, 7]), they
are not directly applicable to WebDB because of the WebDB
constraints. For instance, due to the autonomous nature of
the web source, server-side caching is not feasible. Also,
since a unique key for a tuple (or object) is not always pro-
vided, pointer caching or page caching is not applicable.

In this paper, we shall propose a novel caching scheme
suitable for the virtual approach. Our scheme sends data to
the client (wrapper) side and stores them locally. The cache
uses the sub-expressions of the previous queries as semantic
keys and avoids unnecessary accesses to the web sources at
run time if possible1.

2 Background

CoWeb (Cooperative Web Database) is a WebDB being de-
veloped at UCLA. The architecture consists of the mediator
and wrapper components shown in Figure 1. The focus of
the system is to use knowledge for providing cooperative
capabilities such as conceptual and approximate web query
answering, semantic caching, and web triggering with fuzzy
threshold conditions.

Mediator Mediator

Wrapper

Source Source Source

User Interface

Query Answer

Semantic Cache

World-Wide Web

Wrapper Wrapper

Figure 1: CoWeb Architecture.

The sources are web-based Information Retrieval (IR)
systems that use form-based templates with vector space

model . The majority of the web sources (called hidden web

in [8]) are accessible through such templates, which typically

1Issues regarding memory/disk-based caching and consistency
maintainence are not covered in this paper.
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have the form of \�eld operator value", where the operator
is either equality or approximation. Note that some of the
range or set operators can be transformed into equality or
approximation operators. For instance, (year < 1998) can
be interpreted as (year less than = 1998). The predicate
with equality or approximation operators is denoted as a
point predicate. Then, the wrapper in CoWeb submits only
queries consisting of the conjunctions of point predicates to
the web source.

CoWeb uses the Global As View approach [8] which spec-
i�es mediator schema in accordance with the web source
schema. The input query is expressed in the SQL language
based on the mediator schema. The mediator decomposes
the input SQL into sub-queries for the wrappers by convert-
ing the WHERE clause into the disjunctive normal form
(DNF, the logical OR of the logical AND clauses) and dis-
joining conjunctive clauses. Using the SQL syntax, point
predicates in the conjunctive clauses use only f=, LIKEg op-
erators. Each conjunctive clause is executed by the wrapper
as a separate thread and their results are merged together
at the end. For a detailed discussion, refer to [12].

3 Query Naturalization

Web sources use di�erent terminologies and also have di�er-
ent query processing capabilities due to security or perfor-
mance concerns, etc. [8]. Therefore, the wrapper needs to
preprocess the input query before submitting it to the web
source.

Translation : to provide one-to-one mapping between the
wrapper and web source, the wrapper needs to schemat-
ically translate the input query. We assume that such
mechanisms are available (e.g., [10]).

Augmentation & Filtration : when there is no one-to-one
mapping, the wrapper can augment the input query
to return more results than requested and �lter out
the extra data. For instance, if we use the relation
Child(group,name,gender,age), then a predicate (name

= 'sylvie') can be augmented to the (name LIKE 'sylvie')

with the additional �lter (name = 'sylvie').

Simulation : when there is no one-to-one mapping, the
wrapper can simulate the input query with multiple
queries and then merge the results. For instance, a
range predicate (1 < x < 4) can be simulated by a
disjunctive predicate (x = 2 _ x = 3) provided that x
is an integer type. In CoWeb, all incoming range and
negation queries are converted into point and positive

queries.

The original query from the mediator is called an Input

Query (IQ). The generated query after preprocessing the
input query is called a Native Query (NQ). Such a prepro-
cessing task is called Query Naturalization. The query used
to �lter out the irrelevant data from the native query results
is called a Filter Query (FQ) [3]. While IQ can have range
and negative predicates since it is not a naturalized query,
NQ can have only point and positive predicates since it is a
naturalized query.

4 Semantic Caching

The semantic cache in CoWeb has mainly three components:
1) semantic view , a description of the contents in the cache
using sub-expressions of the previous queries, 2) semantic

index , an index for the tuple IDs that satisfy the semantic
view, and 3) physical storage, a storage containing the tu-
ples (or objects) that are shared by all semantic views in
the cache. The semantic view in the cache is also called
Cache Query (CQ) as opposed to IQ, NQ and FQ. Given
a database D and query Q, applying query Q on the relation
D is denoted as Q(D) and the relation obtained by evalu-
ating the query Q on D is denoted as hQ(D)i, or hQi for
short. Accordingly, an entry in the cache shall be denoted
as (V, hV i), where V is a semantic view and hV i is a physical
storage containing tuples satisfying the V .

4.1 Query types for caching: input query vs. native query

There are two choices for caching the data: IQ (input query)
vs. NQ (native query). The main di�erence is that the
former contains range and negative operators, whereas the
latter contains only point and positive operators and yields
smaller granualities. If the IQ is augmented with anNQ and
FQ pair during query naturalization, then hNQi � hIQi
since hIQi � hNQi ^ hFQi. Thus if the cache stores only
the (IQ, hIQi) pair, it loses augmented data contained in
hNQi ^ :hIQi. Since query augmentation and �ltration oc-
curs frequently, it is preferable to retain the entire set by
using (NQ, hNQi) rather than to retain parts of the set
by choosing (IQ, hIQi). If an NQ has a disjunction of
conjunctive clauses, then each conjunctive clause should be
decomposed and stored separately. For instance, after IQ:
name = 'sylvie' ^ age IN (11, 23, 35) is naturalized to NQ:
(name LIKE 'sylvie' ^ age = 11) _ (name LIKE 'sylvie' ^
age = 23) _ (name LIKE 'sylvie' ^ age = 35), the following
three entries, instead of the original IQ or generated NQ,
are decomposed from the NQ and added to the cache: 1)
name LIKE 'sylvie' ^ age = 11 , 2) name LIKE 'sylvie' ^
age = 23 , and 3) name LIKE 'sylvie' ^ age = 35 .

4.2 Matching native query with cache query

To obtain answers from the cache, we need to �nd semantic
views which are \exactly" the same as or a \superset" of
the given query. Although semantic views are described by
conjunctive point predicates for a single relation, because of
the missing attributes in a query, query containment (sub-

sumption) problems arise. For example, a predicate (x = 1

^ y = 2) is contained in (x = 1) since the attribute y is
missing in the latter predicate.

To simplify query matching, we normalize all queries to
have the same dimension and order as the attributes in the
relation. All predicates in the NQ (native query) and CQ

(cache query) are: 1) sorted in some pre-determined order
and 2) padded with a special don't care predicate,

N
, for

the missing attributes. For instance, based on the attribute
order in the Child relation, a predicate (name LIKE 'sylvie'

^ gender = 'girl') is translated to (
N

^ name LIKE 'sylvie'

^ gender = 'girl' ^
N

) in the query matching algorithm.

De�nition: Given two queries, Q1 and Q2, if hQ1i � hQ2i,
then the query Q1 is contained in the query Q2 and de-
noted as Q1 � Q2. If two queries contain each other, they
are equivalent and denoted as Q1 � Q2. When a CQ is
equivalent to an NQ, the CQ is an exact match of the NQ,
M(E;NQ). When a CQ contains an NQ, the CQ is a con-
taining match of the NQ, M(C;NQ). In contrast, when a
CQ is contained in an NQ, the CQ is a contained match of
the NQ, M(:C;NQ). When a CQ does not contain, but
intersects with an NQ, the CQ is an overlapping match of

2



Match Types Properties

M(E;NQ)
CQ � NQ =) CQ = M(E;NQ),
answer = hCQi

M(C;NQ)
CQ � NQ =) CQ = M(C;NQ),
answer = hNQ(hCQi)i

M(:C;NQ)
CQ � NQ =) CQ = M(:C;NQ),
answer = hCQi [ hNQ ^ :CQi,
CQ 6� NQ, CQ 6� NQ, hCQi \ hNQi 6= ;

M(O;NQ) =) CQ = M(O;NQ),
answer = hNQ(hCQi)i [ hNQ ^ :CQi,

M(:D;NQ)
NQ ^ CQ = ; =) CQ = M(D;NQ),
answer = ;

m 2 fM(C;NQ)g, 8i6=jfmi � mj ; mi 6� mjg
M(C;NQ)min =) mi = M(C;NQ)min,

answer = hNQ(hmii)i
m

0 2 fM(C;NQ)ming,
M(C;NQ)opt 8i6=jfcost(NQ ^m0

i) < cost(NQ ^m0
j)g =)

m
0
i = M(C;NQ)opt, answer = hNQ(hm0

ii)i

M(O;NQ)opt

m
00 2 fM(O;NQ)g,

8i6=jfcost(NQ ^m00
i ) < cost(NQ ^m00

j )g
=) m

00
i = M(O;NQ)opt,

answer = hNQ(hm00
i i)i [ hNQ ^ :m00

i i

Table 1: Query match types and their properties.

the NQ, M(O;NQ). Finally, when there is no intersection
between NQ and CQ, the CQ is a disjoint match of theNQ,
M(D;NQ). Furthermore, a minimally-containing match

of the NQ, M(C;NQ)min, is the M(C;NQ) which does
not contain any other M(C;NQ). An optimally-containing

match of the NQ , M(C;NQ)opt, is the M(C;NQ)min that
yields \optimal" cost2. Finally, an optimally-overlapping

match of the NQ, M(O;NQ)opt, is the M(O;NQ) that
yields \optimal" cost. Detailed properties of query match
types are shown in Table 1. 2

Example: Given an NQ: (x = 1 ^ y = 2 ^ z = 3) and
a cache with 3 entries, CQ1: (x = 1 ^ y = 2), CQ2: (x

= 1 ^ z = 3), CQ3: (x = 1), CQ1, CQ2, and CQ3 are
M(C;NQ). Because CQ3 contains both CQ1 and CQ2, only
CQ1 and CQ2 areM(C;NQ)min, If the cost(CQ1 ^NQ) <
cost(CQ2 ^NQ), then M(C;NQ)opt = CQ1. 2

4.2.1 Properties of exact and disjoint match

Given an NQ and a CQ, if the CQ is M(E;NQ), then it
has 1) the same operators, and 2) the same values for all
sub-predicates. If the CQ is M(D;NQ), then it has 1) the
same operators for all sub-predicates, and 2) di�erent values
in one or more of the sub-predicates. Finding M(E;NQ) in
the cache is the best cache hit case. For the M(D;NQ)
case, accessing data from the web source is required.

4.2.2 Properties of containing match

There are two cases when a predicate P1 contains another
predicate P2: 1) the operator in P1 contains the operator
in P2 while the value remains the same (e.g., (name LIKE

'sylvie') � (name = 'sylvie')) , or 2) P1 contains don't care
predicate (e.g.,

N
� (name LIKE 'sylvie')). For two con-

junctive predicates, CP1 and CP2, if each sub-predicate of

2The cost may be based on the number of tuples in the physi-

cal storage of the minimally-containing match. For instance, the
minimally-containing match might have the least number of tuples.

CP1 contains each correspondent of CP2, then CP1 con-
tains CP2. Given n entries in the cache, the maximum
computation complexity to �nd all the M(C;NQ)s is O(n)
since each entry needs to be probed at least once. When
there are severalM(C;NQ)s, we need to �nd theM(C;NQ)
that yields minimal cost, which is the M(C;NQ)opt. The
computation complexity of �nding all M(C;NQ)mins in n

M(C;NQ)s is O(n2) and of �nding the uniqueM(C;NQ)opt
in n M(C;NQ)mins is O(n).

4.2.3 Properties of contained and overlapping match

After exact, disjoint, and containing matches are found,
the rest of the queries are either contained or overlapping

matches
3. Unlike others, whether or not two point predi-

cates overlap cannot be determined by algebraic compari-
son; rather it requires the examination of the tuples belong
to the semantic view. For instance, given two 2-dimensional
queries Q1: (x = 1 ^

N
) and Q2: (

N
^ y = 1), we need

to intersect the corresponding answers of Q1 and Q2 to de-
termine if they are overlapping. There are two methods to
handle an overlapping match; method 1) based on the prop-
erties in Table 1, �nd the optimally-overlapping match and
reuse its overlapped answers in the cache and submit modi-
�ed query, NQ^:M(O;NQ)opt

4 , to fetch only the missing
answers from the web source, or method 2) ignore the over-
lapped answers in the cache and re-submit the original NQ

to the web source. Method 1) has been used in [6], based
on the assumption that fetching only missing answers yields
a lower cost than fetching the entire query answers. This is
not always true in WebDB since negation (:) in front of the
M(O;NQ)opt is usually a very expensive operation for IR
systems. Typically it becomes an \unsafe" operator due to
its unbounded nature (e.g., x 6= 10 is not computable in an
in�nite integer domain).

There are certain circumstances where an overlapping
match can play an important role in query optimization,
even without acquiring missing answers. Consider the fol-
lowing three cases: 1) if the user is able to specify the car-
dinality of the tolerable answer sets (e.g., CoBase [4]) and if
the number of the tuples in an overlapping match meets the
speci�cations, then there is no need to retrieve the missing
data, 2) when a web search engine returns partial results to
the user as soon as they become available, an overlapping
match in the cache is helpful in giving the user an illusion of
the fast query response, and 3) when an overlapping match
is a \semantically" containing match, the missing data can
be inferred from the domain knowledge. For instance, an
NQ: (group = 'toddler' ^ name = 'sylvie') is semantically
contained in a CQ: (group = 'toddler' ^ gender = 'girl')

if one knows \sylvie is the girl's name". If the web source
supports negation, then CoWeb uses the method 1, else uses
the method 2.

4.2.4 Algorithm for �nding the optimal match in the cache

Given an NQ and a semantic cache with cache queries,
fCQ1; :::; CQng, the following algorithm, OPTMATCH, �nds
the optimal match in the cache. OPTMATCH iterates from
CQ1 to CQn in the cache to �nd the M(E;NQ) with the
matching properties. The M(D;NQ) is discarded but the
M(C;NQ) and M(O;NQ) are accumulated into the buck-
ets, Bucket(C) and Bucket(O), respectively. OPTMATCH

3Since a contained match is the special case of an overlapping

match, without loss of generality, we only discuss the overlapping

match due to limited space.
4This is called remainder query in [6].
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stops and reuses the cached result from the physical stor-
age as soon as M(E;NQ) is found. When no M(E;NQ)
is found after all iterations and Bucket(C) is not empty,
OPTMATCH �nds the M(C;NQ)opt from the M(C;NQ)s
in Bucket(C) using the matching properties. Otherwise,
OPTMATCH �nds M(O;NQ)opt from the M(O;NQ)s in
Bucket(O) using the matching properties. The computa-
tion complexity of the OPTMATCH is O(n2) where �nding
M(C;NQ)opt constitutes the major cost.

4.3 Cache Replacement Policy

According to pre-determined evaluation functions (e.g., LRU,
semantic distance), the corresponding replacement values
(e.g., access order, distance value) are computed and added
to the semantic view. Individual tuples stored in the physi-
cal storage contain a reference counter to keep track of the
number of reference. After the semantic view for replace-
ment has been decided, all tuples belong to the semantic
view are found via the semantic index and their reference
counters are decremented by 1. The tuples with counter
value 0 are removed from the physical storage. The cor-
responding semantic view and semantic index are then re-
moved from the cache entries. An example is illustrated in
Figure 2.
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Q3:         y=1

Q4: x=2

T2: Q4 inserted

a

c

d

T0: initial
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Figure 2: A cache replacement example. When Q1 is re-
placed at time T1, the corresponding reference counters are
decremented and tuple b is deleted, but tuple a and tuple
c remain in the physical storage. When Q4 is inserted at
time T2, tuple c and tuple d are inserted to the semantic
index, but only tuple d is inserted to the physical storage
since tuple c already exists.

5 Related Work

In [2], selectively chosen sub-queries are stored in cache and
treated as information sources in the domain model. The
focus in [2] is on how to choose which sub-queries to cache
while our focus is on how to �nd optimal match. [6] in-
troduces the notion of semantic region from which seman-

tic view and semantic index concepts can be derived. [6]
maintains cache space e�ciently by coaleasing or splitting
the semantic regions while we maintains the physical stor-
age e�ciently by manipulating reference counters. In [11],
predicate description derived from previous queries is used
to match an input query with the emphasis on updates in
the client-server environment. They also use reference coun-
ters to reclaim cache space. [9] extends the previous works

(e.g., [2, 6, 11]) to a heterogeneous database environment
and presents applications where semantic caching is useful.

Our work di�ers from the prior works in the following
aspects: 1) our scheme is suitable for web-based IR applica-
tions, 2) we combine semantic caching with query natural-
ization, which enables us to use point predicates to describe
speci�c semantic caching condition, and 3) we provide meth-
ods for �nding optimal match in the semantic cache.

6 Conclusions & Future Work

Semantic caching techniques for wrappers in web database
that utilize query naturalization are presented. We devel-
oped algorithms to match cache queries with an input query.
Further, we have developed algorithms for cache replace-
ment to maintain cache space e�ciently.

We plan to continue investigating the indexing scheme
and the semantic containment issue. Semantic caching at
the mediator-level requires communication with multiple wrap-
pers and creates horizontal and vertical partition of input
queries [9]. This results in more complicated cache match-
ing. Further research in that area is needed.
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