
Generating Advanced Query Interfaces

Dongwon Lee Divesh Srivastava Dimitra Vista

Abstract

With the increasing popularity of the World Wide Web, the number of information sources
providing access to various types of data has increased considerably. While simple data retrieval

queries are typically very easy to specify in such systems, formulating advanced queries is much

harder. Most systems require the user to be aware of their speci�c, often proprietary, interfaces
and query languages. We believe that being able to query these systems in a uniform and

consistent way could greatly improve the user's experience of interacting with these systems.

In this paper, we present an interface generator for creating advanced query interfaces. Our
tool allows the easy construction of advanced interfaces, with a consistent look and feel, to

di�erent information sources, removing the burden of users having to know the interface and

query language speci�cs of individual information sources. We demonstrate the power of the
interface generator by using the tool to generate advanced interfaces for various Web search

engines (AltaVista, Excite, HotBot, and Infoseek), directories (Four11, Bigfoot, LDAP), and

specialized search tools (IBM's patent server, DejaNews).

1 Introduction

Many information sources available on the World Wide Web support query interfaces to allow users

to select subsets of the data in the information sources that are of interest to them. We focus our

interest on the subset of the Web that is accessible via such query interfaces. The examples of

such systems are numerous: web search engines, white and yellow pages, special purpose databases

with articles, patents, movies, stock quotes, software, ights, cars, and many more. Many of these

systems allow access to their data from multiple query interfaces typically including a) an interface

based on a simple vector-space model [Sal89] for limited keyword searching, and b) a more advanced

interface for specifying complex selection criteria on the data to be retrieved. While simple queries

are typically very easy to specify, writing complex queries is much harder. Most systems require the

user to be aware of their speci�c, often proprietary, interfaces and query language syntaxes. Having

interfaces that hide the idiosyncrasies of their query languages can signi�cantly improve the user's

experience in interacting with the various information sources.

In this paper we describe how we generate easy to use advanced query interfaces for various

information sources by using an interface generator tool. The tool accepts as input the speci�cation

of the interface to generate and produces as output the implementation of the speci�ed interface.

In general, constructing intuitive and easy to use visual interfaces for general query languages is a

di�cult problem [KZ95]. Fortunately, most information systems on the Web do not support general

query languages: they only allow data to be selected . We observed that there is a particular way

to look at the data, and consequently at selection queries, which allows the easy construction of

interfaces with a uniform look and feel. In this paper we exploit this abstraction towards this goal.

There are two aspects to each visual interface generated by our tool. The �rst has to do with the

layout of the various visual components in the interface and the way they interact in response to user

1

actions. The second has to do with the way the visual interface supports the language interactions

between itself and the back-end system. This interaction includes the mapping from the queries

constructed in the visual interface to queries supported by the underlying system, and the mapping

from individual query elements of the underlying language to visual elements of the interface.

Our goal in devising the generator tool was not to study which visual layout would be best

suited for the kind of applications we are targeting. For this, reason all interfaces generated by our

tool share the same layout of visual components. Our goal was to provide a con�gurable tool with

respect to language interactions. We have identi�ed many customizable options that a generator

tool can support with respect to language interactions and our current implementation supports

most of them.

The rest of the paper is organized as follows. In Section 2 we elaborate on the basic idea behind

the advanced interface generator tool. In Section 3 we present the layout of the visual components

which is common among all of the interfaces produced by the generator. In Section 4 we discuss

aspects of con�gurability that the generator is amenable to and in Section 5 we present the format of

the input con�guration �le for interface speci�cation. In Section 6 we discuss how we have applied the

generator tool to devise advanced interfaces for web search engines, directories and other specialized

information sources. We conclude in Section 7.

2 Basic Idea

To demonstrate the basic idea behind the tool described in this paper, we use examples from the

application of web searching. Suppose we were looking for all web documents containing the keyword

WWW7 in their title. We can think of each web page as a structured document having a title, a body,

a domain, one or more headers and a number of other such attributes. The query simply asks for all

documents whose title attribute contains the value WWW7. As another example, if we were looking

for web documents not containing the phrase call for papers in their body, we could ask that the

body attribute not contain the value call for papers.

Many selection criteria can thus be expressed as a combination of an attribute of the document

to be retrieved, an attribute operator to be evaluated on it and a given value. We call such selections

atomic queries. Atomic queries are logically combined to form complex queries. As an example,

suppose we were interested in all documents containing the word WWW7 in their title but not containing

the phrase call for papers in their body. We can express this complex query as the logical AND

of the two atomic ones discussed above.

Web search engines di�er in the way they express complex queries. Our example is expressed as

follows in the Alta Vista and HotBot search engines:

Alta Vista title:WWW7 AND NOT ``call for papers''

HotBot title:+WWW7 �``call for papers''

If we use the document model described above we can formulate the same query with a description

such as:

title contains word WWW7

so long as

body does not contain phrase call for papers

2

This expression does not have to be speci�ed as such by a user { it could simply be an English

language description of the output of a graphical interface. However, if we wanted to utilize this

description in both search engines, we would ultimately have to translate it into the expressions

understood by these systems. The observation is that we can construct a graphical interface that

allows the speci�cation of expressions like this and translates them into expressions of a search

engine's query language, ultimately providing a uniform interface for querying both systems.

Once we recognize that similar interfaces can be built for a variety of sources, a question of

interest becomes whether there are enough commonalities between them so that we can abstract

away from the details of each and devise a core system to be shared by all. The attribute/value

model presented here gives us a modeling tool to achieve such an abstraction. In addition to the

conceptual model, the interfaces can share the same visual layout of components on the screen, the

mechanisms by which the various components of the interface interact with each other in response

to user actions, as well as internal representations and manipulations of the queries they construct.

In the next section we describe the visual layout shared by all interfaces generated by our tool

and explain our reasoning for choosing it.

3 Visual Component Layout

Figure 1 shows a typical interface generated by our tool. The screen dump is from the HotBot

search engine interface showing a query requesting all web documents on the Intel Pentium Chip

outside of the intel.com domain. The interface contains the following visual components:

� The upper part consists of a pop-up menu of attribute names, a pop-up menu of attribute

operators and a place holder for entering the value of an atomic query. In other words, the

upper part is dedicated to atomic querying. The �gure only shows one item of the pop-up

menu for the attribute names (HTML Page) and attribute operators (contains word).

� The horizontal pallete of buttons underneath corresponds to the logical connectives one wishes

to support for complex querying. Three are shown in the �gure: so long as, also, and

except.

� The vertical pallete of buttons to the right corresponds to functionality shared amongst all

generated interfaces. They permit editing of the generated expressions.

� The central textual component displays an English language description of the constructed

query. Individual constructs can be selected for editing, removing and so on.

� The (optional) lower textual component displays the generated query in the syntax of the

underlying system.

In devising this particular layout for the interfaces generated by our tool we made the following

decisions. First of all, we wanted the interfaces to report to the user the meaning of the query

constructed so far in an intuitive way. Many query languages currently supported by information

sources are understood easily by technically oriented people. But as the Web is being used more and

more by people without much technical background, native query languages become inadequate.

An English language description of the query seemed an appropriate alternative representation.

Parenthetically, this was also the reason for choosing the words so long as and also for the logical

3

Figure 1: A typical interface generated by the generator: HotBot query requesting documents on

the Intel Pentium Chip.

AND and OR, respectively: in English, the word `and' sometimes denotes a logical disjunction, while

the word `or' typically denotes an exclusive disjunction!

We also wanted to separate the concept of visualizing the description of the query (the central

component) from its editing (the upper component) and general manipulation (performed mostly

by functions of the rightmost component) which explains the three main panels of the layout.

Finally, we wanted the uppermost panel to be used in place for the editing of individual atomic

queries. This is in contrast with many interfaces we �nd on the Web, where a user has to press

buttons for more or less options. There were two reasons why we did not follow the common pattern.

Besides being somewhat cumbersome, an extendable list of editable triplets for the attribute, the

operator and the value could only be used for conjunctive queries while we clearly wanted a solution

that coult accommodate disjunctive and other complex queries as well.

Although our generator tool imposes this particular layout of visual components, it can be

customized in many di�erent ways. In the next section we talk about what we are trying to customize.

4

4 Tool Con�guration

The data abstraction explored in this paper views data being queried as objects described by a set

of attribute/value pairs. An attribute of the object to be retrieved, an attribute operator to be

evaluated on it and a given value form an atomic query. Atomic queries are combined using complex

operators to form complex queries. We con�gure the generator tool with respect to the generation

and tranlation of such queries.

Query Construction

Customizing the way queries can be formulated in the visual interface includes specifying a) how

the attributes, attribute operators and complex operators we choose to support for a given appli-

cation are visually represented on the screen, and b) what types of queries we can formulate in the

interface by using them. In terms of restricting the types of queries, in our current implementation

we can specify which attribute operators are applicable to each attribute. We can also specify the

associativity and precedence of complex operators. For example, a left to right associativity of the

operators AND and OR, with AND having a higher precedence, allows the easy speci�cation of

queries in disjunctive normal form. At the current time, no explicit parenthesization is supported:

speci�cations of operator precedence and associativity are the only way to control what parenthe-

sizations are favoured in the interface. These speci�cations reect on the way the English language

description of the query is indented.

Other aspects of query construction con�gurability may include the speci�cation of complex

operators with arbitrary arity. Our current implementation only supports binary operators.

Query Translation

Customizing the translation of queries refers to the speci�cation of the mapping from queries in the

interface to queries in the underlying system. In the current implementation we allow for the follow-

ing exibility in supporting query translation: we can specify how attributes, attribute operators,

atomic queries and complex queries are translated. The translation function of an attribute is part

of the speci�cation for the attribute. The translation function of an atomic query is part of the

speci�cation of the attribute operator involved in the query. The translation function of a complex

query is part of the speci�cation of the complex operator involved in the query. We implicitly assume

that speci�ed values are trivially translated into themselves.

In general, we might want to support more exible translation functions. For example, we might

want the translation of an atomic query to depend not only on the attribute operator involved

by also on the attribute and/or the speci�ed value. Similarly, we might want the translation of

complex queries to depend not only on the complex operator involved but also on one or more

of its arguments. Finally, we might want to utilize non-trivial translation functions for the values

themselves.

Data Semantics

All options discussed so far are related to the syntax of queries. Additional con�gurable options

are available to help incorporate data semantics of the application into the generated interface. To

accomodate data semantics we support attribute types and attribute default values. By declaring

5

that an attribute is of a particular type, we can generate advanced interfaces capable of type checking

that values entered satisfy the type constraint of the corresponding attribute. We also support default

attribute values to populate the place holder for the value when the attribute is selected from the

attribute menu. Such default values can be used as hints to help users enter a proper value. For

example, when an attribute of type date is selected, the place holder can have a value of the form

dd/mm/yy suggesting this particular format for value speci�cation. To accomodate the case when

attributes can take values only from a given set of possible values, we allow the speci�cation of

such sets. In this case, the interface dynamically replaces the value holder with a menu of available

options or appropriate radio buttons.

Additionally, we can specify more general types of integrity constraints on the values of a par-

ticular type. For example, we can specify that the value of an attribute must be positive, less than

a given threshold and so on. Our tool does not support such constraints.

In the next section we describe in detail the format of the input con�guration �le as currently

supported by our generator tool.

5 Format of the Con�guration File

First of all, in the con�guration �le we specify the (non-empty) set of attributes to appear in the

attribute menu. For each attribute, we specify how the attribute is visually displayed, and how it is

translated into the query language of the underlying system. For example, the following speci�cation

says that there is an attribute that appears as `Title' and is translated to `title:'.

Attribute :: `Title' is `title:'

Sometimes, we want to specify a default value for an attribute: when we choose the attribute

from the menu, the default value appears in the place holder for the value. For example, the following

speci�cation says that the attribute `URL' has default value `http://'.

Attribute :: `URL' is `url:' withvalue `http://'

Our generator tool supports a number of prede�ned types, including string, int, tel (telephone

number), date, booleanof and choiceof. The types booleanof and choiceof are used to restrict

the values that an attribute can take. In particular, booleanof presents the user with two values as

radio buttons while choiceof presents a preselected set of values as a choice menu. Specifying that

an attribute is of a given type helps the generator produce interfaces with embedded type checking

capabilities. The type string is the default type. Here are some examples.

Attribute :: `Telephone Number' is `tel' withtype `tel'

Attribute :: `On vacation' is `onvacation'

withtype booleanof(`true', `false') withvalue `false'

The �rst example declares the telephone number attribute to be of type `tel'. The second

example restricts the values for the `On vacation' attribute to only `true' and `false' to be

displayed using two radio buttons. The button for `false' is initially checked.

In addition to attributes, we specify the (non-empty) set of attribute operators for the attribute

operator menu. For each attribute operator, we specify how it is visually displayed and how it is

translated into the query language of the underlying system. For example, the speci�cation

6

Attribute Operator :: `must contain phrase' is `+$attr``$val'''

says that there exists the `must contain phrase' attribute operator which is translated by

using the translation of the attribute to which it is applied, pre�xed by the symbol `+' and su�xed

by the quoted translation of the value speci�ed. The variables $attr and $val are bound dynamically

whenever a user selects an attribute from the attribute menu or speci�es a value in the value holder.

All attribute operators are applicable to all attributes by default. Sometimes we might want

to restrict this convention by a di�erent applicability of attribute operators. For example, the

following speci�cation says that only operators allowed on the `On vacation' attribute are `is'

and `exists'. Upon selecting the attribute all other choices are greyed out.

Attribute :: `On vacation' is `onvacation' withtype booleanof(`true', `false')

withvalue `false'' limitedto(`is', exists')

Finally, in the con�guration �le we specify the set of logical operators for the horizontal operator

palette. For example, the following speci�cation says that there is a complex operator that appears

as `so long as' and is translated using the translations of its two operands with a `&' in between.

The variables $lhs and $rhs are bound dynamically to the two operands of the operator.

Complex Operator :: `so long as' is `$lhs & $rhs'

Having described the syntax of the con�guration �le, we can now describe how easily we have

used such speci�cations to generate advanced interfaces for various information sources.

6 Applications

6.1 Web Searching

We have used our tool to devise advanced interfaces for various search engines including AltaVista

[Alt], Excite [Exc], HotBot [Hot], and Infoseek [Inf]. We only discuss the HotBot search engine

here. Focusing on only one system is enough to understand the key idea, however we do provide

examples from other search engines and show what the back-end queries look like. The syntax of

search language supported by HotBot includes:

� Keyword speci�cations of the form searchTerm requesting all documents that contain the word

or the phrase searchTerm.

� Meta words speci�cations of the form keyword:searchTerm requesting all documents that con-

tain the searchTerm in the given keyword , e.g., title:interface asks for pages that contain

the word interface in their title.

� Date meta word speci�cations of the form dateMetaWord:date requesting all documents created

or modi�ed within a speci�c range of dates, e.g., within:3/months asks for pages modi�ed in

the last three months while before:01/01/97 asks for those modi�ed before 1997.

� Query modi�ers of the form +searchTerm or �searchTerm requesting all documents that

must include (+) or must not include (�) a speci�ed searchTerm e.g., +apple�orange asks

for pages with the word apple but without the word orange.

7

� The boolean operators and, or, and not with their obvious meaning.

Following our model of looking at each document as a collection of attribute/value pairs, we

now describe how we represent this query language in a con�guration �le. To represent keyword

speci�cations, we use the HTML Page attribute: a given keyword is then speci�ed as the value of this

attribute. To represent meta word speci�cations we use attributes corresponding to the supported

keywords: a given search term is then speci�ed as the value of the corresponding attribute. To

represent date meta word speci�cations we use four attributes: the Modification Date attribute

for constraints on the creation and modi�cation dates of the document and the Modification

Year/Modification Month/Modification Day attributes for specifying a range of time for the

modi�cation. The following table shows all attribute speci�cations and how they translate into

HotBot's search language.

Attribute :: `HTML Page' is `'

Attribute :: `Title' is `title:'

Attribute :: `Domain' is `domain:'

Attribute :: `Link Domain' is `linkdomain:'

Attribute :: `Link Extension' is `linkext:'

Attribute :: `Depth' is `depth:' withtype int

Attribute :: `Feature' is `feature:' withtype choiceof(`title', `image', : : :)

Attribute :: `Newsgroup' is `newsgroup:'

Attribute :: `Script Language' is `scriptlanguage:'

Attribute :: `Modification Date' is `' withtype date limitedTo (`is after', `is before')

Attribute :: `Modification Year' is `' withtype int limitedTo (`since year')

Attribute :: `Modification Month' is `' withtype int limitedTo (`since month')

Attribute :: `Modification Day' is `' withtype int limitedTo (`since day')

As you can see, some attributes are declared to accept values of a given type using withtype. For

example, the Depth attribute is speci�ed to be of type int, and the Modification Date attribute

is speci�ed to be of type date, two of the types known to the generator tool. The feature attribute

can only take one of many pre-determined values speci�ed using choiceof. Furthermore, we restrict

the applicability of attribute operators using limitedto. For example, the only attribute operators

available for the Modification Date attribute are the is after and is before1.

To represent query modi�ers, we used four attribute operators: must contain word, must

contain phrase, must not contain word and must not contain phrase. The next table shows

all allowable attribute operators along with their translation. The two special variables $attr and

val represent the selected attribute and speci�ed value that are the arguments to the attribute

operator.

1To be precise, we should have restricted that all attribute accept all operators except the ones reserved for the

modi�cation attributes.

8

Attribute Operator :: `must contain word' is `$attr+$val'

Attribute Operator :: `must contain phrase' is `$attr+``$val'''

Attribute Operator :: `must not contain word' is `$attr-$val'

Attribute Operator :: `must not contain phrase' is `$attr-``$val'''

Attribute Operator :: `contains word' is `$attr$val'

Attribute Operator :: `contains phrase' is `$attr``$val'''

Attribute Operator :: `is before' is `before:$val'

Attribute Operator :: `is after' is `after:$val'

Attribute Operator :: `since year' is `within:$val/years'

Attribute Operator :: `since month' is `within:$val/months'

Attribute Operator :: `since day' is `within:$val/days'

To represent boolean operators we use complex operators. The next table shows the complex operators

and their translations using the variables $lhs and $rhs.

Complex Operator :: `so long as' is `$lhs & $rhs'

Complex Operator :: `also' is `$lhs j $rhs'

Complex Operator :: `except' is `$lhs ! $rhs'

Figure 2: AltaVista query requesting documents on the Intel Pentium Chip.

In Figure 1 we saw a query requesting all documents mentioning both the word Intel and the phrase

Pentium Chip so long as they are not located in the intel.com web site. Figures 2, 3, and 4 show the same

9

Figure 3: Excite query requesting documents on the Intel Pentium Chip.

query in the interfaces we built for AltaVista, Excite, and Infoseek together with the translation of the
query into the di�erent search languages. Figure 5 shows a query requesting all documents that contain the

phrase Bed and Breakfast as long as they contain a video and have been modi�ed in the last three months.

Note that the feature attribute can only take one of many values. This screen dump also shows how such
restricted values are displayed in a menu that replaces the place holder for the value.

6.2 Directories

The second class of applications for which we have used our tool was directories: Four11 [Fou], BigFoot

[Big], and LDAP Directories [Howb]. A directory stores information about people and allows people to

be retrieved based on their properties. We only describe the generation of the LDAP directory interface.
LDAP directories �t very naturally into our data model because they represent people by a collection of

attribute/value pairs. The language of access follows the Lightweight Directory Access Protocol Filter

Language [Howa] which has the following syntax:

� attribute operator value requests people whose value for the speci�ed attribute satis�es the given
operator. For example, mail=*@research.att.com requests all people whose email address is in the

research.att.com domain.

� (&(E1)(E2) : : : (En)) requests people for whom all of the conditions E1, E2, : : :, En are true.

10

Figure 4: Infoseek query requesting documents on the Intel Pentium Chip

� (j(E1)(E2) : : : (En)) requests people for whom one of the conditions E1, E2, : : :, En is true.

� (!(E)) requests people for whom the condition E is not true.

To support the expression attribute operator valuewe use atomic queries. For the expressions (&(E1)(E2)(E3)

: : : (En))we use the equivalent form (&(: : : (&(&(E1)(E2))(E3)) : : : (En)). We need to do this, because our

current implementation can only support binary complex operators. Similarly for the expression (j(E1)(E2)
: : : (En)). Finally, to support the expression (!(E)) we have two cases: if E is atomic, then we introduce an

attribute operator corresponding to the negation of the attribute operator in E. If E is not atomic, then we
use the following equivalences:

(!(&(E1)(E2))) = (j(!(E1))(!(E1))) and
(!(j(E1)(E2))) = (&(!(E1))(!(E2))).

The attributes supported by the directory server we were accessing were: the �rst and last name of the
person, a boolean attribute describing whether the person is on vacation, and their title, email address, and

so on. The LDAP model speci�es that we can check whether an attribute equals, contains, starts with, ends

with, exists, is similar to, is greater than, or is less than a given value. To support complementation, we
introduce additional attribute operators for checking whether any of these conditions is not true. The next

two tables contain the con�guration �le for the LDAP directory interface.

11

Figure 5: HotBot query requesting documents on Bed and Breakfast.

Attribute :: `first name' is `cn'

Attribute :: `last name' is `sn'

Attribute :: `on vacation' is `onvacation' withtype booleanof(`TRUE', `FALSE')

withvalue `FALSE' limitedto(`is', `exists')

Attribute :: `title' is `title'

withtype choiceof(`Employee', `Manager', : : :)

withvalue `Manager'

Attribute :: `email' is `mail'

Attribute :: `organization' is `ou'

Attribute :: `home page' is `labeledurl'

withvalue `http://www.research.att.com'

Attribute :: `office phone' is `telephonenumber' withtype `tel'

Attribute :: `office address' is `postalAddress'

Attribute :: `home phone' is `homephone' withtype `tel'

Attribute :: `home address' is `homepostalAddress'

Attribute Operator :: `is' is `($attr=$val)'

Attribute Operator :: `contains' is `($attr=*$val*)'

Attribute Operator :: `begins with' is `($attr=$val*)'

Attribute Operator :: `ends with' is `($attr=*$val)'

Attribute Operator :: `exists' is `($attr=*)'

Attribute Operator :: `is similar to' is `($attr~=$val)'

Attribute Operator :: `is greater than' is `($attr>=$val)'

Attribute Operator :: `is less than' is `($attr<=$val)'

Attribute Operator :: `is not' is `(!($attr=$val))'

Attribute Operator :: `does not contain' is `(!($attr=*$val*))'

Attribute Operator :: `does not begin with' is `(!($attr=$val*))'

Attribute Operator :: `does not end with' is `(!($attr=*$val))'

Attribute Operator :: `does not exist' is `(!($attr=*))'

12

Attribute Operator :: `is not similar to' is `(!($attr~=$val))'

Attribute Operator :: `is not greater than' is `(!($attr>=$val))'

Attribute Operator :: `is not less than' is `(!($attr<=$val))'

Complex Operator :: `so long as' is `(& $lhs $rhs)'

Complex Operator :: `also' is `(j $lhs $rhs)'

Complex Operator :: `except' is `(& $lhs (!$rhs))'

Figure 6: Query Requesting All Managers In The Research Organization From A Directory.

Figure 6 shows a query requesting all people who are managers in an organization whose name contains

the word research. Figure 7 shows a query from the BigFoot interface requesting all persons whose name

is Tom, who have an email address in the aol.com domain and who have an html page. Figure 8 shows a

query from the Four11 interface requesting all persons whose live in New York, who work in the Super Law

Firm and whose name is similar to Joan.

6.3 Other Information Sources

In this subsection we discuss the con�guration of advanced interfaces for domain-speci�c systems. We have
devised interfaces for two systems: the IBM Patent Server [IBM] and the DejaNews usenet search system

[Dej]. We only describe the IBM Patent Server whose syntax for advanced search includes:

13

Figure 7: b) A BigFoot Query.

� search word modi�ers of the form <word> keyword or <thesaurus> keyword. For example, <word>
algorithm requests all patents that contain the exact word algorithm while <thesaurus> algorithm

requests those that mention any synonym of algorithm.

� �eld search operators of the form word <in> (field1, field2, : : :) with the meaning that a speci�ed

word must appear in the given �eld names. For example, algorithm <in> title requests the patents
containing the word algorithm in the title. The following �elds are supported by the query language:

title, abstract, assignee, inventor, agent, claims, otherrefs, usrefs, names, and summary.

� the proximity operators <near>, <paragraph>, <sentence>, and <order>. For example, algorithm

<near> graph requests patents with words algorithm and graph in near proximity, algorithm <sentence>

graph requests them in the same sentence, algorithm <paragraph> graph requests them in the same
paragraph and algorithm <order> graph requests them in the speci�ed order.

� the logical operators <and>, <or>, <not> and <accrue>. For example algorithm <and> graph requests
patents that contain both words algorithm and graph.

To represent search word modi�ers, we use the attribute patent, the attribute operator contains exact

word or contains synonym and the value keyword. To represent �eld search operators of the form word

<in> (field1 field2 : : :) we use the equivalent form of (word <in> field1) <and> (word <in> field2)

<and> : : :. Each word <in> field is represented by an attribute for the �eld and the operator contains. To

represent proximity operators, we use the attribute patent, the attribute operator contains and the word

14

Figure 8: A Four11 Query.

as a value. Proximity operators themselves are represented as complex operators. Thus, algorithm <near>

graph is represented as patent contains algorithms near patent contains graph. Logical operators are
represented using complex operators, as usual.

Figure 9 shows a query from IBM patent server interface requesting all patents on databases, whose

inventor's name ends with Bell and whose assignee contains the word AT&T. Figure 10 shows a query from

the DejaNews interface requesting all articles posted to the comp.lang newsgroup, on a subject containing

Tcl/Tk, posted the �rst day of the year, unless it is an article about Java.

7 Discussion

We have demonstrated the utility of using a generator tool to construct advanced visual query interfaces for

a variety of information sources available on the Web. Our generator tool can be very exibly con�gured
to support a variety of selection-based query languages and to construct interfaces with a uniform look and

feel. Our examples demonstrate that we can support consistent interfaces very easily by specifying a simple

user con�guration �le.

Traditionally, user interfaces are built using programming languages. Special interface builders, such as

Visual Basic (Basic), Delphi (Pascal), SpecTcl (Tcl/Tk), wxPython (Python), NetFustion Objects (HTML)

and Visual Cafe (Java), are popular graphical interface builders. These tools emphasize the building of the

visual layout of the interface not the data manipulation aspect of the interfaces. Query translation to a

15

Figure 9: An IBM Query

back-end query system still needs to be supported programmatically. The innovation of our tool is the fact
that it supports declaratively the customization of the language interactions from the generated interface to

the underlying system.

Krishnamurthy and Zloof [KZ95] have studied the problem of generating interfaces by declarative spec-

i�cations. Their emphasis is on data visualization interfaces for data computed by database queries which
allow subsequent interactions with the presented data. The GraphLog language [CM90] allows the speci�ca-

tion of database queries graphically while supporting the translation from the visual queries to the queries of

a back-end database system [CMV94]. Their emphasis is on query visualization for general database queries.
A more relevant work is the one by Phanouriou and Abrams [PA97] who present the Javamatic system which

can generate a graphical user interface, then invokes commands to a legacy system transparently to the user.

Their system uses a drag-and-drop technique to generate the graphical user interface and can only be used
for command-line legacy systems.

References

[Alt] AltaVista. The AltaVista Search Engine. Available at http://www.altavista.digital.com.

[Big] BigFoot. The BigFoot Directory. Available at http://www.bigfoot.com.

16

Figure 10: A DejaNews Query.

[CM90] M.P. Consens and A.O. Mendelzon. GraphLog: A Visual Formalism for Real Life Recursion. In

Proceedings of 9th ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pages

404{416, 1990.

[CMV94] M.P. Consens, A.O. Mendelzon, and D. Vista. Deductive Database Support for Data Visualization.

In Proceedings of the 4th International Conference on Extending Database Technology, pages 45{

58, 1994.

[Dej] DejaNews. The DejaNews Server. Available at http://www.dejanews.com.

[Exc] Excite. The Excite Search Engine. Available at http://www.excite.com.

[Fou] Four11. The Four11 Directory. Available at http://www.four11.com.

[Hot] HotBot. The HotBot Search Engine. Available at http://www.hotbot.com.

[Howa] T. Howes. A String Representation of LDAP Search Filters. Network Working Group Request for

Comments 1558. Available from http://www.pmg.lcs.mit.edu/cgi-bin/rfc/view?number=1558.

[Howb] T. Howes. Lightweight Directory Access Protocol. Network Working Group Request for Comments

1777. Available from http://www.pmg.lcs.mit.edu/cgi-bin/rfc/view?number=1777.

[IBM] IBM. The IBM Patent Server. Available at http://patent.womplex.ibm.com.

[Inf] Infoseek. The Infoseek Search Engine. Available at http://www.infoseek.com.

[KZ95] R. Krishnamurthy and M. Zloof. RBE: Rendering By Example. In Proceedings of the 11th

International Conference on Data Engineering, pages 288{297, 1995.

17

[PA97] C. Phanouriou and M. Abrams. Transforming Command-Line Driven Systems to Web Applica-
tions. In Proceedings of the 6th International World Wide Web Conference, 1997.

[Sal89] G. Salton. Automatic Text Processing: the Transformation, Analysis and Retrieval of Information

by Computer. Addison Wesley, 1989.

18

