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Abstract. The effects of homophily among friends have demonstrated their importance to 
product marketing. However, it has rarely been considered in recommender systems. In this 
chapter, we propose a new paradigm of recommender systems which can significantly 
improve performance by utilizing information in social networks including user preference, 
item likability, and homophily. A probabilistic model, named SNRS, is developed to make 
personalized recommendations from such information. We extract data from a real online 
social network, and our analysis of this large dataset reveals that friends have a tendency to 
select the same items and give similar ratings. Experimental results from this dataset show 
that SNRS not only improves the prediction accuracy of recommender systems, but also 
remedies the data sparsity and cold-start issues inherent in collaborative filtering. 
Furthermore, we propose to improve the performance of SNRS by applying semantic 
filtering of social networks, and validate its improvement via a class project experiment. In 
this experiment we demonstrate how relevant friends can be selected for inference based on 
the semantics of friend relationships and finer-grained user ratings. Such technologies can 
be deployed by most content providers. Finally, we discuss two trust issues in 
recommender systems and show how SNRS can be extended to solve these problems. 
 
1 Introduction 
In order to overcome information overload, recommender systems have become a 
key tool for providing users with personalized recommendations on items such as 
movies, music, books and news. Intrigued by many practical applications, 
researchers have developed algorithms and systems over the last decade. Some of 
them have been commercialized by online venders such as Amazon.com, and 
Netflix.com. These systems predict user preferences (often represented as numeric 
ratings) for new items based on the user's past ratings of other items. The 
algorithms used in recommender systems are usually two types—content-based 
filtering and collaborative filtering. Let us define a target item as the item being 
considered for recommendation, and a target user as the user who is receiving 
recommendations. In content-based filtering, a target item is recommended to a 
target user if the item is similar to the ones that the user liked in the past in terms 
of explicit content attributes [18, 28], while in collaborative filtering, a target item 
is recommended to a target user if it is an item that has been liked in the past by 
people who are similar to this user. Collaborative filtering finds users who are 
similar to a target user based on their previous ratings of other items [4, 3, 25]. 

Despite all of the efforts above, recommender systems still face many 
challenges. First, there are continuous demands for further improvements on the 



2 

prediction accuracy of recommender systems. Second, the algorithms for 
recommender systems suffer from many issues. For example, in order to measure 
item similarity, content-based methods rely on explicit item descriptions. 
However, such descriptions may be difficult to obtain for abstract items like ideas 
or opinions. On the other hand, collaborative filtering has a data sparsity problem 
[1]. In contrast to the huge number of items in recommender systems, each user 
normally rates only a few items. Therefore, the user/item rating matrix is typically 
very sparse. It is difficult for recommender systems to accurately measure user 
similarities from that limited number of reviews. A related problem is the cold-
start problem [1]. Even for a system that is not particularly sparse, when a user 
initially joins, the system has no reviews from this user. Therefore, the system 
cannot accurately interpret this user's preference.  

To tackle those problems, two approaches have been proposed [4, 27, 17, 18]. 
The first approach condenses the user/item rating matrix through dimensionality 
reduction techniques such as Singular Value Decomposition (SVD) [4, 22, 27]. By 
clustering users or items according to their latent structure, unrepresentative users 
or items can be discarded, and thus the user/item matrix becomes denser. 
However, these techniques do not significantly improve the performance of 
recommender systems, and sometimes even make the performance worse. The 
second approach “enriches” the user/item rating matrix by: 1) using a default 
rating; 2) incorporating implicit user ratings, e.g., the time spent on reading 
articles [19]; 3) filling in with half-baked rating predictions from content-based 
methods [17]; or 4) exploiting transitive associations among users through their 
past transactions and feedback [10]. These methods alleviate the data sparsity 
problem to some extent, but still cannot solve the cold-start issue. In this chapter, 
we plan to solve these problems from a different perspective. Specifically, we 
propose a social network-based recommender system (SNRS) [9] which predicts 
user interests by utilizing rich semantic information in social networks, especially 
social relationships. 

In a social network, two persons connected via a social relationship tend to 
have similar attributes to each other. This is a fundamental property of social 
networks, and it is also known as the homophily principle [20]. In product 
marketing, the importance of social relationships has long been recognized [30, 
32]. Intuitively, when we want to buy an unfamiliar product, we often consult with 
our friends who have already experienced the product, since they are those whom 
we can reach for immediate advice. When friends recommend a product to us, we 
also tend to accept the recommendation because we consider their inputs as 
trustworthy. Many marketing strategies, such as Hotmail, that leveraged social 
relationships have achieved great success [12]. Thus, social relationships play a 
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key role when people make decisions about products, and it is the basis for 
constructing SNRS. 

The recent emergence of online social networks (OSNs) gives us an 
opportunity to investigate the role of social relationships in recommender systems. 
With the increasing popularity of Web 2.0, many OSNs such as Myspace.com, 
and Facebook.com have emerged. Members in those networks have their own 
personalized space where they not only publish their biographies, hobbies, 
interests, blogs, etc., but also list their friends. Here, friends are defined in a 
general sense: any two users who are connected by an explicit social relationship 
are considered as friends. In reality, they can be family members, buddies, 
classmates and so on. In addition, we define immediate friends as friends who are 
just one hop away from each other in a social network graph, and distant friends 
as friends who are multiple hops away. OSNs provide platforms where people can 
place themselves on exhibit and maintain connections with friends. As OSNs 
continue to gain more popularity, the unprecedented amount of personal 
information and social relationships can promote social science research which 
was once limited by the lack of data. In this chapter, we design a new paradigm of 
recommender systems by utilizing such information in social networks. 

While the benefits of utilizing social network information in recommender 
systems can be significant, how to materialize such an idea is especially 
challenging considering the complexity of social networks. Many challenging 
questions can be raised in this context. In particular, we investigate the following 
questions: 1) Does homophily really exist when friends rate items? 2) How to 
effectively use different types of social network information to make better 
predictions? 3) If predictions rely on the opinions of immediate friends, what if a 
target user has no immediate friend who has reviewed the same target item? 4) 
How does SNRS handle heterogeneities in social networks such as different types 
of friend relationships? 5) How does SNRS handle situations where the reviews 
from immediate friends are not trustworthy? 

The remainder of the chapter is organized as follows. First, in Section 2 we 
give a background of collaborative filtering algorithms. Then, in Section 3 we 
introduce the dataset that we crawled from a real online social network, Yelp.com. 
We will study this dataset to determine whether homophily exists when friends 
rate items. In Section 4, we present our SNRS system. Following that, we evaluate 
the performance of SNRS on the Yelp dataset in Section 5, focusing on its 
prediction accuracy and coverage. In Section 6, we propose to further improve the 
prediction accuracy of SNRS by applying semantic filtering for social networks. 
We design a student experiment in a graduate class to validate its effectiveness. In 
Section 7, we propose extensions of SNRS to handle the trust issues caused by 
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users with unreliable domain knowledge. Finally, we review related work in 
Section 8. 

 
2   Background 
After the pioneering work done in the Grouplens project in 1994 [25], 
collaborative filtering (CF) soon became one of the most popular algorithms in 
recommender systems. Many variations of this algorithm have also been proposed 
such as hybrid approaches of combining CF with content-based filtering [2, 17, 
23, 31], or adopting different weighting schemes [1, 11]. In this chapter, we will 
use the traditional CF proposed in the Grouplens project as one of the comparison 
methods. Therefore, the remainder of this section will focus on this algorithm. 

The assumption of CF is that people who agreed in the past tend to agree 
again in the future. Therefore, CF first finds users with tastes similar to those of 
the target users. CF will then make recommendations to the target user by 
predicting the target user's rating of the target item based on the ratings of his/her 
top-K similar users. User ratings are often represented by discrete values within a 
certain range, e.g., 1 to 5. A 1 indicates an extreme dislike of the target item, while 
a 5 shows high praise. Let RUI be the rating of the target user U on the target item 
I. Thus, RUI is estimated as the weighted sum of the votes of similar users as 
follows. 

,  (1)

where and represent the average ratings of the target user U and every 
user V in U's neighborhood, Ψ, which consists of the top-K similar users of U. 

w(U, V) is the weight between users U and V, and Z =  is a 

normalizing constant to normalize total weight to one. Specifically, w(U, V) can 
be defined using the Pearson correlation coefficient [25]. 

 
(2) 

where the summations over I are over the common items for which both user U 
and V have voted. 

As we can see, the traditional CF models user-to-user relations based purely 
on user rating similarities, and does not utilize at all the semantic friend relations 
among users. However, such semantics are essential to the buying decisions of 
users. In the following sections, we are going to present a new paradigm of 
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recommender systems which improves the performance of recommender systems 
by using the semantic information in social networks.   

 
3   Yelp.com 
For this research, we collect a dataset from a real online social network Yelp.com. 
As one of the most popular Web 2.0 websites, Yelp provides users with local 
searches for restaurants, shopping, spas, and nightlife etc. Besides maintaining the 
traditional features of recommender systems, Yelp provides social network 
features so that it can attract more users. Specifically, Yelp allows users to invite 
their friends to join Yelp or make new friends with those who already exist at 
Yelp. The friendship at Yelp is a mutual relationship, which means that when a 
user adds another user as a friend, the first user will be automatically added as a 
friend of the second user. Yelp provides a homepage for each local commercial 
entity and each user. From the homepage of a local entity, we can find all the 
reviews of this entity. From the homepage of a user, we can find all the reviews 
written by this user as well as friends explicitly specified by this user.  

Specifically, we picked restaurants, the most popular category at Yelp, as the 
problem domain. We crawled the homepages of all the Yelp restaurants in the Los 
Angeles area that were registered before November 2007, which ended up being 
4,152 restaurants. Then, by following the reviewers’ links in the Yelp restaurant 
homepages, we further crawled the homepages of all these reviewers, which 
resulted in 9,414 users. Based on the friend links in users' homepages, we were 
able to identify friends from the crawled users, and thus reconstruct a social 
network of Yelp users. Note that the friends we collected for each user may only 
be a subset of the actual friends listed on the user’s homepage. That is because we 
require every user in our dataset to have at least one review in the crawled 
restaurants. In other words, the social network that we crawled has a focus on 
dining.  

A preliminary study of this dataset yields the following results. The dataset 
contains 4,152 restaurants 9,414 users, and 55,801 user reviews. Thus, each Yelp 
user, on average, writes 5.93 reviews and each restaurant, on average, has 13.44 
reviews. If we take a closer look at the relations between the number of users and 
the number of their immediate friends (as shown in Figure 1(a)), we can see that it 
actually follows a power-law distribution; this means that most users have only a 
few immediate friends while a few users have a lot of immediate friends. A 
similar distribution also applies to the relations between the number of users and 
the number of reviews, as shown in Figure 1(b). Because most users on Yelp 
review only a few restaurants, it thus causes a data sparsity issue as in most 
recommender systems. In particular, the sparsity of this dataset, i.e., the 
percentage of user/item pairs whose ratings are unknown, is 99.86%. 
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Since homophily is the main assumption for building SNRS, we would like to 
see whether homophily appears in the Yelp dataset. In the following studies, we 
focus on two questions: 1) whether friends tend to review the same restaurant than 
non-friends; and 2) whether friends tend to give similar ratings to those of non-
friends.  

 
3.1  Review Correlations of Immediate Friends  
In this study, we want to know if a user reviews a restaurant, what is the chance 
that at least one of the user’s immediate friends has also reviewed the same 
restaurant? To answer this question, we count, for each user, the percentage of 
restaurants that have also been reviewed by at least one immediate friend. The 
average percentage over all users in the dataset is 18.6%. As a comparison, we 
calculate the same probability by assuming immediate friends review restaurants 
uniformly at random and independently. In a social network with n users, for a 
user with q immediate friends and a restaurant with m reviewers (including the 
current user), the chance that at least one of q immediate friends appears in m 

reviewers is . We calculate this value for every user and 

every restaurant the user reviewed. The average probability over all users is only 
3.7%. Compared to the 18.6% observed in the dataset, it is clear that immediate 
friends do not review restaurants randomly.  

 
(a)                                                           (b) 

Figure 1: (a) The number of users versus the number of immediate friends in the Yelp 
network, and (b) the number of users versus the number of reviews both follow the power-
law distribution. 
 

We also compare the average number of co-reviewed restaurants between any 
two immediate friends and any two random users on Yelp. The results are 0.85 
and 0.03 respectively, which again illustrates the tendency for immediate friends 
to co-review the same restaurants. 
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3.2 Rating Correlations of Immediate Friends 
To validate whether immediate friends tend to give ratings that are more similar 
than those of non-friends, we compare the average rating differences (in absolute 
values) for the same restaurant between reviewers who are immediate friends, and 
non-friends. We find that for every restaurant in our dataset, if two reviewers are 
immediate friends, their ratings of this restaurant differ by 0.88 on average with a 
deviation of 0.89. If they are not, their rating difference is 1.05 and the standard 
deviation is 0.98. This result clearly demonstrates that immediate friends, on 
average, give more similar ratings than do non-friends.  

From the studies above, we can see that immediate friends at Yelp have 
stronger correlations than non-friends when reviewing the same restaurants and 
give similar ratings. In other words, homophily indeed exists when friends rate 
items. This observation further leads us to the design of SNRS in Section 4.  

 
4   A Social Network-Based Recommender System (SNRS) 
Before we present SNRS, let us first use Angela’s story to recall the critical 
factors in our buying decisions. Angela wants to watch a movie on a weekend. 
Her favorite movies are dramas. From the Internet, she finds two movies that are 
particularly interesting—“Revolutionary Road” and “The Curious Case of 
Benjamin Button”. These two movies are all highly rated on the message board at 
Yahoo Movies. Because she cannot decide which movie to watch, she calls her 
best friend Linda with whom she often socializes. Linda has not viewed these two 
movies either, but she knows that one of her office mates had just watched 
“Revolutionary Road” and highly recommended it. So Linda suggests “Why don't 
we go to watch Revolutionary Road together?” Angela is certainly willing to take 
Linda’s recommendation, and has a fun night at the movies with her friend.  

If we review this scenario, we can see at least three factors that really 
contribute to Angela's final decision. The first factor is Angela's own preference 
for drama movies. If Angela did not like drama movies, she would be less likely to 
pick something like “Revolutionary Road” to begin with. The second factor is the 
global popularity of these two movies. If these movies had received unfavorable 
reviews, Angela would most likely lose interest and stop any further investigation. 
Finally, it is the recommendation from Angela's friend, Linda, which leads to 
Angela’s finally choosing “Revolutionary Road.” Interestingly, Linda's opinion is 
also influenced by her office mate. If we consider the decisions that we make in 
our daily lives, many of them are actually influenced by these three factors.  

Figure 2 further illustrates how these three factors impact upon customers' 
final buying decisions. Intuitively, a customer's buying decision or rating is 
decided by both his/her own preference for similar items and his/her knowledge 
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about the characteristics of the target item. A user's preference, such as Angela’s 
interest in drama movies, is usually reflected in the user’s past ratings of other 
similar items, e.g., the number of drama movies that Angela previously viewed 
and the average rating that Angela gave to those movies. Knowledge about the 
target item can be obtained from public media such as magazines, television, and 
the Internet. Meanwhile, the feedback from friends is another source of knowledge 
regarding the item, and they are often more trustworthy than advertisements. 
When a user starts considering the feedback from his/her friends, this user is then 
influenced by his/her friends. Note that such an influence is not limited to that 
from our immediate friends. Distant friends can also indirectly exert their 
influence on us; in the previous scenario, for example, Angela was influenced by 
Linda's office mate. Each one of these three factors has an impact on a user’s final 
buying decision. If the impact from all of them is positive, it is very likely that the 
target user will select the item. On the contrary, if any has a negative influence, 
e.g., very low ratings in other user reviews, the chance that the target user will 
select the item will decrease. Bearing this in mind, we propose SNRS in the 
following sections.  

 
Figure 2: The three factors that influence a customer’s buying decision: user preference for 
similar items, information regarding the target item from the public media, and feedback 
from friends. 

 
4.1  SNRS Architecture 
Let us now introduce the variables used in this chapter, and formalize the problem 
that we are dealing with. Specifically, we use capital letters to represent variables, 
and use capital and bold letters to represent their corresponding variable sets. The 
value for each variable or variable set is represented by the corresponding lower 
case letter.  

Formally, we consider a social network as a graph G = (U, E) in which U 
represents nodes (users) and E represents links (social relationships). Each user U 
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in U has a set of attributes AU as well as immediate neighbors (friends) N(U) such 
that if V∈N(U), then (U, V)∈E. The values of attributes AU are represented as aU. 
Moreover, a recommender system contains the records of users’ previous ratings, 
which can be represented by a triple relation of T = (U, I, R) in which U is the 
users in the social network G; I is the set of items (products or services), and each 
item I in I has a set of attributes A'I. R is a set of item ratings for item I; that is, 
R={RUI.} where RUI = user U’s rating on item I and takes a numeric value k (e.g., k 
={1, 2,..., 5}). Moreover, we define I(U) as the set of items that user U has 
reviewed, and refer to the set of reviewers of item I as U(I). The goal of this 
recommender system is to predict Pr(RUI = k | A’ = a'I, A = aU ,{RVI = rVI : ∀V∈ 
U(I)}); i.e., the probability distribution of the target user U's rating of the target 
item I given the attribute values of item I, the attribute values of user U, and V’s 
rating on item I for all reviewers V on item I. Once we obtain this distribution, RUI 
is equal to the expected value of the distribution. Items with high estimated ratings 
will be recommended to the target user, and users with high estimated ratings on 
the target item are the potential buyers. 

To achieve the goal, we propose SNRS as shown in Figure 3. SNRS consists 
of two major components: an immediate friend inference engine and a distant 
friend inference engine. As we pointed out in Angela’s story, a user’s buying 
decision is influenced not only by his/her immediate friends; his/her distant 
friends can also exert their influence indirectly through his/her immediate friends. 
Therefore, SNRS incorporates these two types of influences, but it deals with 
them differently. In particular, the immediate friend inference engine focuses on 
exploiting the homophily effects among immediate friends, and the distant friend 
inference engine leverages the immediate friend inference engine to bring 
homophily effects among distant friends into consideration.  
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Figure 3: The architecture of a social network-based recommender system. 

More specifically, the immediate friend inference engine contains four 
smaller components: 1) User preference inference engine computes the 
probability distribution of a target user U’s rating based on U’s preferences to the 
items similar to a target item I; 2) Item likability inference engine computes the 
probability distribution of the rating that item I receives based on the 
characteristics of the reviewers similar to user U; 3) Homophily inference engine 
utilizes homophily effects among immediate friends, and computes the probability 
distribution of user U’s rating of item I based on U’s immediate friends’ ratings on 
item I; and finally, 4) an aggregator takes the results from the aforementioned 
three inference engines, combines them, and predicts user U’s rating distribution 
for item I. We shall discuss these components of SNRS in the following sections. 
 
4.2  Immediate Friend Inference 
Since the immediate friend inference engine considers homophily from immediate 
friends only, the probability distribution it estimates is actually Pr(RUI = k | A'=a'I, 
A=aU, {RVI= rVI : ∀V ∈U(I)∩N(U)}). The set of user V is limited from all 
reviewers of item I to U’s immediate friends who also rate item I. Note that 
information from other reviewers of item I will be used in the distant friend 
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inference engine. Since direct computing Pr(RUI = k | A'=a'I, A=aU, {RVI= rVI : ∀V 
∈U(I)∩N(U)}) is difficult, we assume that the influence of three factors, i.e., item 
attributes, user attributes, and ratings of immediate friends, are independent of 
each other. Therefore, we factorize this probability as follows. 

 

(3)

First, Pr(RU = k | A'= a'I,) is the conditional probability that the target user U 
will give a rating k to an item with the same attribute values as item I. This 
probability represents U's preference for items similar to I. Because this value 
depends on the attribute values of items rather than an individual item, we drop 
the subscript I in RUI for simplification. Second, Pr(RI = k | A = au) is the 
probability that the target item I will receive a rating value k from a reviewer 
whose attribute values are the same as U. This probability reflects the general 
likability of the target item I by users like U. For the same reason, because this 
value depends on the attribute values of users rather than a specific user, we drop 
the subscript U in RUI. Finally, Pr(RUI = k | {RVI = rVI : ∀V ∈U(I)∩N(U)}) is the 
probability that the target user U gives a rating value k to the target item I given 
the ratings of U's immediate friends for item I. This is where we actually take 
homophily effects into consideration in SNRS. We shall present the components 
for estimating each of the above probabilities in the following sections.  
 
4.2.1  User Preference 
Pr(RU = k | A'= a'I) measures the target user U's preference for the items similar to 
item I. For example, if we want to predict Angela’s rating to “Revolutionary 
Road,” Pr(RU = k | A'= a'I) gives us a hint of how likely it is that Angela will give 
a rating k to a drama movie which also has Kate Winslet in the cast. To estimate 
this probability, we adopt the naïve Bayes assumption. We assume that the item 
attributes in A', e.g., category and cast, are independent of each other. Therefore, 
we adopt this approach, and have 

 

(4) 

where Pr(A'1, A'2, ..., A'n) can be treated as a normalizing constant, Pr(RU = k) is 
the prior probability that U gives a rating k, and Pr(A'j | RU = k) is the conditional 
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probability that each item attribute A'j in A' has a value a'j given U rated k; e.g., 
Pr(movie type = drama | RU = 4). The last two probabilities can be estimated from 
counting the review ratings of the target user U. Specifically,  

               
and 

(5)

 

 

(6)

where |I(U)| is the number of reviews of user U in the training set, |I(RU = k)| is the 
number of reviews that user U gives a rating value k, and |I (A'j = a'j, RU = k)| is 
the number of reviews to which U gives a rating value k while attribute A'j of the 
corresponding target item has a value a'j. Notice that we insert an extra value 1 to 
the numerators in both equations, and add n, the range of review ratings to the 
denominator in Equation 5, and m, the range of A'j's values, to the denominator in 
Equation 6. This method is also known as the Laplace estimate, a well-known 
technique in estimating probabilities [7], especially on a small size of training 
samples. Because of the Laplace estimate, “strong” probabilities, like 0 or 1, from 
direct probability computation can be avoided.  

Moreover, in some cases when item attributes are not available, we can 
approximate Pr(RU = k | A'= a'I) by the prior probability Pr(RU = k). Even though 
Pr(RU = k) does not contain information specific to certain item attributes, it does 
take into account U's general rating preference; e.g., if U is a generous person, U 
gives high ratings regardless of the items.  

 
4.2.2 Item Likability Inference Engine 
Pr(RI = k | A = au) captures the general likability of item I from users like user U. 
For example, from a reviewer who is similar to Angela (e.g., the same gender and 
age), how likely is it that “Revolutionary Road” will receive a rating of 5? Similar 
to the estimation in user preference, we use the naïve Bayes assumption and 
assume that user attributes are independent. Thus, we have 

 

(7)

where Pr(RI = k) is the prior probability that the target item I receives a rating 
value k, and Pr(Aj | RI = k) is the conditional probability that user attribute Aj of a 
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reviewer has a value of aj given item I receives a rating k from this reviewer. 
These two probabilities can be learned by counting the review ratings on the target 
item I in a manner similar to what we did in learning user preferences. When user 
attributes are not available, we use Pr(RI = k), i.e., item I's general likability, 
regardless of users, to approximate Pr(RI = k | A = au). In addition, Pr(A1, A2, ..., 
Am) is a normalizing constant. 
 
4.2.3   Homophily Inference Engine  
Finally, Pr(RUI =k | {RVI =rVI : ∀V∈U(I)∩N(U))}) is where SNRS utilizes 
homophily effects from immediate friends. To estimate this probability, SNRS 
needs to learn the correlations between the target user U and each of U’s 
immediate friends V from the items that they both have rated previously, and then 
assume each pair of friends will behave consistently on reviewing the target item I 
also. Thus, U's rating can be predicted from rVI according to the correlations. A 
common practice for learning such correlations is to estimate user similarities or 
coefficients, based on either user profiles or user ratings. However, user 
correlations are often so sensitive that they cannot be fully captured by a single 
similarity or coefficient value. Different measures return different results, and 
have different conclusions on whether or not a pair of users is really correlated 
[12]. At another extreme, user correlations can be also represented in a joint 
distribution table of U's and V's ratings on the same items that they have rated; i.e., 
Pr(RUJ, RVI) ∀J∈I(U) ∩ I(V). This table fully preserves the correlations between 
U's and V's ratings. However, in order to build such a distribution with accurate 
statistics, it requires a large number of training samples. This is especially a 
problem for recommender systems, because in most of these systems, users review 
only a few items compared to the large amount of items available in the system, 
and the co-rated items between users are even fewer. Therefore, in this study, we 
use another approach to remedy the problems in both cases.   

In Section 3, we showed that it is true that immediate friends tend to give 
similar ratings more than do non-friends. Therefore, for each pair of immediate 
friends U and V, we consider their ratings on the same item to be close with some 
error ε. That is, 

   .  (8) 

From this equation, we can see that error ε can be simulated from the 
histogram of U's and V’s rating differences Hist(RUJ – RVJ) for ∀J∈I(U)∩I(V). 
Thus, Hist(RUJ – RVJ) serves as the correlation measure between U and V. For 
rating ranges from one to five, Hist(RUJ – RVJ) is a distribution of nine values, i.e. 
from -4 to 4. Compared to similarity measures, it preserves more details in friends' 
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review ratings. Compared to a joint distribution approach, it has fewer degrees of 
freedom.   

Assuming U's and V's rating difference on the target item I is consistent with 
Hist(RUJ – RVJ). Therefore, when RVI has a rating rVI on the target item, the 
probability that RUI has a value k is proportional to Hist(k - rVI).  

 (9) 

When the target user U has more than one immediate friend who co-rates the 
target item, the influences from all of those friends can be incorporated in a 
product of normalized histograms of individual friend pairs.  

 
(10)

where ZV is the normalizing constant for the histogram of each immediate friend 
pair, and Z is the normalizing constant for the overall product.   

Once we obtain Pr(RU = k | A'= a'I,), Pr(RI = k | A = au), and Pr(RUI =k | {RVI 

=rVI : ∀V∈U(I)∩N(U))}), these probabilities are fed into an aggregator where the 
ultimate rating distribution of RUI is shown in Equation 3. R’UI, the predicted value 
of RUI, is the expected value of the distribution. 

  (11)

 
4.3 Distant Friend Inference 
We have just introduced the approach for predicting a target user's rating of a 
target item from those of the user’s immediate friends for the same item. 
However, in reality, there are many cases where no immediate friends of a target 
user have reviewed the same target item; thus, the rating of the target user cannot 
be predicted from immediate friend inference. To solve this problem, we propose 
distant friend inference. 

The idea of distant friend inference is intuitive. Even though V, an immediate 
friend of a target user U, has no rating for the target item, if V has his/her own 
immediate friends who rated the target item, we should be able to predict V's 
rating of the target item via the immediate friend inference, and then to predict U's 
rating based on the predicted rating from V. This process conforms to real 
scenarios as in our previous example, where Linda's office mate influences Linda 
who further influences Angela. Followed by this intuition, we decide to apply an 
iterative classification method [13, 21, 26] for distant friend inference.  

Iterative classification is an approximation technique for classifying relational 
entities. This method is based on the fact that relational entities are correlated with 
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each other. Estimating the classification of an entity often depends on the 
classification estimations of its neighbors. The improved classification of one 
entity will help to infer the related neighbors and vice versa. Unlike traditional 
data mining which assumes that data instances are independent and identically 
distributed (i.i.d.) samples, and classifies them one by one, iterative classification 
iteratively classifies all the entities in the testing set simultaneously because the 
classifications of those entities are correlated. Note that iterative classification is 
an approximation technique, because exact inference is computationally 
intractable unless the network structures have certain graph topologies such as 
sequences, trees or networks with low tree width. In previous research, iterative 
classification has been used successfully to classify company profiles [21], 
hypertext documents [13], and emails [5].  

The pseudo-code for distant friend inference is shown in Table 1. This 
pseudo-code predicts the users' ratings for each target item at a time. The original 
iterative classification method classifies the whole network of users. However, 
since the number of users in social networks is usually large, we reduce the 
computation cost by limiting the inference to a user set N which includes the 
target users of the target item I, and their corresponding immediate friends. In 
each iteration, we generate a random ordering O of the users in N. For each user U 
in O, if U has no immediate friend who belongs to U(I), which is the set of users 
whose rating (either ground truth or predicted value) is observable, the estimation 
of RUI will be skipped in this iteration. Otherwise, Pr(RUI = k | A’=a'I, A=aU, {RVI 
=rVI : ∀V∈U(I)∩N(U))}) will be estimated by immediate friend inference, and RUI 
is then obtained from Equation 11. Because user rating is an integer value, in 
order to continue the iterative process, we round RUI to a close integer value, and 
insert into or update U(I) with RUI if different. This entire process iterates M times 
or until no update occurs in the current iteration. In our experiment, the process 
usually converges within ten iterations.    
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1.  For each item I in the testing set do 
2.      Select a set of users N for inference. N includes the target users of item I and their 
corresponding immediate friends. 
3.      For iteration from 1 to M do 
4.          Generate a random ordering, O, of users in N 
5.          For each user U in O do 
6.              If U has no immediate friend who exists in U(I) 
7.                  Continue 
8.              Else 
9.                  Apply immediate friend inference  
10.                RUI = ∑k  k *Pr(RUI = k | A=aU, A'=a'I, {RVI =rVI : ∀V∈U(I)∩N(U))}) 
11.                Insert into or Update U(I) with RUI if different 
12.            End If 
13.        End For 
14.        If no updates in the current iteration 
15.            Break 
16.        End If 
17.    End For 
18.    Output the final predictions for the target users 
19.End For 

Table 1: Pseudo-code for distant friend inference 

It is worth pointing out that after we compute Pr(RUI = k | A'=a'I, A=aU, {{RVI 

=rVI : ∀V∈U(I)∩N(U))}), there are two other options for updating RUI besides 
rounding the expectation in distant friend inference. The first option is to select 
RUI with the value k such that it maximizes Pr(RUI = k | A'=a'I, A=aU, {RVI =rVI : 
∀V∈U(I)∩N(U))}}. However, by doing so, we are actually discarding clues of 
small probabilities at the same time. After several iterations, the errors caused by 
the greedy selection will be exacerbated. The target users are likely to be 
classified with the majority class. The other option is to directly use Pr(RUI = k | 
A'=a'I, A=aU, {RVI =rVI : ∀V∈U(I)∩N(U))}) as soft evidence to classify other 
users. However, in our experiments, this approach does not return results as good 
as those obtained by rounding the expectation.   
5   Experiments 
We evaluate the performance of SNRS on the Yelp dataset, mainly focusing on 
the issues of the prediction accuracy, data sparsity, and cold-start. We used a 
restaurant's price range as the item attribute. Since there is no useful user attribute, 
we substituted Pr(RI = k | A = au) with Pr(RI = k) when estimating item likability. 
As a comparison, we implemented CF and trust-based collaborative filtering 
(TCF) [8]. The basic idea of TCF is to combine trust-based weighting with 
filtering. It first estimates two types of implicit trust: profile-level and item-level 
trust among users based on their ratings. Then it filters out users with low trust 
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values. To make predictions, it uses the CF. Instead of using user similarity as in 
Equation 1, TCF uses a harmonic mean of user trust and user similarity. 
Compared with their use of implicit user trust, SNRS in fact utilizes interpersonal 
trust underlying friend relationships. For this reason, we are interested in 
comparing the performance of SNRS with that of TCF.   

 
5.1  Cross-Validation 
We carried out this experiment in a 10-fold cross-validation. The prediction 
accuracy was measured by the mean absolute error (MAE), which is defined as 
the average absolute deviation of predictions about the ground truth data over all 
the instances, i.e., target user/item pairs, in the testing set. The smaller the MAE, 
the better the inference. The second metric is the coverage, which is defined as the 
percentage of the testing instances for which the method can make predictions. 

The experimental results are listed in Table 2. From this table, we note that 
SNRS achieves the best performance in terms of MAE (0.727). For example, it is 
lower than that of CF by 14.3% and that of TCF by 6.2%. Thus, the use of social 
network information in SNRS improves the prediction accuracy. In terms of the 
coverage, SNRS reaches the highest coverage (0.807). The reason for this high 
coverage is because SNRS is able to make use of estimated user ratings for 
predictions. Considering the low MAE and high coverage of SNRS, it 
demonstrates that SNRS is promising. In addition, TCF improves the MAE of CF 
at a cost of reduction in the coverage. This is because, in some cases, even though 
the similarity for a pair of users can be estimated, if the trust between them cannot 
be obtained, TCF still cannot make predictions.  

 

 MAE COVERAGE 
SNRS 0.727 0.807 
TCF 0775 0.454 
CF 0.848 0.616 

 

Table 2: Comparison of the MAEs of selected methods in a 10-fold cross validation on the 
Yelp dataset. The methods used are: collaborative filtering (CF), trust-based collaborative 
filtering (TCF), and social network-based recommender system (SNRS). 
 
5.2   Data Sparsity  
CF suffers from problems with sparse data. In this study, we want to evaluate the 
performance of SNRS at various levels of data sparsity. To do so, we randomly 
divide the entire user/item pairs of our dataset into ten groups, and then randomly 
select n groups as the testing set, and the rest as the training set. The value of n 
controls the sparsity of the dataset. At each value of n, we repeat the experiment 
100 times. The performance is measured by the average MAEs and the coverage.  
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Figure 4(a) compares the MAEs of the above methods when the percentage of 
testing set varies from 10% to 70%. There are two observations. First, the MAEs 
of SNRS are consistently lower than those of CF and TCF. Second, although the 
MAEs of all the methods increase as the training set becomes sparser, the MAEs 
of SNRS grow at a much slower pace. For example, the MAEs of SNRS increase 
6.2% from 0.714 to 0.758 when the testing set is increased from 10% to 70% of 
the entire dataset, while the MAEs of CF and TCF grow to 10.7% and 9.5% 
respectively under the same conditions.  

Figure 4(b) compares the coverage of these methods. We noted the coverage 
of SNRS is the highest for all test conditions. For example, when the size of 
testing set is 40% of the whole dataset, the coverage of SNRS is 0.786; while that 
of CF and TCF is 0.713 and 0.401 respectively. The decrease in the coverage of 
SNRS is also the slowest as the training set becomes sparser. In particular, the 
ratio of the decrease in the coverage of SNRS is 9% when the size of the testing 
set changes from 10% to 70% of the entire dataset, while the same ratio of CF is 
85.4%.  

 
        (a)                                                     (b) 
Figure 4: Comparison of the (a) MAEs and the (b) coverage of CF, TCF, and SNRS for 
different testing set sizes. 

5.3   Cold-Start 
Cold-start is an extreme case of data sparsity where a new user has no reviews, in 
which CF cannot make recommendations to the new user. Neither can SNRS do 
so if this new user has no friends. However, in some cases of cold-start, when a 
new user is invited by some existing users in the system, the preference of this 
new user can be estimated by those of the user’s friends. In this study, we 
simulated the latter case of cold-start by creating the following experimental 
settings: 1) Since there is no prior ratings of the target user, we simply set the 
output from Pr(RU = k | A’= a'I,) as a uniform distribution. 2) Because we cannot 
learn the rating correlation between this new user and the user’s friends, we 
directly used the friends' rating distributions on the target item, Pr(RUI | {RVI : 
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∀V∈N(U) ∩ U(I)}), as the result from friend inference. 3) Except for the target 
user, the ratings of all other users were known. 

 We simulated cold-start for every user in the dataset. The resulting MAE is 
0.753 and the coverage is 1. This result demonstrates that even in cold-start, 
SNRS can still perform decently. The coverage of SNRS is high compared to that 
in the 10-fold cross-validation (0.807) because the ratings of every target user's 
friends are all observable in the setting of this experiment.    

  
5.4   Role of Distant Friends 
In Section 5.1, we noticed SNRS achieved the highest coverage because it is able 
to make use of estimated ratings of immediate friends which are inferred from 
distant friends. This observation leads us to further study the role of distant friends 
in SNRS. Specifically, we compared the performance of SNRS with and without 
distant friend inference in a 10-fold cross-validation. The experimental results are 
shown in Table 3. From these results, we can see that by considering the 
influences from distant friends, the coverage of SNRS is increased from 0.364 to 
0.807, which is equivalent to a 122% improvement. However, the improvement is 
achieved at the cost of a slight reduction in the prediction accuracy. In our 
experiments, the MAE increases from 0.683 to 0.727, which is only a 6.4% 
difference. This is consistent with our intuition that the impact from distant friends 
is not as direct as that from immediate friends, and certain errors will be inevitably 
introduced when considering distant friends, but compensated for by the enormous 
gain in the coverage.  
 

 MAE COVERAGE 
With Distant Friend Inference 0.727 0.807 
Without Distant Friend Inference 0.683 0.364 

Table 3: Comparison of the performance of SNRS with and without distant friend 
inference. 

Our experimental results revealed that social network information can be used 
to improve the performance of recommender systems. In the next section, we shall 
discuss how to remedy some issues in SNRS that are caused by heterogeneities in 
social network information. 

 
6   Semantic Filtering of Social Networks 
Social networks contain rich semantics that are valuable to SNRS. However, this 
information can also interfere with the predictions of SNRS if not carefully 
applied. In this section, we discuss the issues of SNRS caused by the 
heterogeneities in social relationships and items.  
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Friends exhibit similar behaviors when selecting items; however, the favorite 
items that friends have in common depend on their social relationships. For 
example, two friends who have common interests in music CDs may not 
necessarily agree about their favorite restaurants. Therefore, to find the favorite 
restaurants, we should not consider friends that share only a common preference 
in music. Instead, an appropriate set of friends needs to be selected according to 
the target items. In fact, we considered this issue when performing experiments on 
the Yelp dataset. Rather than considering all friends listed in users’ profiles, we 
keep only those friends who also have an interest in food. For example, even 
though two real friends may have reviewed many common hotels on Yelp, they 
are not necessarily considered as friends in SNRS unless they both have reviewed 
restaurants. However, this solution is still a gross approximation, because even 
within the domain of restaurants, friends can be further grouped based on their 
opinions on different food categories, price range, restaurant environment, etc.  

Item clustering can theoretically be applied to SNRS to select relevant friends 
for inference. That is, by clustering similar items into different groups, homophily 
effects among friends can be estimated based on the ratings of items within the 
same group. Thus, it is possible for SNRS to identify friends who have a high 
correlation in music CDs but a low correlation in restaurants. However, because 
the number of items used to measure user similarity becomes less due to item 
clustering, the estimated similarity values may not be as accurate as those without 
clustering.  

A better way to select relevant friends is to utilize the semantics in social 
relationships. Unfortunately, such semantics are not readily available in most 
current OSNs. When a user indicates someone as a friend, it is not clear how and 
why they became friends, and more importantly, we do not know in which aspects 
they have homophily effects. Some OSNs ask how friends know each other, e.g., 
whether they were/are classmates or colleagues. Information like this definitely 
helps us understand friend relationships. However, it is still too general to have 
practical application in recommender systems. Instead, the semantics that we 
really want to know from friend relationships should be more specific to the 
domain of interest, in particular, the factors that influence users’ buying decisions. 
For example, in terms of dining, it would be ideal for SNRS to know whether two 
individuals are friends because they have similar taste in food and/or similar 
preference regarding the price of the meals. Although items have many 
characteristics, the factors that matter in most users’ buying decisions in choosing 
restaurants may be limited to only a few common ones, such as food taste, 
nutrition value, price, service and environment. By carefully designed 
questionnaires or other means of marketing analysis, such factors can be obtained. 



21 

Thus, more semantics regarding users’ rating intentions and social relationships 
can be collected.  

By providing users with the mechanism to rate items for each factor in their 
buying decisions, e.g., asking them to rate a restaurant based on food taste and 
price, etc, recommender systems can improve the understanding of users’ rating 
intentions. Currently, most recommender systems ask users to input only overall 
ratings which, however, consist of too many factors and are difficult to 
understand. For example, when a user gives an overall rating of 4 to a restaurant, 
it is not clear whether it is because of the food taste or the price of the meal. On 
the other hand, if a user can provide ratings for those factors, the rationale behind 
the overall rating can be well explained. Besides understanding users’ rating 
intentions, SNRS can also obtain the semantics in social relationships by asking 
users to rate their friends on those factors. A user’s high rating of a friend on a 
specific factor means this user tends to agree with the friend’s opinion, and 
together they have a stronger homophily effect.  

To predict a user’s rating of a factor, SNRS needs to select those friends on 
whom this user has a strong homophily effect regarding the same factor. The 
selection of friends is thus dynamic according to the semantics in the factors of 
user ratings. We call this process semantic filtering, and denote SNRS with 
semantic filtering as SNRS-SF. The framework of SNRS-SF is almost the same as 
that of SNRS, except that immediate friend inference and distant friend inference 
are now based on semantically filtered social networks. 

Since overall rating is not determined by a single factor, relevant friends for 
predicting a user’s overall rating cannot be selected in the same way as we did for 
predicting fine-grained rating. To do so, we consider friends as those who are 
selected as relevant friends for two or more of the most important factors. For 
example, if a system considers that price and taste are the most important decision 
factors in terms of dining, then a user’s relevant friends for predicting overall 
ratings are those users who are considered relevant friends for predicting the 
user’s ratings on price and taste. In the following section, we shall use this 
approach.  

 
6.1 Semantic Filtering Experiments 
Since the Yelp dataset does not have fine-grained user ratings, we cannot use the 
Yelp dataset for semantic filtering experiments. Therefore, we designed an 
experiment for a graduate student class and collected a social network and fine-
grained user ratings from students.  

The goal of this experiment is to predict students' ratings for reading online 
articles. It was conducted in a graduate student class, “Intelligent Information 
Systems,” with 22 students. We first selected 21 articles which focus mainly on 
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four topics: local news, U.S. news, technologies, and culture. These articles all 
contain strong opinions expressed by the authors. The article information and the 
corresponding categories of these 21 articles are listed in Table 4.  

 

Article ID Article Information Category 

1 Adenhart's death is a tragic loss for baseball 
By Kendall Salter, Daily Bruin, April 10, 2009. Local 

2 Aggressive biking, skateboarding poorly fit our walking 
campus 
By Karen Louth, Daily Bruin, March 6, 2009. Local 

3 Backers of stem cell research are on guard 
By Robert T. Garrett, The Dallas Morning News, April 10, 
2009. 

Technology 

4 Budget cuts should not degrade education 
By Daily Bruin, March 12, 2009. Local 

5 File-Sharing Site Admin Sentenced to 6 Months Jail 
By Enigmax, TorrentFreak, April 11, 2009. 

Technology 

6 Google Earth accused of aiding terrorists 
By Rhys Blakely, Times Online, December 9, 2008. 

Technology 

7 Hot Topic: A Gay Marriage Tipping Point? 
By Brian Montopoli, CBS News, April 6, 2009. 

Culture 

8 How Environmentalists Plan to Control Your Life 
By Fox News, April 6, 2009. 

Culture 

9 Identity theft hits close to home 
By Patt Morrison, Los Angeles Times, March 12, 2009. 

Culture 

10 Is an Italian rail company taking L.A. for a ride? 
By Tim Rutten, Los Angeles Times, March 25, 2009. Local 

11 Israel boycott shows ignorance and limits ideas 
By DailyBruin, March 5, 2009. 

Local 

12 L.A.'s animal terrorists 
By Tim Rutten, Los Angeles Times, March 11, 2009. Local 

13 Learning to Love the Bailout 
By The New York Times, April 11, 2009. 

U.S. 

14 Obama Flinches on Immigration 
By Editorials, The New York Times, March 23, 2009. 

U.S. 

15 The age of Friendaholism 
By Meghan Daum, Los Angeles Times, March 7, 2009. 

Technology 

16 The First Showdown on Health Care 
By Editorial, The New York Times, April 11, 2009. 

U.S. 

17 The recession heats up romance novels 
By Meghan Daum, Los Angeles Times, April 4, 2009. 

Culture 

18 Unemployment, and CEO pay, on the rise 
By Tim Rutten, Los Angeles Times, April 4, 2009. 

U.S. 

19 We need a bailout too 
By Rosa Brooks, Los Angeles Times, February 19, 2009. 

U.S. 

20 Why not gay marriage? 
By Raymond Lesniak, NJ.com, August 16, 2007. 

Culture 

21 Wild wild Web 
By Patt Morrison, Los Angeles Times, February 26, 2009. 

Technology 

Table 4: The article information 
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Before asking these students to review the online articles, we first collected 
their demographic information, including gender, age, student type, employment, 
and religion. We then asked the students to answer a set of survey questions 
related to the articles as shown in Table 5. These survey responses will provide 
prior information about the students. 

 

Q1 Has the rise in unemployment affected you or someone in your family? 
Q2 Given the current state of the economy, are you concerned about getting a job after 

you graduate? 
Q3 Are you concerned about increased government spending? What if increased 

government spending leads to higher tuition cost?  
Q4 Are you affiliated with a political party?  
Q5 Do you consider yourself conservative, liberal or moderate? 
Q6 Does the government do enough to regulate immigration? 
Q7 Do you support gay marriage? 
Q8 Do you think there is a need for health care reform? 
Q9 Should every American have health insurance? 
Q10 Do you agree with the use of stem cells for medical research? 
Q11 Do you know anyone with an incurable illness who may benefit from stem cell 

research? 
Q12 Should websites and tools that could be used improperly be outlawed? (Google 

Earth, Bit Torrent, P2P, etc.) 
Q13 South Korea has a three-strikes law where repeated copyright offenders can be 

banned from the Internet? Do you think this is fair? 

Table 5: Survey questions. 
 

We then asked the students to review, as shown in Figure 5, every article and 
give ratings (from 1 to 5, with 5 being the best) on the following four factors: 1) 
Interestingness: Is the article interesting? 2) Agreement: How much do you agree 
with the author? 3) Writing: Is the article well written? and 4) Overall: Overall 
evaluation. The reason we include the first three ratings is because they usually 
play the most important roles when we give an overall score to an article. Since 
most students did not know each other before the experiment, it would be difficult 
to form a social network from their original relationships. We therefore divided 
the students into groups and let them get to know each other through discussions 
of the articles. Specifically, we divided the students into three groups twice. The 
first grouping was based on students' ethnicities, and the second grouping was 
based on students' responses to the survey questions. The goal of these groupings 
was to organize the students in such a way that the students in a group were more 
likely to be friends after the group discussions. Each group then had a meeting to 
discuss the articles. During the discussions, every student needed to explain the 
reasons why s/he liked or disliked each article. Thus, the other members in the 
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group were able to know more about the student. After the discussions, the 
students evaluated other group members, as shown in Figure 6, (using ratings 
from 1 to 3) according to the following three aspects: 1) Do you have common 
interests on the articles? 2) Do you agree with his/her opinions on the articles? 3) 
Do you have common judgments about the author's writing skill? Since the 
students may rate each other differently, i.e., one considers the other as a friend, 
but not vice versa, the social relationship in this dataset is directional. The students 
were allowed to revise their previous ratings of the articles if they had a new 
understanding of the articles after the discussion. 

 
Figure 5: Form for reviewing an article. 

Compared to the Yelp dataset, there are three differences in this dataset. First, 
instead of having an overall rating, each article now has three fine-grained ratings 
(interestingness, agreement, and writing) which more clearly reflect students’ 
opinions on the articles. Second, friend relationships are based on buying decision 
factors rather just friendship. We are now able to know whether the friendship is 
based on their similar interests or similar opinions, etc. Third, since every student 
reviewed every article in this experiment, the student/article rating matrix is 
completely filled in. Thus, the data sparsity of the dataset is 0. Compared to the 
extremely sparse data in the Yelp dataset, the fully observed students’ ratings in 
this experiment allow us to measure the performance of SNRS-SF under the 
sparseness test in a full range. 
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Figure 6: Form for reviewing a group member. 

 
6.2 Experiment Setup 
We implement the following methods for performance comparison. 

Collaborative filtering (CF). When predicting fine-grained student ratings, we 
select similar users based on their fine-grained ratings on all articles.  

Collaborative filtering with item clustering based on item category (CF-C). In 
this method, 21 articles are clustered into four groups according to their 
categories. To predict a student’s rating of an article, we measure his/her Pearson 
coefficient with other students based on their ratings of the articles in the 
corresponding group. 

Collaborative filtering with item clustering by running K-means on students’ 
ratings (CF-K). In this method we use K-means to cluster 21 articles based on 
their rating similarities. Since there are four types of ratings (three fine-grained 
ratings and an overall rating), we have four sets of clusters. In each set, the articles 
are clustered into three groups. Similar to CF-C, to predict each student’s rating of 
an article, we measure Pearson coefficient of student pairs based on their ratings 
of the articles in the same cluster. 

SNRS. In this method, we consider student V as student U’s friend if U rates V 
with a value 3 on at least one of the three factors. The social network of these 
students is shown in Figure 7(a). Each node in the figure represents a student. If 
student U considers student V as a friend, then there is a corresponding directed 
edge from U to V.  

SNRS with semantic filtering (SNRS-SF). In this method, when predicting 
fine-grained user ratings, we consider student V as student U’s friend if U rates V 
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with a value of 3 on the given factor. When predicting overall ratings, we select V 
as U’s friend if U rates V with a value of 3 on at least two of the three factors. 
Figure 7(b) shows the social network of the students after we apply semantic 
filtering to overall ratings. When compared to Figure 7(a), we can see that many 
social relationships have been pruned. For example, before we apply semantic 
filtering, there are 179 friend links in Figure 7(a), and on average each student has 
8.14 friends. In Figure 7(b), there are 94 friend links, and each student on average 
has 4.27 friends after semantic filtering.  

Similar to the previous section, we control the sparseness of the dataset by 
randomly selecting a different percentage of the dataset as the testing set. For each 
size of the testing set, we repeated the experiment 100 times. For each pair of 
student/article in the testing set, we predicted the target student's fine-grained 
ratings and overall ratings of the target article by applying the above methods. 
MAEs and coverage are used as the performance metrics.    

      
(a)           (b) 

Figure 7: The student social network (a) before and (b) after semantic filtering. Each node 
represents each student. For a pair of students U and V, node U has a directed edge to node 
V if  U rates V with a value of 3 on at least one of the three factors and  U rates V with a 
value of 3 for at least two of the three factors. 
 
6.3 Experimental Results  
Figures 8(a) through (d) show the MAEs for predicting student ratings of the 
interestingness, agreement, writing, and overall aspects of the articles. We notice 
that the trends of SNRS and SNRS-SF are very different from those of CF, CF-C, 
and CF-K. The MAEs of SNRS and SNRS-SF remain almost constant at all levels 
of data sparseness, while CF, CF-C, and CF-K all significantly increase as the 
sparseness increases. The improvements of MAE for SNRS and SNRS-SF over 
the CF group increase as data sparseness increases. For example, in Figure 8(a), 
when the sparseness is 90%, the MAEs of CF, SNRS, and SNRS-SF are 0.974, 
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0.764, and 0.705 respectively. This implies 21.6% and 27.6%  prediction accuracy 
improvements over CF. These results reveal that the performance of recommender 
systems can be significantly improved by effectively using the semantic 
information in social networks, as consistent with our findings on the Yelp 
dataset. Further, the MAEs of SNRS-SF are lower than those of SNRS. 
Specifically, SNRS-SF yields average MAE reduction over SNRS of 9.8%, 
11.6%, 7.4%, and 6.2% for predicting student ratings on interestingness, 
agreement, writing and overall aspects respectively. These results illustrate that 
applying semantic filtering can further improve the SNRS prediction accuracy. 
We note that the MAEs of CF, CF-C, and CF-K have similar results. CF-C 
perform worst among these three methods which implies that item clustering does 
not improve the prediction accuracy of CF as also represented in [19].  

The trends of the coverage of all the above methods at different sparseness 
are shown in Figure 9. We notice that initially the coverage of CF, CF-C and CF-
K is higher than that of SNRS and SNRS-SF. For example, in Figure 9(a), when 
the sparseness is 10%, the coverage of CF, CF-C and CF-K is 1, 1, and 0.897 
respectively, while that of SNRS and SNRS-SF is 0.865 and 0.744. However, as 
the sparseness increases, the coverage of all the CF group decreases drastically. In 
particular, the coverage of CF starts to decrease significantly after the sparseness 
exceeds 0.7. It reaches almost 0 at the sparseness 0.9. The coverage of CF-C and 
CF-K start to decrease significantly even earlier when the sparseness exceeds 0.4. 
This is because item clustering makes the number of items in each cluster smaller; 
thus, the coverage has a greater impact due to the sparseness. On the other hand, 
we notice that the coverage of SNRS and SNRS-SF are rather insensitive to the 
sparseness. It starts to drop after the sparseness exceeds 0.8 and with a slower rate 
than CF, CF-C and CF-K. For example, even when the sparseness is 0.9, the 
coverage of SNRS and SNRS-SF is still 0.789 and 0.645, as shown in Figure 9(a). 
The coverage of SNRS-SF is slightly lower than that of SNRS because of fewer 
friends for each student.  
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(a)  

 
(b) 

 
(c) 

 
(d) 

Figure 8: The comparisons of the MAEs of CF, CF-C, CF-K, SNRS, and SNRS-SF for 
predicting fine-grained ratings on (a) interestingness (b) agreement, (c) writing, and (d) 
overall aspects of the articles.  
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(d) 

Figure 9: The comparisons of the Coverage of CF, CF-C, CF-K, SNRS, and SNRS-SF for 
predicting fine-grained ratings on (a) interestingness (b) agreement, (c) writing, and (d) 
overall aspects of the articles. 
 
7 Trust in SNRS 
SNRS implicitly assumes that all users in the social network are trustworthy. 
However, in most recommender systems, this assumption is not necessarily valid. 
In this section, we shall discuss two trust issues, and propose how SNRS can be 
extended to handle them. 

 
7.1 Shilling Attacks from Malicious Users 
Intrigued by incentives, malicious users in recommender systems can purposely 
provide false reviews to promote their own products or attack similar products of 
competitors. For example, in a user-based collaborative filtering system, a 
malicious user can simply fake a set of reviews with the exact same ratings as 
those of a target user. Then this malicious user will be considered as the most 
similar user of the target user. If malicious users want to promote their own 
products, they can simply give the products high ratings, and these products will 
have a high chance of being recommended to the target user. This problem is 
known as shilling attacks.  

The main reason that shilling attacks can become threats is that recommender 
systems rely too much on user rating similarity but overlook another important 
aspect, i.e., trust among users. Some studies have introduced explicit trust defined 
by users [16] and implicit trust inferred from user ratings [8], and have shown 
some improvements. However, unlike these approaches, SNRS is in essence built 
on trust, and thus it is able to handle shilling attack problems. Instead of using 
rating similarity, SNRS makes predictions by exploiting homophily among 
friends. Since users know their friends themselves, it is less likely for them to add 
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malicious users as friends. If a user suspects that some friends may be potential 
malicious users, the user can remove those friends from the friend lists. Thus, in 
SNRS, the fact that two users are friends indicates the trust between them. In 
addition, with the capability of rating friends on each factor of a user’s buying 
decisions (as discussed in Section 6), SNRS not only knows who are friends, but 
also on which aspect of buying decisions two friends trust each other. Therefore, 
the risk of shilling attacks can be further reduced.  

 
7.2 Misleading by Friends with Unreliable Knowledge 
It is worth pointing out that malicious users are not the only cause of the trust 
problems in recommender systems. Due to limited knowledge of target items, 
users who are trustworthy may still provide inaccurate reviews that do not truly 
reflect the truth of the items. Since SNRS relies on friends’ opinions to make 
predictions, those inaccurate reviews will produce misleading recommendations of 
SNRS. For example, Alice has a taste similar to her friend Bob for Italian food, 
but Bob seldom goes to Thai restaurants. In this case, even though Bob is 
trustworthy to Alice, his opinion on Thai restaurants may not be so useful. To the 
best of our knowledge, little research if any has been devoted to solving problems 
caused by users with unreliable knowledge.  

The key problem in this example is that the quantification of user correlations 
is based on all of the common items that every pair of users has reviewed, and it 
does not consider differences in item categories, like the difference between Thai 
food and Italian food. Conceptually, SNRS can solve this problem by introducing 
item clustering, e.g. the clustering of items based on their contents or rating 
similarities (as shown in Section 6). Therefore, SNRS can quantify two friends’ 
homophily effects based only on the items within the same cluster as a target item. 
However, in practice, this solution may not work well because item clustering will 
make the data sparser. 

To solve this problem, we propose to relax item categories when quantifying 
homophily effects. Instead of treating different categories as totally isolated, we 
consider some of them as still related based upon domain knowledge such as item 
taxonomies. For example, assuming we know from item taxonomies that Chinese 
food and Thai food are all Asian food, thus Chinese food is more similar to Thai 
food comparing to Italian food. Therefore, even though we cannot use Bob’s 
preference for Italian food, we can still leverage his preference for Chinese food, 
if any, to guide the recommendation to Alice about Thai food. 

In particular, we model item taxonomies into a type abstraction hierarchy 
(TAH) [6]. A TAH is often used to facilitate approximate query answering. It has 
a tree structure representing objects at different levels of abstraction. The leaf 
nodes in a TAH are usually the most specific objects.  As the level goes up, the 



32 

nodes in the TAH become more general. In Figure 10, we show a sample TAH 
generated from food taxonomy. Let us refer to the leaf nodes in a TAH generated 
from item taxonomy as item categories, such as Thai food and Chinese food. 
Thus, every item in the system can be mapped into a corresponding leaf node 
according to its category.    

 
Figure 10: A TAH for relaxation of food styles  

 

Let us assume that a target item belongs to category T; C refers to each category in 
item taxonomy; IC is the set of items of category C. We define WCT as the 
similarity between category C and category T. Thus, homophily effects among 
friends U and V can be estimated as,  

 

        I ∈I(U)�I(V) (12) 

Equation 12 counts U’s and V’s rating differences on all of their commonly 
reviewed items. But for each item I that they both reviewed, the contribution of 
the rating difference on I to the final histogram is multiplied by a factor of WCT 
which is the similarity between the categories to which the target item and item I 
belong.  

Given two categories C and T, the value of WCT can be decided based on the 
following two observations. First, let us define D(C, T) as the distance from 
categories C and T to their lowest common ancestor LCA(C, T) in the TAH. (Note 
that C and T are the leaf nodes in the same depth.) The smaller the distance, the 
closer C and T are in the domain space; thus, they are more closely related. 
Second, categories in a specific domain are more strongly related to one another 
than in general domains. We use |LCA(C, T)| as the number of all the leaf nodes 
under LCA(C, T) to measure its generalities. The larger |LCA(C, T)|, the more 
general the domain space that both C and T belong to. Following these 
observations, we propose to measure WCT as in Equation 13. 

 

 

(13) if C = T, 

otherwise. 



Therefore, the similarity between Thai food and Chinese food is = 0.5; 

while the similarity between Thai food and Italian food is = 0.19. Since 

0.19 is less than 0.5, it is consistent with our intuition. Note that similar intuitions 
have been used to estimate the similarity between two concepts in a TAH [15]. 
The difference in our work is that we estimate the similarity between leaf nodes in 
a TAH, while [15] has no such a restriction. In addition, Equation 13 assumes a 
linear decay model of WCT in D(C,T), which is arguable. Future work can be made 
on selecting a better model to fit a specific domain.   

Once we obtain WCT, the homophily of a pair of users can be quantified (as 
shown in Equation 12). By doing so, even though these two users may not have 
enough commonly reviewed items in the same category as a target item, their 
rating correlations in other categories can remedy the data sparsity if used 
properly.  
 
8 Related Work 
Studies show that recommendations from friends are far more useful than those 
from recommender systems [28]. However, the systems that really utilize 
interpersonal relationships in social networks are few, if in fact there are any. 
Most recommender systems use information in social networks, especially user 
profiles, as an extra information resource to remedy the data sparsity issue. For 
example, in [23] the author uses contents in user profiles to find similar users. In 
[17] the authors use approximated predictions from contents in user profiles to 
“enrich” the original user/item rating matrix. However, none of them uses 
homophily among friends for inference. 

Most directly related work is found in [33]. The authors proposed to combine 
social networks with recommender systems. They estimated the weights in 
collaborative filtering with an exponential function of the minimal distance of two 
users in a social network. This is an over-simplified correlation between users. 
Distance has no semantic meaning of similarity. Two distant friends may still 
share common opinions. As noted by the authors, this approach does not work 
well. [33] proposed another approach to reduce the computational cost in 
recommender systems by limiting the candidate similar users within a user’s 
social network neighbors. This approach will actually exacerbate the data sparsity 
problem of a recommender system, because there are far fewer candidates of 
similar users than before. In contrast, we use a histogram of friends’ rating 
differences to quantify homophily effects among friends rather than using their 
minimal distances. In addition, we consider the impact not only from immediate 
friends, but also from distant friends in an iterative classification. 
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9 Conclusions 
Social networks provide an important source of semantic information regarding 
user behaviors and friend interactions. This information, especially homophily 
effects among friends, is valuable to recommender systems. Through statistical 
analyses of the dataset crawled from Yelp.com, we show that friends undoubtedly 
tend to review the same restaurants and give more similar ratings than non-friends. 
Based on these observations, we designed a social network-based recommender 
system—SNRS. To the best of our knowledge, this is the first attempt to 
incorporate the semantics of social networks into recommender systems. 

SNRS predicts user ratings by exploiting information in social networks, 
including the user’s own preferences, item’s likability, and homophily effects 
among friends. It incorporates impacts from distant friends via an iterative 
classification. We evaluated the performance of SNRS with several other methods 
on the Yelp dataset through a 10 fold cross-validation, and SNRS achieves the 
best result. In terms of prediction accuracy, it yields a 14.3% improvement 
compared to that of CF; while in terms of coverage, it yields a 31% improvement 
compared to CF. In the sparsity test, SNRS returns consistently accurate 
predictions and high coverage over a wide range of data sparsity. Even in a cold-
start test, SNRS still performs reasonably well. We also studied the role of distant 
friends in SNRS, and found that when the influences from distant friends are 
considered, the coverage of SNRS can be significantly improved with only a slight 
reduction in the prediction accuracy.  

To deal with heterogeneities in social networks, we further proposed an 
approach for filtering social networks based on the semantics in fine-grained user 
ratings and ratings of friends. Using this approach, relevant friends can be selected 
for inference according to the type of target items. A specific class experiment   
was designed to evaluate the effectiveness of semantic filtering in the social 
network that was formed by a large group of graduate students. The experimental 
results reveal that SNRS with semantic filtering can further improve the prediction 
accuracy by 11.6%.  

Finally, we investigated two trust issues in SNRS. We showed that SNRS has 
the capability of handling shilling attacks as well as the problems caused by 
friends with unreliable knowledge. Further research in these areas is desirable. 

In our future work, we propose to study the performance of SNRS in other 
datasets, such as categories other than restaurants on Yelp. We also want to 
investigate how to apply SNRS to other Web 2.0 domains such as Facebook. For 
example, Facebook recently started personalizing user contents such as news 
feeds. Intuitively, our framework may also be applicable to the recommendations 
of news feeds, since the recommendation has to consider users' own preferences, 
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the global popularity of news itself (i.e., item likability), and users’ social 
networks.      
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