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Abstract

Since privacy information can be inferred via social relations, the privacy confidentiality problem becomes

increasingly challenging as online social network services gain more popularity. Using a Bayesian network approach

to model the causal relations among people in social networks, we find that personal attributes can be inferred with

high accuracy especially when people are connected with strong relations. We then propose schemes to protect

privacy by selectively hiding or falsifying information based on the characteristics of the social network. We

demonstrate through experiments and analysis that these methods are much more effective than randomly altering

information.

I. INTRODUCTION

With the increasing popularity of Social Network Services (SNS), more and more online societies such as

Friendster, Blogger, Orkurt and Livejournal have emerged. Unlike traditional personal homepages, people

in these societies not only publish their own personal profiles (e.g., age, gender, interests, professions and

weblogs), but also reveal their social relations such as friends and family. As these networks grow rapidly,

many interesting research topics arise [2]–[4]. Unfortunately, among these topics, privacy has not been

fully addressed. Given the huge amount of personal data and social relations available in online social

networks (for example, Friendster claims that it owns over 24 million personal profiles), it is foreseeable

that privacy may be compromised if people are not careful in releasing their personal information.

This research is in part supported by NSF grant # IIS-03113283. A preliminary version of this work was presented in [1].
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Information privacy has become one of the most urgent research issues in building next-generation

information systems. A great deal of research effort has been devoted to protecting people’s privacy.

Aside from recent developments in cryptography and security protocols that provide secure data transfer

capabilities, there has been effort in enforcing industry standards (e.g., P3P [5]) and government policies

(e.g., the HIPAA Privacy Rule [6]) to grant individuals control over their own privacy. These techniques

and policies aim to effectively block direct disclosure of sensitive personal information. For instance,

the Platform for Privacy Preferences Project (P3P) enables Web users to explicitly specify their privacy

preferences during their interaction with Web applications such as online shopping. Users will be alerted

when applications fall short of their privacy preferences. However, to the best of our knowledge, none of

the existing techniques handle indirect disclosure which can often be achieved by intelligently combining

pieces of seemingly innocuous or unrelated information. Specifically, in scenarios like social networks,

we realize that even if individuals do not release their personal information to the public, such data can

still be disclosed by individuals’ social relations.

Intuitively, friends tend to affect each other. Individuals connected in social networks often share

common attributes. For instance, in a dance club, people come together because of their common interest;

in an office, people get acquainted with each other due to similar professions. Therefore, it is possible that

one may be able to infer someone’s attribute from the attributes of his/her friends. For example, Joe does

not wish to release his salary information to other people. However, a third party, such as an insurance

company, can use online societies to obtain a report on Joe’s social network, which lists Joe’s friends and

colleagues and their personal information. After looking carefully into this report, the insurance company

might realize that most of Joe’s colleagues are professors at a university. Thus, they can deduce that

Joe is also a professor with a high probability (if not provided by Joe himself). With the knowledge of a

professor’s salary range, the insurance company can in turn figure out Joe’s approximate salary. Therefore,

in this example, privacy is indirectly disclosed from Joe’s social relations rather than from himself directly,

and existing techniques such as P3P cannot prevent such a disclosure.
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In this paper, we study protection techniques for potential privacy disclosure in social networks. We

first analyze under what conditions and to what extent privacy might be disclosed by social relations.

More specifically, we propose an approach to map social networks into Bayesian networks. Using caus-

ability encoded in Bayesian networks, we successfully model social relations among people. We perform

experiments on a real social network structure and study the impact of social network characteristics on

the inference result. Based on these results, we then propose privacy protection schemes and evaluate

their effectiveness.

The major contributions of this paper are as follows.

• Identify that privacy disclosure can take place via social relations in social networks.

• Present an approach to model social networks into Bayesian networks and use Bayesian inference to

predict sensitive attribute values.

• Study the impact of such social network characteristics as influence strength, prior probability, and

society openness on Bayesian inference.

• Propose methods for privacy protection by selective altering individuals’ social network.

• Evaluate the effectiveness of the privacy protection methods via experimental and analytical study.

The paper is organized as follows. In Section II, we introduce the background and related work. In

Section III, we explain the target scenarios. In Section IV, we propose a Bayesian network approach to

infer personal attributes. In Section V, we discuss three key characteristics of social networks and conduct

experiments to investigate their impact on inference result. We propose privacy protection schemes and

compare their performance in Section VI, and investigate the effectiveness of these protection methods

using analysis in Section VII.
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II. BACKGROUND AND RELATED WORK

A. Social Networks

Social network analysis has been conducted in many areas. Milgram’s classic paper [7] in 1967 estimates

that every person in the world is at most six hops away from one another. The recent success of the

Google search engine [8], which applies social network ideas to the Internet, draws great attention on

social network analysis again. For instance, Newman [9] reviews the relationship between graph structure

and dynamical behavior of large networks. The ReferralWeb project mined social networks from a wide

variety of public-available information [3]. An individual’s decision to buy products may be influenced

by his/her friends, so social network is modeled as a Markov random field to find customers’ network

value in [2]. In contrast, we map a social network into a Bayesian network, and a person’s attribute can

be reflected from his/her friends’ attributes.

B. Bayesian Networks

A Bayesian network [10]–[12] is a graphic representation of the joint probability distribution over a set

of variables. It consists of a network structure and a collection of conditional probability tables (CPT).

The network structure is represented as a Directed Acyclic Graph (DAG) in which each node corresponds

to a random variable and each edge indicates a dependent relationship between connected variables. In

addition, each variable (node) in a Bayesian network is associated with a CPT, which enumerates the

conditional probabilities for this variable, given all the combinations of its parents’ value. Thus, for a

Bayesian network, the DAG captures causal relations among random variables, and CPTs quantify these

relations.

Bayesian networks have been extensively applied to fields such as medicine, image processing, and

decision support systems. Since Bayesian networks include the consideration of network structure, we

use them as our inference model. Individuals in a social network can be represented as nodes and the

relations between individuals can be modelled as edges in Bayesian networks.
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Diabetes = t Heart Disease = tX1X2 X3Diabetes =t Heart Disease = t Diabetes = t Heart Disease = ? Diabetes = t Heart Disease = fX4
(a)

Heart Disease = tX1X2 X3Heart Disease = t Heart Disease = ? Heart Disease = fX4Sister BrotherParent
(b)

Fig. 1. Illustrator of Social Network Inference (a) Inference across attributes. (b) Inference over relations.

III. PROBLEM STATEMENT

Privacy is a subjective notion. Information such as social security numbers or credit card numbers is

considered as privacy by most people. On the other hand, some information, e.g, age, profession and GPA

may not be considered as privacy depending on people. The first type of privacy seldom appears in social

network, and most privacy disclosure in social networks is related to the second type. In this paper, we

focus our discussion on the second type of privacy, and refer to any personal attribute that is not released

by its owner as privacy. Specifically, for a given attribute A, we define the value of an individual as t

(true) if this individual possesses A, or f (false) otherwise.

Data mining may be used to predict missing attribute values by finding correlations of attributes. For

example, Fig. 1(a) shows a network of four people X1, X2, X3 and X4. Given that we know person

X1 has diabetes, we want to predict whether X1 suffers from heart disease or not. From the rest of the

network, we learn that two thirds of people having diabetes also have heart disease; therefore, we can

predict that there is approximately 67% chance that X1 also has heart disease.

An alternative solution is to exploit social relations among people to predict their attribute values.

Fig. 1(b) shows an example of how such information can be utilized. In this figure, four persons are

connected by family relationships. From this social network, we discover that most of X1’s family members

have heart disease. Knowing that heart disease is prone to inheritance, we conclude that X1 has heart

disease with a high probability. In this example, prediction is solely based on inference via social relations.
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We focus on the latter approach in our study. We are mainly interested in how inference utilizes

the knowledge concerning social relations and how privacy protection can be achieved to prevent such

inference. Without the loss of generality, we perform single attribute analysis, that is, we study privacy

inference and protection which involves only one attribute A. It is worth pointing out that we could also

utilize the knowledge from data mining approaches to improve the inference accuracy.

In the real world, people are acquainted with each other via different types of relations, and personal

attributes are only sensitive to a specific set of relations. For example, heart disease is sensitive to family

relationships but not to officemate relationships. Therefore, to infer individuals’ privacy from their social

relations, one must be able to differentiate social relations between connected people and consider the

characteristics of these relations in the inference.

To simplify the problem, we focus on privacy inference and protection in homogeneous societies where

people are connected by a single type of social relations, and the attribute A that we study is sensitive to

this social relation. Homogeneous networks can be viewed as small closely related groups where people

are connected by a relatively pure relationship. In fact, real social networks can be considered as the

combination of many homogeneous societies.

In the following sections, we will first investigate how privacy can be inferred in social networks and

then study how to protect privacy from being inferred.

IV. BAYESIAN INFERENCE VIA SOCIAL LINKS

To study privacy inference, we propose to use Bayesian networks to model the causal relations among

people in social networks. Specifically, if we want to infer the attribute value for a particular individual

(referred to as query node Z), we will first construct a Bayesian network from Z’s social network. We

then analyze the Bayesian network and obtain the probability that Z has this attribute.

We start from a simple case in which privacy inference only involves the direct friends of the query

node, and then treat the more complex case where attribute values from friends at multiple hops away

are considered.
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Fig. 2. Reduction of a social network (a) into a Bayesian network to infer Z from his friends via Localization assumption (b) and via Naive

Bayesian Assumption (c). The shaded nodes represent friends whose attribute values are known.

A. Single Hop Inference

Let us consider the case in which we know the attribute values for all the direct friends of the query

node Z. We define Zij as the jth friend of Z at i hops away. If a friend can be reached via more than one

route from Z, we use the depth of the shortest path as the value of i. Let Zi be the set of Zij (0 ≤ j < ni),

where ni is the number of Z’s friends at i hops away. For instance, Z1 = {Z10, Z11, ..., Z1(n1−1)} is the

set of Z’s direct friends who are one hop away. Note that Z can also be represented as Z00.

An example of a social network with six friends is shown in Fig. 2(a). In this figure, Z10, Z11 and Z12

are direct friends of Z. Z20 and Z30 are the direct friends of Z11 and Z20 respectively. In this scenario,

the attribute values of Z10, Z11, Z12 and Z30 are known (represented as shaded nodes).

1) Bayesian Network Construction: To facilitate the construction of the Bayesian network, we make

two assumptions.

Intuitively, our direct friends have more influence on us than friends who are two or more hops away. We

assume that it is sufficient to consider only the attribute values of direct friends Z1 to infer Z’s attribute.

Once all the attribute values of Z1 are known, knowing the attribute values of friends at multiple hops

away provides no additional information for predicting Z’s attribute. Formally, we state this assumption

as follows.

Localization Assumption Given the attribute values of the direct friends Z1 of the query node Z,
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friends at more than one hop away (i.e., Zi for i > 1) are conditionally independent of Z.

Based on this assumption, Z20 and Z30 in Fig. 2(a) can be pruned, and the inference of Z only involves

Z10, Z11 and Z12 (Fig. 2(b)). Then the next question is how to decide a DAG linking the remaining

nodes. If the resulting social network does not contain cycles, a Bayesian network can be obtained

immediately. Otherwise, we must employ more sophisticated techniques to remove cycles, such as the

use of auxiliary variables to capture non-causal constraints (exact conversion) and the deletion of edges

with the weakest relations (approximation conversion). We adopt the latter approach and make a Naive

Bayesian Assumption. That is, the attribute value of Z influences that of Z1j (0 ≤ j < n1), and there is a

direct link pointing from Z to each Z1j . By making this assumption, we consider the inference paths from

Z to Z1j as the primary correlations, and disregard the correlations among the nodes in Z1. Formally, we

have:

Naive Bayesian Assumption Given the attribute value of the query node Z, the attribute values of

direct friends Z1 are conditionally independent of each other.

This Naive Bayesian model has been used in many classification/prediction applications including

textual-document classification. Though it simplifies the correlation among variables, this model has been

shown to be quite effective [13]. Thus, we adopt this assumption in our study. In Fig. 2(c), we obtain a

final DAG by removing the connection between Z10 and Z11 in Fig. 2(b).

2) Bayesian Inference: After modelling Z’s social network into a Bayesian network, we use the Bayes

Decision Rule to predict the attribute value of Z. For a general Bayesian network with maximum depth i,

let the value for Z, z̄, be the attribute value with the maximum conditional probability given the observed

attribute values of other nodes in the network (i.e., the maximum posterior probability):

z̄ = arg max
z

P (Z = z | Z1, Z2, ..., Zi) z ∈ {t, f}. (1)

Since single hop inference involves only direct friends Z1 which are independent of each other, the

posterior probability can be further reduced using the conditional independence encoded in the Bayesian
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network:

P (Z = z | Z1) =
P (Z1 | Z = z) · P (Z = z)∑
z[P (Z1 | Z = z) · P (Z = z)]

=
P (Z = z) ·∏n1−1

j=0 P (Z1j = z1j | Z = z)
∑

z[P (Z = z) ·∏n1−1
j=0 P (Z1j = z1j | Z = z)]

,

(2)

where z and z1j are the attribute values of Z and Z1j respectively (0 ≤ j < n1, z, z1j ∈ {t, f}) and the

value of each z1j is known.

To compute (2), we need to further learn the Conditional Probability Table (CPT) for each P (Z1j | Z).

Since the attribute values for each pair of friends are fixed, so it is infeasible to learn their CPT. Therefore

we apply the parameter estimation [12] technique on the whole sample network. For every pair of parent

X and child Y , we obtain:

P (Y = y | X = x) =
# of friendship links connecting people with X = x and Y = y

# of friendship links connecting a person with X = x
(3)

where x, y ∈ {t, f}. P (Y = y | X = x) is the CPT for every pair of friends Z1j and Z in the network.

Since P (Z1j | Z) is the same for 0 ≤ j < n1, Z1j becomes equivalent to one another, and the posterior

probability now depends on N1t, the number of direct friends with attribute value t, rather than individual

attribute values. We can rewrite the posterior probability P (Z = z | Z1) as P (Z = z | N1t = n1t). If

N1t = n1t, we obtain:

P (Z = z | N1t = n1t) =
P (Z = z) · P (Z10 = t | Z = z)n1t · P (Z10 = f | Z = z)n1−n1t

∑
z[P (Z = z) · P (Z10 = t | Z = z)n1t · P (Z10 = f | Z = zn1−n1t ]

. (4)

After obtaining P (Z = t | N1t = n1t) and P (Z = f | N1t = n1t), we predict Z has attribute value t if

the former value is greater than the latter value, and vice versa.

B. Multiple Hops Inference

In single hop inference, we assume we know the attribute values of all the direct friends of Z. However,

in reality, those attribute values may not be observed since people hide their sensitive information, and

the Localization Assumption in the previous section is no longer valid. To incorporate more attribute

information into our Bayesian network, we propose a generalized localization assumption.
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Fig. 3. Reduction of a social network (a) into a Bayesian network to infer Z from his friends via Generalized Localization assumption (b).

The shaded nodes represent friends whose attribute values are known.

Generalized Localization Assumption Given the attribute value of the jth friend of Z at i hops away,

Zij (0 ≤ j < ni), the attribute of Z is conditionally independent of the descendants of Zij .

This assumption states that if the attribute value of Z’s direct friend Z1j is unknown, then the attribute

value of Z is conditionally dependent on the attribute values of the direct friends of Z1j . This process

continues until we reach a descendent of Z1j whose attribute value is known. For example, the network

structure in Fig. 3(a) is the same as in Fig. 2(a), but the attribute value of Z11 is unknown. Based on

the Generalized Localization Assumption, we extend the network by branching to Z11’s direct child Z20.

Since Z20’s attribute is unknown, we further branch to Z20’s direct friend Z30. The branch terminates

here because the attribute of Z30 is known. Thus, the inference network for Z includes all the nodes in

the graph. After applying Naive Bayesian assumption, we obtain the DAG shown in Fig. 3(b). Similar

to single hop inference, the resulting DAG in multiple hops inference is also a tree rooted at the query

node Z. One interpretation of this model is that when we predict the attribute value of Z, we always treat

him/her as an egocentric person who have strong influences on his/her friends. Thus, the attribute value

of Z can be reflected by those of his/her friends.

For multiple hops inference, we still apply the Bayes Decision Rule. Due to additional unknown attribute

values such as Z11, the calculation of the posterior probability becomes more complicated. One common

technique to solve this equation is variable elimination [14]. In this paper, we use this technique to derive



11

the value of z̄ in (1).

V. EXPERIMENTAL STUDY OF BAYESIAN INFERENCE

In this section, we investigate to what extent privacy can be inferred by Bayesian inference. We

first introduce three characteristics of social networks: influence strength, prior probability, and society

openness. Then we evaluate their impacts on inference accuracy in a real social network structure. Inference

accuracy is defined as the percentage of nodes predicted correctly by inference.

A. Characteristics of Social networks

1) Influence Strength: Analogous to the interaction between inheritance and mutation in Biology, we

define two types of influence in social relations. Particularly, for relationship between every pair of parent

X and child Y , we define P (Y = t | X = t) (or Pt|t for simplification) as inheritance strength. This

value measures the degree that a child inherits an attribute from his/her parent. A higher value of Pt|t

implies both X and Y will possess the attribute with a higher probability. On the other hand, we define

P (Y = t | X = f) (or Pt|f ) as mutation strength. Pt|f measures the potential that Y develops his/her

attribute by mutation rather than inheritance. An individual’s attribute value is the result of both types of

strength.

There are two other conditional probabilities between X and Y , i.e., P (Y = f | X = t) (or Pf |t) and

P (Y = f | X = f) (or Pf |f ). These two values can be derived from Pt|t and Pt|f respectively (Pf |t = 1 -

Pt|t and Pf |f = 1 - Pt|f ). Therefore, it is sufficient to only consider inheritance and mutation strength.

2) Prior Probability: Prior probability P (Z = t) (or Pt in short) is the percentage of people in the

social network who possess attribute A. When no additional information is provided, we could use prior

probability to naively predict attribute values for the query nodes: if Pt ≥ 0.5, we predict that every query

node has value t; otherwise, we predict that it has value f . We call this method naive inference. The

average naive inference accuracy that can be obtained is max(Pt, 1 − Pt). In our study, we use it as a

reference to compare with our Bayesian inference approach.
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Fig. 4. Number of direct friends vs. number of members in Livejournal

It is worth pointing out that when Pt|t is equal to Pt, people in a society are indeed independent of

each other. Hence, knowing extra evidence of a friend provides no contribution to the prediction for the

query node.

3) Society Openness: We define society openness OA as the percentage of people in a society who

release their values of attribute A. The more people release their values, the higher the society openness

is, and the more information about attribute A could be observed. We want to examine the accuracy of

Bayesian inference for various society openness.

B. Data Set

For the experiment, we collect 66, 766 personal profiles from an online weblog service provider Livejour-

nal [15], which owns 2.6 million active members in the world. For each member, Livejournal generates a

personnel profile which specifies the member’s personal information as well as the URLs for the profiles

of this member’s friends. Among the collected profiles, there are 4, 031, 348 friend relationships. The

degree of the number of friends follows the power law distribution (Fig. 4). About half of the population

have less than 10 direct friends.

In order to evaluate the inference behaviors for a wide range of parameters, we use a hypothetical

attribute and synthesize the attribute values: for each member, we assign a CPT and determine the actual

attribute value based on the parent’s value and the assigned CPT. The attribute assignment starts from
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the set of nodes whose in-degree is 0 and explores the rest of the network following friendship links. We

use the same CPT for each member. For all the experiments, we evaluate the inference performance by

varying CPTs.

After the attribute assignment, we obtain a social network. To infer each individual, we build a

corresponding Bayesian network, and then conduct Bayesian inference as described in Section IV.

C. Experimental Results

1) Comparison of Bayesian and Naive Inference: In the first set of experiments, we compare the

performance of Bayesian inference with naive inference. We want to study whether privacy can be deduced

from social relations. We fix the prior probability Pt to 0.3 and vary inheritance strength Pt|t from 0.1 to

0.9. 1 We perform inference using both approaches on every node in the network, and obtain the inference

accuracy by comparing predicted values with their actual values. Fig. 5 shows the inference accuracy of

the two methods as Pt|t increases. It is clear that Bayesian inference outperforms naive inference. The

curve for naive inference fluctuates around 70%, because with Pt = 0.3, the average accuracy we can

achieve is 70%. The performance of Bayesian inference varies with Pt|t. We achieve a very high accuracy,

especially at high inheritance strength. The accuracy even reaches 95% when Pt|t = 0.9, which is much

1In an equilibrium state, the value of Pt|f can be derived from Pt and Pt|t. When Pt is fixed, increasing Pt|t results in a decrease in

Pt|f .
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higher than the 70% accuracy of the naive inference. We observed a similar trend between these two

methods for other prior probabilities as well.

2) Effect of Influence Strength and Prior Probability: Fig. 6 shows the accuracy of Bayesian inference

when the prior probability Pt is 0.05, 0.1, 0.3 and 0.5, and the inheritance strength Pt|t varies from 0.1 to

0.9. As Pt varies, the inference accuracy yields different trends with Pt|t. The lowest inference accuracy

always occurs when Pt|t is equal to Pt. For example, the lowest inference accuracy (approximately 70%)

at Pt = 0.3 is achieved when Pt|t is 0.3. At this point, people in the network are actually independent

of one another. Furthermore, the higher the difference between Pt|t and Pt, the stronger the influence of

parent on children, and the better Bayesian inference performs.

3) Society Openness: In the previous experiments, we assume that society openness is 100%. That is,

the attribute values of all the friends of the query node are known. In this set of experiments, we study

the inference behavior at different levels of society openness. We randomly hide the attributes of a certain

percentage of members, ranging from 10% to 90%, and then perform Bayesian inference on those nodes.

Fig. 7 shows the experimental results for the prior probability Pt = 0.3 and the society openness

OA = 10%, 50% and 90%. The inference accuracy decreases as more members hide their attributes.

For instance, at inheritance strength 0.7, when the openness is decreased from 90% to 10%, the accuracy

reduces from 84.6% to 81.5%. However, the reduction in inference accuracy is relatively small (on average
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less than 5%). We also observe similar trends for other prior probabilities. This phenomenon reveals that

randomly hiding friends’ attributes only has a small effect on the result of Bayesian inference. Therefore,

an effective privacy protection method should consider selectively altering social networks.

4) Robustness: In this study, we evaluate the robustness of the performance of Bayesian inference when

people provide false information. In this set of experiments, we control the percentage of members who

randomly select their attribute values (which is referred to as “randomness”) from 0% to 100%. Fig. 8

shows the impact of randomness on the inference accuracy at prior probability Pt = 0.3 and inheritance

strength Pt|t = 0.7. At low randomness, Bayesian inference has higher accuracy than naive inference. For

example, when the randomness is 0.1, the inference accuracy of Bayesian and naive inference is 79.7%

and 72.9% respectively. As the randomness increases, the advantage of Bayesian inference gradually

diminishes. Especially, when the randomness is 1.0, there is almost no difference in the inference accuracy

between these two methods. This is because when people randomly negate their attribute values, their

attribute values no longer follow the causal relations between friends. Thus, Bayesian inference behaves

similarly to naive inference. This phenomenon provides an insight that falsifying personal attribute might

be an effective method for privacy protection. In Section VI, we will propose several schemes for privacy

protection and evaluate their effectiveness.

VI. PRIVACY PROTECTION

The above study shows that privacy can be inferred from social relations. To prevent such inference, we

consider altering an individual’s social network. Basically, we could alter two things: the individual’s social

relations (i.e., links) and personal attributes of the individual’s friends (i.e., nodes). For social relations,

we can either hide existing social relations or add fraudulent ones. For friends’ personal attributes, we

can either hide or falsify their values. Our study on society openness suggests that random changes on

a social network only have a small effect on the result of Bayesian inference. Therefore, an effective

protection method requires choosing appropriate candidates for alteration.

In this section, we study privacy protection schemes. We first present a theorem which captures the causal
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effect between friends’ attribute values in a chain topology. We then apply this theorem to our protection

schemes. We conduct experiments on the Livejournal network structure and evaluate the performance of

the proposed protection schemes.

A. Causal Effect between Friends’ Attribute Values

As mentioned earlier, children’s attribute values are the result of the interaction between the inheritance

strength Pt|t and the mutation strength Pt|f with their parents. Intuitively, in a family, when the inheritance

strength is stronger than the mutation strength, children tend to inherit the same attribute from their parents;

thus, the evidence of a child having this attribute increases our belief that his/her parent has the same

attribute. On the contrary, when the inheritance strength is weaker than the mutation strength, parents and

children are more likely to have opposite attribute values, and the evidence of a child having an attribute

reduces our belief of his/her parent having the same attribute. Inspired by this observation, we derive a

theorem to quantify the causal effects between friends’ attribute values.

Theorem: Casual Effect between Friends’ Attribute Values in a Chain Network

Given a chain topology social network, let Z be the query node, Zn0 be Z’s descendant at n hops

away. Assuming the attribute value of Zn0 is the only evidence observed in this chain, and the prior

probability Pt satisfies 0 < Pt < 1, we have P (Z = t | Zn0 = t) > P (Z = t) iff (Pt|t − Pt|f )n > 0, and

P (Z = t | Zn0 = f) > P (Z = t) iff (Pt|t − Pt|f )n < 0, where Pt|t and Pt|f are the inheritance strength

and mutation strength of the network respectively.

Proof: see Appendix.

This theorem indicates that, when Pt|t > Pt|f , the posterior probability P (Z = t | Zn0 = t) is greater

than the prior probability P (Z = t). Under this condition, the evidence of Zn0 = t always increases our

prediction for Z = t. We can use an example to explain this intuitively. If the inheritance strength is

stronger than the mutation strength for having cancer in a family, it is very likely that cancer will be

carried out to the next generation. If we observe a descendant in a family having cancer, we can predict
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that his ancestors have cancer with a higher probability . However, if this descendant hides his record of

cancer, our prediction for his ancestors will decrease.

When Pt|t < Pt|f , i.e., the mutation strength is stronger than the inheritance strength, (Pt|t−Pt|f )n < 0

and P (Z = t | Zn1 = t) > P (Z = t) only happens when n, the depth of current node, is odd. When

n is even, P (Z = t | Zn1 = t) < P (Z = t). This means when Pt|t < Pt|f , whether the evidence of

Zn1 = t increases our prediction for Z = t also depends on the value of n. We use the same example

as above, assuming now the mutation strength is stronger than the inheritance strength. In this case, the

next generation may develop cancer by mutation instead of inheritance. That is, if a parent has no cancer,

his child is more likely to have it because of the strong mutation strength. If a parent has cancer, there

is a high tendency that his child will not have it because of the weak inheritance strength. Therefore,

we can observe that the cancer records alternate across generations in this family. Correspondingly, the

observation that a child has cancer (n=1) will decrease our prediction for his/her parent having cancer,

whereas, the evidence of cancer in a grandchild (n=2) will increase our prediction for his/her grandfather.

B. A Privacy Protection Rule

The theorem states that the evidence of a friend having attribute value t when (Pt|t − Pt|f )n > 0 or

having attribute value f when (Pt|t−Pt|f )n < 0 will increase the posterior probability of the query node.

Based on this theorem, we propose the following protection rule. For reducing others’ belief that the

query node has the attribute value t, we should: 1) hide or falsify the attribute values of friends who

satisfy the above conditions, 2) hide relationships to friends who satisfy the above conditions, or add

fraudulent relationships to friends who do not satisfy. On the contrary, for misleading people to believe

the query node possesses the attribute, we can apply these techniques in an opposite way.

Based on the protection rule, we propose the following protection schemes:

1) Selectively Hiding Attribute (SHA). SHA hides appropriate friends’ attribute value base on the

protection rule.
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2) Selectively Falsifying Attribute (SFA). In this scheme, we falsify friends’ attribute values according

to the protection rule. Because of the Localization Assumption in Section IV-A, we do not need

to make further changes to friends at multiple hops away even if the protection fails.

3) Selectively Hiding Relationships (SHR). Instead of hiding people’s attribute as in previous schemes,

we hide the relationship between the query node and selected direct friends. When all the friend

relationships of this individual are hidden, the individual becomes a singleton, and the prediction

will be made based on the prior probability.

4) Selectively Adding Relationships (SAR). Opposite to hiding relationships in SHR, SAR adds fraud-

ulent relationships with people whose attribute values could mislead the inference based on the

protection rule.

C. Experimental Study of Privacy Protection Performance

In this section, we conduct a set of controlled experiments to evaluate different schemes for privacy

protection. To protect each individual’s attribute, we continuously alter this individual’s social network

until protection succeeds when the predicted attribute value becomes opposite to its original prediction,

or until protection fails if no more alteration can be made.

In the experiments, we compare the proposed protection schemes with Randomly Hiding Attribute

(RHA) scheme. In RHA, we do not follow the protection rule. We randomly select a friend and hide

his/her attribute value in each step. We start with the direct friends. If an attribute value can still be

correctly inferred after we hide all the direct friends’ attribute values, we continue to hide attribute values

of friends at two hops away and so on, until the protection either succeeds or fails.

We conduct experiments on 3000 nodes in the Livejournal data set and compare their performance. For

each node, we apply the above five schemes. The performance metrics are the percentage of successful

protection and the average number of alterations needed to protect privacy.

Fig. 9 illustrates the percentage of successful protection for different Pt|t values when Pt = 0.3. From

this figure, it is clear that the effectiveness of these schemes is in the order of SAR > SFA > SHR >
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Fig. 9. Percentage of successful privacy protections when

Pt = 0.3.
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Fig. 10. Number of changes needed for privacy protection

when Pt = 0.3.

SHA > RHA, from the most effective to the least effective. Since SAR could add non-existing friend

relationships, the upper bound of the number of alterations is the size of the entire network. In other

schemes, the maximum numbers of alterations are the number of descendants (e.g., RHA, SHA) and the

number of direct friends (e.g., SFA, SHR). SAR has the highest upper bound in terms of the number

of possible alterations and thus provides more room for protection. The performance of SFA and SHR

follows SAR. In fact, we can think of SFA as a special combination of SHR and SAR, i.e., hiding a friend

relationship followed by adding a fraudulent relationship. Therefore, the performance of SFA is better

than SHR. SHA is worse than the above schemes because friends at multiple hops away still leave clue

for Bayesian inference. RHA does not follow the protection rule, thus yielding the worst performance.

The average number of alterations needed for each protection scheme is shown in Fig. 10. Schemes

which require fewer alterations to achieve protection is regarded as more effective. Based on this metric,

RHA is again the worst. SFA is the best among the five schemes. The average number of alterations of

SHR and SAR is close to each other in most cases. Note that the average number of changes of SAR

is high at Pt|t = 0.2 (which is 8.36). At this point, SAR protects many cases that other schemes cannot

protect by adding a relatively large number of fraudulent friend relationships. Finally, SHA is better than

RHA, but not as good as the other schemes.

Both figures demonstrate the effectiveness of friend selection based on the protection rule. Furthermore,
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among the four schemes which consider friend selection, SFA is the best one. It can protect many cases

while reducing the number of alterations to the original social network.

VII. DISCUSSIONS ON FRIEND SELECTION

In the previous section, we demonstrate that selective social network alterations based on the protection

rule are more effective than such an alteration as RHA which does not follow the protection rule. In

this section, we shall analytically compare the difference between randomly hiding friend relationships

(denoted as RHR) and selectively hiding friend relationships (abbreviated as SHR) through analysis.

Specifically, we study the frequency of posterior probability variation after hiding friend relationships.

The hiding scheme is considered to be more effective in preventing privacy from being inferred if the

posterior probability varies significantly towards the desired value.

A. Randomly Hiding Friend Relationships

Hiding friend relationships means removing direct friends of the query node. The social network can

be represented as a two-level tree with the query node Z as the root and n1 direct friends Z10, ..., Z1(n1−1)

as leaves. We want to derive the probability distribution of the posterior probability variation due to

randomly hiding friend relationships, i.e., the difference of the posterior probability and the probability

that this difference occurs.

Let random variables N1t and N ′
1t be the number of friends having attribute value t before and after

hiding h friend relationships, where 0 ≤ h ≤ n1 and max(0, N1t − h) ≤ N ′
1t ≤ min(N1t, n1 − h).

If N1t = n1t and N ′
1t = n′1t, we can compute the posterior probabilities P (Z = t | N1t = n1t) and

P (Z = t | N ′
1t = n′1t) from (4) respectively. Therefore, the posterior probability variation caused by

hiding h friend relationships is:

∆P (Z = t | N1t = n1t, N
′
1t = n′1t) = |P (Z = t | N1t = n1t)− P (Z = t | N ′

1t = n′1t)|. (5)

Now we want to derive the probability that each possible value of ∆P (Z = t | N1t = n1t, N
′
1t = n′1t)

occurs. In other words, we want to compute the probability of the joint event N1t = n1t and N ′
1t = n′1t
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(before and after hiding friend relationships), which is equal to:

P (N1t = n1t, N
′
1t = n′1t) = P (N1t = n1t) · P (N ′

1t = n′1t | N1t = n1t). (6)

Initially, if we know Z’s attribute value is z (z ∈ {t, f}), the probability that N1t = n1t follows the

Binomial distribution:

P (N1t = n1t | Z = t) =

(
n1

n1t

)
· P n1t

t|t · P n1−n1t

f |t

P (N1t = n1t | Z = f) =

(
n1

n1t

)
· P n1t

t|f · P n1−n1t

f |f .

(7)

By unconditioning on Z, we obtain:

P (N1t = n1t) = P (Z = t) · P (N1t = n1t | Z = t) + P (Z = f) · P (N1t = n1t | Z = f). (8)

We define ht and hf as the numbers of removed nodes (i.e., hidden friend relationships) with attribute

t and f , respectively (ht = n1t − n′1t and hf = h− ht). Then we can compute the conditional probability

that N ′
1t = n′1t given N1t = n1t as:

P (N ′
1t = n′1t | N1t = n1t) =

(
n1t

ht

) · (n1−n1t

hf

)
(

n1

h

) . (9)

In this equation, the numerator represents the number of ways to remove ht nodes with value t and hf

nodes with value f , and the denominator represents the number of combinations to choose any h nodes

from a total of n1 nodes.

Substituting (8) and (9) into (6), we obtain P (N1t = n1t, N
′
1t = n′1t).

B. Selectively Hiding Friend Relationships

We perform a similar analysis for selectively hiding friend relationships in a two-level tree. Unlike

random selection which randomly selects nodes with attribute values t or f , this method follows the

protection rules and selects all the nodes with the same attribute values to hide. Thus, we can compute

∆P (Z = t | N1t = n1t, N
′
1t = n′1t) in the same way as above. However, the distribution of posterior

probability variation needs to computed differently.
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Fig. 11. Average posterior probability variation for selectively and randomly hiding friend relationships.

Given h, the number of nodes to remove, n′1t is deterministic. For example, if we remove nodes with

attribute t, then n′1t = m− h; otherwise n′1t = m. Consequently, in the former case,

P (N1t = n1t, N
′
1t = n′1t) =





P (N1t = n1t), if n′1t = m− h

0, otherwise

, (10)

whereas in the latter case,

P (N1t = n1t, N
′
1t = n′1t) =





P (N1t = n1t), if n′1t = m

0, otherwise

. (11)

where P (N1t = n1t) can be obtained from (8).

C. Comparison of Randomly vs. Selectively Hiding Friend Relationships

We first compute the average variation in posterior probability for both RHR and SHR as shown in

Fig. 11. We fix n1 to be 10 and vary h from 1 to 9. The x-axis is the number of friends that we hide, and

the y-axis is the posterior probability variation calculated based on (5). Clearly, SHR has higher posterior

probability variation than RHR, especially for the case of a large number of hidden friends.

We also plot the histogram of the posterior probability variation ∆P (Z = t | N1t = n1t, N
′
1t = n′1t).

We divide the range of posterior probability variation into 10 equal width intervals. Then we compute the

probability that the posterior probability variation falls in each interval.
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Fig. 12. Frequency of posterior probability variation for (a) randomly hiding friend relationships (b) selectively hiding friend relationships.

Fig. 12 shows the histogram of the posterior probability variation for RHR and SHR respectively, when

the prior probability is 0.3 and the influence strength is 0.7. The x axis represents the intervals and the y

axis represents the frequency of the posterior probability variation within the interval. The frequency is

derived from (6) for RHR and from (10) and (11) for SHR. For SHR, we remove friends with attribute

value t. The maximum number of removed friends k cannot exceed n1t. As a result, we do not consider

the cases when n1t < k, and we normalize the frequency results for selectively hiding friends based on

the overall probability that n1t ≥ k.

For RHR, we observe that the variation is less than 0.1 for 70% to 90% of the cases in Fig. 12(a). Thus,

the posterior probability is unlikely to be varied greatly. In contrast, the posterior probability variation

in Fig. 12(b) is widely distributed, which means there are noticeable changes in the posterior probability

after hiding nodes selectively. This trend is more pronounced with increasing the number of removed

friends. For example, when h = 8, the frequency that the variation lies between 0.9 and 1.0 is about

28.8% as compared to 1.9% in Fig. 12(a). These results show the effectiveness of using the protection

rule for privacy protection.

VIII. CONCLUSION

In this paper, we study privacy inference and protection in social networks. Using the Bayesian networks

to model the causal relations among friends in social networks, we showed that privacy may be indirectly
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Fig. 13. The chain network structure (a) The query node with one descendant; (b) The query node with n descendants.

released via their social relations, and the inference accuracy of privacy information is closely related

to the influence strength between friends. We found that Bayesian network is effective to capture the

causal relations in a social network. Based on both the interaction between inheritance strength and

mutation strength and the network structure, a protection rule is developed to perform selective social

network alterations. Our experimental and analytical study reveals that using the protection rule is far

more effective in privacy protection than random social network alterations. Further, falsifying friend

attributes is the most effective among all the proposed methods.

We have focused our study on the impact of social relations on privacy disclosure and protection. We

also need to consider the case of social relations with multiple attributes. We plan to investigate such

complex social networks in the future.

APPENDIX I

THEOREM PROOF

Theorem: Casual Effect between Friends’ Attribute Values in a Chain Network

Given a chain topology, let Z be the query node, Zn0 be Z’s descendant at n hops away. Assuming the

attribute value of Zn0 is the only evidence observed in this chain, and the prior probability Pt satisfies

0 < Pt < 1, we have P (Z = t | Zn0 = t) > P (Z = t) iff (Pt|t − Pt|f )n > 0, and P (Z = t | Zn0 = f) >

P (Z = t) iff (Pt|t − Pt|f )n < 0, where Pt|t and Pt|f are the inheritance strength and mutation strength of

the network respectively.

Proof:

Let us consider a chain topology shown in Fig. 13. The query node Z00 is the root node and each

descendant (except the last one) has exactly one child. Consider the simplest example when n = 1 (i.e.,
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Pttn-1Ptfn-1Pftn-1Pffn-1
PttnPftn

Zn0
Fig. 14. CPT for nodes in Fig. 13(b)

the query node Z has only one direct child Z10) as shown in Fig. 13(a). In this example, the attribute

value of Z10 is known.

Assuming Z10 = t, from (1), the posterior probability P (Z00 = t | Z10 = t) is:

P (Z00 = t | Z10 = t) =
P (Z00 = t) · P (Z10 = t | Z00 = t)

P (Z00 = t) · P (Z10 = t | Z00 = t) + P (Z00 = f) · P (Z10 = t | Z00 = f)

=
Pt · Pt|t

Pt · Pt|t + (1− Pt) · Pt|f
.

(12)

Thus,

P (Z00 = t | Z10 = t) > P (Z00 = t) ⇔ Pt · Pt|t
Pt · Pt|t + (1− Pt) · Pt|f

> Pt

⇔ Pt|t − Pt|f > 0 for Pt 6= 1.

(13)

Similarly, when Z10 = f , we can prove P (Z00 = t | Z10 = f) > P (Z00 = t) iff Pt|t − Pt|f < 0 for

Pt 6= 1.

Now we extend this example to show how attribute value of a node at depth n affects the prediction for

Z. In Fig. 13(b), we show a network of n + 1 nodes. In this figure, only Zn0, Z’s descendent at depth n,

has a known value. Fig. 14 shows the corresponding conditional probability table for these n + 1 nodes.
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Let P n
tt , P n

ft, P n
tf and P n

ff be the joint distributions of Z and Zn0 respectively:

P n
tt = P (Z00 = t, Zn0 = t),

P n
ft = P (Z00 = f, Zn0 = t),

P n
tf = P (Z00 = t, Zn0 = f),

P n
ff = P (Z00 = f, Zn0 = f).

(14)

For example, P 1
tt = P (Z00 = t, Z10 = t) = P (Z00 = t) · P (Z10 = t | Z00 = t) = Pt · Pt|t and so on.

We know,

P n
tt + P n

tf = P (Z00 = t) = Pt

P n
tf + P n

ff = P (Z00 = f) = 1− Pt.

(15)

Further, from Fig. 14, we have the following relations:

P n
tt = P n−1

tt · P (Zn0 = t | Zn−1 = t) + P n−1
tf · P (Zn0 = t | Zn−1 = f) = P n−1

tt · Pt|t + P n−1
tf · Pt|f ,

P n
tf = P n−1

tf · P (Zn0 = t | Zn−1 = t) + P n
ff · P (Zn0 = t | Zn−1 = f) = P n−1

tf · Pt|t + P n−1
ff · Pt|f .

(16)

When Zn0 = t, the posterior probability is:

P (Z00 = t | Zn0 = t) =
P (Z00 = t, Zn0 = t)

P (Z00 = t, Zn0 = t) + P (Z00 = f, Zn0 = t)
=

P n
tt

P n
tt + P n

tf

. (17)

Therefore,

P (Z00 = t | Zn0 = t) > P (Z00 = t) ⇔ P n
tt

P n
tt + P n

tf

> Pt

⇔ (1− Pt) · P n
tt − Pt · P n

tf > 0.

(18)

Based on (16),

(1− Pt) · P n
tt − Pt · P n

tf = (1− Pt) · (P n−1
tt · Pt|t + P n−1

tf · Pt|f )− Pt · P n−1
tf · Pt|t + P n−1

ff · Pt|f )

= {(1− Pt) · P n−1
tt − Pt · P n−1

tf } · Pt|t + {(1− Pt) · P n−1
tf − Pt · P n−1

ff } · Pt|f .
(19)

Substituting (15) into (19), we have

(1− Pt) · P n
tt − Pt · P n

tf = {(1− Pt) · P n−1
tt − Pt · P n−1

tf } · (Pt|t − Pt|f ). (20)
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Recursively, we have

(1− Pt) · P n
tt − Pt · P n

tf = {(1− Pt) · P 1
tt − Pt · P 1

ft} · (Pt|t − Pt|f )
n−1. (21)

Since P 1
tt = Pt · Pt|t, and P 1

ft = (1− Pt) · Pt|f , we obtain

(1− Pt) · P n
tt − Pt · P n

tf = {(1− Pt) · Pt · Pt|t − Pt · (1− Pt) · Pt|f} · (Pt|t − Pt|f )
n−1

= Pt · (1− Pt) · (Pt|t − Pt|f )
n.

(22)

Combining (18) and (22), P (Z00 = t | Zn0 = t) > Pt is equivalent to (Pt|t − Pt|f )n > 0 (when

0 < Pt < 1). Similarly, we can show that P (Z00 = t | Zn0 = f) > Pt is equivalent to (Pt|t − Pt|f )n < 0.
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