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Abstract 

Social influence plays an important role in product marketing. However, it has rarely been considered in traditional 
recommender systems. In this paper we present a new paradigm of recommender systems which can utilize 
information in social networks, including user preferences, an item's general acceptance, and influence from social 
friends. A probabilistic model is developed to make personalized recommendations from such information. We 
extract data from a real online social network, and our analysis of this large dataset reveals that friends have a 
tendency to select the same items and give similar ratings. Experimental results on this dataset show that our 
proposed system not only improves the prediction accuracy of recommender systems but also remedies the data 
sparsity and cold-start issues inherent in collaborative filtering. Furthermore, we propose to improve the 
performance of our system by applying semantic filtering of social networks, and validate its improvement via a 
class project experiment. In this experiment we demonstrate how relevant friends can be selected for inference based 
on the semantics of friend relationships and finer-grained user ratings. Such technologies can be deployed by most 
content providers. 

1.  Introduction 
In order to overcome information overload, recommender systems have become a key tool for providing users with 
personalized recommendations on items such as movies, music, books, news, and web pages. Intrigued by many 
practical applications, researchers have developed algorithms and systems over the last decade. Some of them have 
been commercialized by online venders such as Amazon.com, Netflix.com, and IMDb.com. These systems predict 
user preferences (often represented as numeric ratings) for new items based on the user's past ratings on other items. 
There are typically two types of algorithms for recommender systems -- content-based methods and collaborative 
filtering. Content-based methods study the similarity of the recommended item (target item) to the ones that a target 
user (i.e., user who receives recommendations) likes or dislikes [25, 22, 30] based on item attributes. On the other 
hand, collaborative filtering finds users with tastes that are similar to the target user’s based on their past ratings. 
Collaborative filtering will then make recommendations to the target user based on the opinions of those similar 
users [3, 5, 27].  

Despite all of these efforts, recommender systems still face many challenging problems. First, there are 
demands for further improvements on the prediction accuracy of recommender systems. In October 2006, Netflix 
announced an open competition with the grand prize of $1,000,000 for the best algorithm that predicts user ratings 
for films (http://www.netflixprize.com). The improvement in the prediction accuracy can increase user satisfaction, 
which in turn leads to higher profits for those e-commerce websites. Second, algorithms for recommender systems 
suffer from many issues. For example, in order to measure item similarity, content-based methods rely on explicit 
item descriptions. However, such descriptions may be difficult to obtain for items like ideas or opinions. 
Collaborative filtering has the data sparsity problem and the cold-start problem [1]. In contrast to the huge number 
of items in recommender systems, each user normally only rates a few. Therefore, the user/item rating matrix is 
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typically very sparse. It is difficult for recommender systems to accurately measure user similarities from those 
limited reviews. A related problem is the cold-start problem. Even for a system that is not particularly sparse, when 
a user initially joins, the system has none or perhaps only a few reviews from this user. Therefore, the system cannot 
accurately interpret this user's preference.  

To tackle those problems, two approaches have been proposed [3, 29, 21, 23]. The first approach is to condense 
the user/item rating matrix through dimensionality reduction techniques such as Singular Value Decomposition 
(SVD) [3, 29]. By clustering users or items according to their latent structure, unrepresentative users or items can be 
discarded, and thus the user/item matrix becomes more dense. However, these methods do not significantly improve 
the performance of recommender systems because potential useful information might be lost during the reduction 
process. The second approach is to "enrich" the user/item rating matrix by 1) introducing implicit user ratings, e.g., 
the time spent on reading articles [23]; 2) using half-baked rating predictions from content-based methods [21]; or 3) 
exploiting transitive associations among users through their past transactions and feedback [12]. These methods 
improve the performance of recommender systems to some extent. In this paper we try to solve these problems from 
a different perspective. In particular, we propose a new paradigm of recommender systems by utilizing information 
in social networks, especially that of social influence. 

Traditional recommender systems do not take into consideration explicit social relations among users, yet the 
importance of social influence in product marketing has long been recognized [32, 35]. Intuitively, when we want to 
buy a product that is not familiar, we often consult with our friends who have already had experience with the 
product, since they are those that we can reach for immediate advice. When friends recommend a product to us, we 
also tend to accept the recommendation because their inputs are trustworthy. Many marketing strategies that have 
leveraged this aspect of human nature have achieved great success. One classic example is the Hotmail's free email 
service. The marketing strategy of Hotmail is to attach a promotion message at the bottom of every outgoing email: 
“Get your private, free email at http://www.hotmail.com.” People who receive the email will sign up and then 
further propagate this promotion message. As a result, the number of Hotmail user accounts grew from zero to 12 
million in 18 months on only a $500,000 advertising budget—thereby out-performing many conventional marketing 
strategies [14]. Thus, social influences play a key role when people are making decisions regarding products. 

Additionally, the integration of social networks can theoretically improve the performance of current 
recommender systems. First, in terms of the prediction accuracy, the additional information about users and their 
friends obtained from social networks improves the understanding of user behaviors and ratings. Therefore, we can 
model and interpret user preferences more precisely, and thus improve the prediction accuracy. Second, with friend 
information in social networks, it is no longer necessary to find similar users by measuring their rating similarity, 
because the fact that two people are friends already indicates that they have things in common. Thus, the data 
sparsity problem can be alleviated. Finally, for the cold-start issue, even if a user has no past reviews, recommender 
system still can make recommendations to the user based on the preferences of his/her friends if it integrates with 
social networks. All of these intuitions and observations motivate us to design a new paradigm of recommender 
systems that can take advantage of information in social networks.  

The recent emergence of online social networks (OSNs) gives us an opportunity to investigate the role of social 
influence in recommender systems. With the increasing popularity of Web 2.0, many OSNs, such as Myspace.com, 
Facebook.com, and Linkedin.com have emerged. Members in those networks have their own personalized space 
where they not only publish their biographies, hobbies, interests, blogs, etc., but also list their friends. Friends or 
visitors can visit these personal spaces and leave comments. Note that in this paper we define friends as any two 
users who are connected by an explicit social link. We define immediate friends as those friends who are just one 
hop away from each other in a social network graph, and distant friends as friends who are multiple hops away. 
OSNs provide platforms where people can place themselves on exhibit and maintain connections with friends. As 
OSNs continue to gain more popularity, the unprecedented amount of personal information and social relations 
improve social science research where it was once limited by a lack of data.  

In our research, we are interested in the role of explicit social relations in recommender systems, such as how 
user preferences or ratings are correlated with those of friends, and how to use such correlations to design a better 
recommender system. In particular, we design an algorithm framework which makes recommendations based on 
user's own preferences, the general acceptance of the target item, and the opinions from social friends. We crawl a 
real online social network from Yelp.com, and perform extensive analysis on this dataset. Some of the key questions, 
such as whether or not friends tend to select the same item, and whether or not friends tend to give similar ratings, 
have been studied in this dataset. We also use this dataset to evaluate the performance of our proposed system on the 
prediction accuracy, data sparsity, and cold-start. The experimental results of our system show significant 
improvement against traditional collaborative filtering in all of those aspects. For example, the prediction accuracy 
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has improved by 17.8% compared to traditional collaborative filtering. Furthermore, we propose to use the 
semantics of friend relationships and finer-grained user ratings to improve the prediction accuracy.   

The remainder of the paper is organized as follows. First, in Section 2 we give a background of traditional 
collaborative filtering algorithms. Then we formally propose a social network-based recommender system in Section 
3. In Section 4 we introduce the dataset that we crawled from Yelp, and present some analytical studies on this 
dataset. Following that, we evaluate the performance of the proposed system on the Yelp dataset in Section 5. In 
Section 6 we propose to further improve the prediction accuracy of the system by applying semantic filtering of 
social networks, and validate its improvement via a class experiment. In Section 7 we review related studies, and 
conclude in Section 8.  

2.  Background 
After the pioneering work in the Grouplens project in 1994 [27], collaborative filtering (CF) soon became one of the 
most popular algorithms in recommender systems. Many variations of this algorithm have also been proposed [2, 21, 
11, 36, 13]. In this paper we will use the traditional CF as one of the comparison methods. Therefore, the remainder 
of this section will focus on this algorithm. 

The assumption of CF is that people who agree in the past tend to agree again in the future. Therefore, CF first 
finds users with taste similar to the target user's. CF will then make recommendations to the target user by predicting 
the target user's rating to the target item based on the ratings of his/her top-K similar users. User ratings are often 
represented by discrete values within a certain range, e.g., one to five. A one indicates an extreme dislike to the 
target item, while a five shows high praise. Let RUI be the rating of the target user U on the target item I. Thus, RUI is 
predicted as the weighted sum of the votes of similar users as follows. 

 
𝑅𝑅𝑈𝑈𝑈𝑈 =  𝑅𝑅𝑈𝑈���� + 𝑍𝑍�𝑤𝑤(𝑈𝑈,𝑉𝑉)

𝑉𝑉𝑉𝑉𝑼𝑼

× (𝑅𝑅𝑉𝑉𝑉𝑉 − 𝑅𝑅𝑉𝑉����), (1) 

where uR and vR represent the average ratings of the target user U and every user V in U's neighborhood, U, which 

consists of the top-K similar users of U. w(U, V) is the weight between users U and V, and 𝑍𝑍 = 1
∑ 𝑤𝑤(𝑈𝑈,𝑉𝑉)𝑉𝑉

 is a 
normalizing constant to normalize total weight to one. Specifically, w(U, V) can be defined using the Pearson 
correlation coefficient [27]. 
 

𝑤𝑤(𝑈𝑈,𝑉𝑉) =
∑ (𝑅𝑅𝑈𝑈𝑈𝑈 − 𝑅𝑅𝑈𝑈����)(𝑅𝑅𝑉𝑉𝑉𝑉 − 𝑅𝑅𝑉𝑉����)𝐼𝐼

�∑ (𝑅𝑅𝑈𝑈𝑈𝑈 − 𝑅𝑅𝑈𝑈����)2
𝐼𝐼 ∑ (𝑅𝑅𝑉𝑉𝑉𝑉 − 𝑅𝑅𝑉𝑉����)2

𝐼𝐼
, 

(2) 

 
where the summations over i are over the common items for which both user U and V have voted. 

Other variations to this algorithm include different weighting techniques. For example, when two users have 
less than 50 co-rated items, [11] proposed to insert a significance weighting factor of n/50 to the original weight, 
where n is the number of co-rated items. As we can see, traditional collaborative filtering and its variations do not 
utilize the semantic friend relations among users in recommender systems; however, this is essential to the buying 
decisions of users. In the following sections, we are going to present a new paradigm of recommender systems 
which improves the performance of traditional recommender systems by using the information in social networks.   

3.  A Social Network-Based Recommender System 
Before we introduce the system, let us first show a typical scenario. Angela wants to watch a movie on a weekend. 
Her favorite movies are dramas. From the Internet, she finds two movies particularly interesting, "Revolutionary 
Road" and "The Curious Case of Benjamin Button." These two movies are all highly rated in the message board at 
Yahoo Movies. Because she cannot decide which movie to watch, she calls her best friend Linda whom she often 
hangs out with. Linda has not viewed these two movies either, but she knew that one of her officemates had just 
watched "Revolutionary Road" and highly recommended it. So Linda suggests "Why don't we go to watch 
Revolutionary Road together?" Angela is certainly willing to take Linda’s recommendation, and therefore has a fun 
night at the movies with her friend. If we review this scenario, we can see at least three factors that really contribute 
to the Angela's final decision. The first factor is Angela's own preference for drama movies. If Angela did not like 
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drama movies, she would be less likely to pick something like "Revolutionary Road" to begin with. The second 
factor is the public reviews on these two movies. If these movies received horrible reviews, Angela would most 
likely lose interest and stop any further investigation. Finally, it is the recommendation from Angela's friend, Linda, 
that makes Angela finally choose "Revolutionary Road." Interestingly, Linda's opinion is also influenced by her 
officemate. If we recall the decisions that we make in our daily life, such as finding restaurants, buying a house, and 
deciding where to attend college, many of them are actually influenced by these three factors.  

Figure 3.1 further illustrates how these three factors impact customers' final buying decisions. Intuitively, a 
customer's buying decision or rating is decided by both his/her own preference for similar items and his/her 
knowledge about the characteristics of the target item. A user's preference, such as Angela’s interest in drama 
movies, is usually reflected from the user’s past ratings to other similar items, e.g. the number of drama movies that 
Angela previously viewed and the average rating that Angela gave to those movies. Knowledge about the target item 
can be obtained from public media such as magazines, television, and the Internet. Meanwhile, the feedbacks from 
friends are another source of knowledge regarding the item, and they are often more trustworthy than advertisements. 
When a user starts considering the feedbacks from his/her friends, he/she is then influenced by his/her friends. Note 
that this influence is not limited to that from our immediate friends. Distant friends can also cast their influence 
indirectly to us; e.g., Angela was influenced by Linda's officemate in the previous scenario. Each one of these three 
factors has an impact on a user’s final buying decision. If the impact from all of them is positive, it is very likely that 
the target user will select the item. On the contrary, if any has a negative influence, e.g., very low ratings in other 
user reviews, the chance that the target user will select the item will decrease. With such an understanding in mind, 
we are going to propose a social network-based recommender system (SNRS) in the following subsections. As we 
mentioned, social influences can come from not only immediate friends but also distant friends. The techniques for 
handling these types of influences are different. We shall begin with the immediate friend inference, in which we 
only consider influences from immediate friends. Then, in the distant friend inference, we will describe how we 
incorporate influences from distant friends via leveraging the immediate friend inference.  
 

 
 

Figure 3.1: The three factors that influence a customer’s buying decision: user preference for similar items, information regarding 
the target item from the public media, and feedbacks from friends. 

3.1 Immediate Friend Inference 

We introduce the following naming conventions for the variables used in this paper. We use capitalize letters to 
represent variables, and use capitalize and bold letters to represent the corresponding sets. The value for each 
variable or variable set is represented by the corresponding lowercase letter. 

Formally, let us consider a social network as a graph G = (U, E) in which U represents nodes (users) and E 
represents links (social relations). Each user U in U has a set of attributes AU as well as immediate neighbors 
(friends) N(U) such that if V ∈ N(U), (U, V) ∈ E. The values of attributes AU are represented as aU. Moreover, a 
recommender system contains the records of users’ ratings, which can be represented by a triple relation of T = (U, I, 
R) in which U is the users in the social network G; I is the set of items (products or service), and each item I in I has 
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a set of attributes A'I. R stands for the ratings such that each RUI in R is user U’s rating on item I. RUI has a numeric 
value k (e.g. k∈{1, 2,… 5}). Moreover, we define I(U) as the set of items that user U has reviewed, and refer to the 
set of reviewers of item I as U(I). The goal of this recommender system is to predict Pr(RUI = k | A’=a'I, A=aU, {RVI 
= rVI : ∀V ∈ U(I) ∩ N(U)}); i.e., the distribution of the target user U's rating on the target item I given the attribute 
values of user U, the attribute values of item I, and the ratings on item I rated by U's immediate friends, which are 
essentially all we can obtain from this network. Once we obtain this distribution, RUI is calculated as the expectation 
of the distribution. Items with high predicted ratings will be recommended to the target user, and users with high 
predicted ratings on the target item are the potential buyers. 

In order to estimate Pr(RUI = k | A’=a'I, A=aU, {RVI = rVI : ∀V ∈ U(I) ∩ N(U)}), we adopt the naive Bayes 
assumption which assumes that the influences from user attribute values, item attribute values, and immediate 
friends' ratings are independent. Although this assumption simplifies the correlations among these variables, the 
naive Bayes model has been shown to be quite effective in many applications including textual document 
classification [16]. By making this assumption, the original conditional probability can be factorized as follows,  

 
𝑃𝑃𝑃𝑃(𝑅𝑅𝑈𝑈𝑈𝑈 = 𝑘𝑘 |𝑨𝑨′ = 𝒂𝒂′𝐼𝐼 ,𝑨𝑨 = 𝒂𝒂𝑈𝑈 , {𝑅𝑅𝑉𝑉𝑉𝑉 = 𝑟𝑟𝑉𝑉𝑉𝑉 : ∀𝑉𝑉 ∈ 𝑼𝑼(𝐼𝐼) ∩ 𝑵𝑵(𝑢𝑢)})

=
1
𝑍𝑍
𝑃𝑃𝑃𝑃(𝑅𝑅𝑈𝑈 = 𝑘𝑘 |  𝑨𝑨′ = 𝒂𝒂′ 𝐼𝐼) × 𝑃𝑃𝑃𝑃(𝑅𝑅𝐼𝐼 = 𝑘𝑘 |𝑨𝑨 = 𝒂𝒂𝑈𝑈) × 𝑃𝑃𝑃𝑃(𝑅𝑅𝑈𝑈𝑈𝑈 = 𝑘𝑘 | {𝑅𝑅𝑉𝑉𝑉𝑉 = 𝑟𝑟𝑉𝑉𝑉𝑉 :∀𝑉𝑉 ∈ 𝑼𝑼(𝐼𝐼) ∩ 𝑵𝑵(𝑢𝑢)}). 

(3) 

 
First, Pr(RU = k | A’= a'I,) is the conditional probability that the target user U will give a rating k to an item 

with the same attribute values as item I. This probability represents U's preference for items similar to I. Because 
this value depends on the attribute values of items rather than an individual item, we drop the subscript I in RUI for 
simplification. Second, Pr(RI = k | A = au) is the probability that the target item I will receive a rating value k from a 
reviewer whose attribute values are the same as U. This probability reflects the general acceptance of the target item 
I by users like U. For the same reason, because this value depends on the attribute values of users rather than a 
specific user, we drop the subscript U in RUI. Finally, Pr(RUI = k | {RVI = rVI : ∀V ∈ U(I) ∩ N(U)}) is the probability 
that the target user U gives a rating value k to the target item I given the ratings of U's immediate friends on item I. 
This is where we actually take social influences into consideration in our system. In addition, Z is a normalizing 
constant. We shall present the methods to estimate each of the factors in the following subsections.   

3.1.1  User Preference 

As we pointed out, Pr(RU = k | A’= a'I,) measures the target user U's preference for the items similar to item I. For 
example, if we want to know how high Angela will rate "Revolutionary Road," Pr(RU = k | A’= a'I,) gives us a hint 
of how likely it is that Angela will give a rating k to a drama movie which is also casted by Kate Winslet. To 
estimate this probability, we adopt the naive Bayes assumption again. We assume that the item attributes in A', e.g., 
category and cast, are independent of each other. Therefore, we have 
 

𝑃𝑃𝑃𝑃(𝑅𝑅𝑈𝑈 = 𝑘𝑘 | 𝑨𝑨′ = 𝒂𝒂′ 𝐼𝐼) = 𝑃𝑃𝑃𝑃(𝑅𝑅𝑈𝑈=𝑘𝑘)𝑃𝑃𝑃𝑃�𝐴𝐴′ 1, 𝐴𝐴′ 2,… ,𝐴𝐴′ 𝑛𝑛  � 𝑅𝑅𝑈𝑈= 𝑘𝑘) 
𝑃𝑃𝑃𝑃�𝐴𝐴′ 1,𝐴𝐴′ 2,…,𝐴𝐴′ 𝑛𝑛 �

=
𝑃𝑃𝑃𝑃(𝑅𝑅𝑈𝑈=𝑘𝑘)∏ 𝑃𝑃𝑃𝑃�𝐴𝐴′ 𝑗𝑗  � 𝑅𝑅𝑈𝑈=𝑘𝑘�𝑗𝑗=𝑛𝑛

𝑗𝑗=1

𝑃𝑃𝑃𝑃�𝐴𝐴′ 1,𝐴𝐴′ 2,…,𝐴𝐴′ 𝑛𝑛 �
,

𝑨𝑨′ = {𝐴𝐴′1,𝐴𝐴′2, … ,𝐴𝐴′𝑛𝑛}  

(4)     

 
where Pr(A'1, A'2, ..., A'n) can be treated as a normalizing constant, Pr(RU = k) is the prior probability that U gives a 
rating k, and Pr(A'j | RU = k) is the conditional probability that each item attribute A'j in A' has a value a'j given U 
rated k; e.g., Pr(movie type = drama | RU = 4) is the probability that the movie will be a type of drama movie, given 
that U gives a rating 4. The last two probabilities can be estimated from counting the review ratings of the target 
user U. Specifically,  
 

𝑃𝑃𝑃𝑃(𝑅𝑅𝑈𝑈 = 𝑘𝑘) =
|𝑰𝑰(𝑅𝑅𝑈𝑈 = 𝑘𝑘)| + 1

|𝑰𝑰(𝑈𝑈)| + 𝑛𝑛
, and 

(5) 

 

𝑃𝑃𝑃𝑃�𝐴𝐴′𝑗𝑗 = 𝑎𝑎′𝑗𝑗 |𝑅𝑅𝑈𝑈 = 𝑘𝑘� =
�𝑰𝑰(𝐴𝐴′𝑗𝑗 = 𝑎𝑎′𝑗𝑗 ,𝑅𝑅𝑈𝑈 = 𝑘𝑘)� + 1

|𝑰𝑰(𝑅𝑅𝑈𝑈 = 𝑘𝑘)| + 𝑚𝑚
 

(6) 

 
where |I(U)| is the number of reviews of user U's in the training set, |I(RU = k)| is the number of reviews that user U 
gives a rating k, and |I (A'j = a'j, RU = k)| is the number of reviews that U gives a rating k while attribute A'j of the 
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corresponding target item has a value a'j. Notice that we insert an extra value 1 to the numerators in both equations, 
and add n, the range of review ratings to the denominator in Eq. (5), and m, the range of A'j's values, to the 
denominator in Eq. (6). This method is also known as Laplace estimate, a well-known technique in estimating 
probabilities [7], especially on a small size of training samples. Because of Laplace estimate, "strong" probabilities, 
like 0 or 1, from direct probability computation can be avoided.  

Moreover, in some cases when item attributes are not available, we can approximate Pr(RU = k | A’= a'I,) by the 
prior probability Pr(RU = k). Even though Pr(RU = k) does not contain information specific to certain item attributes, 
it does take into account U's general rating preference; e.g., if U is a generous person, he/she gives high ratings 
regardless of the items.    

3.1.2  Item Acceptance   

Pr(Ri = k | A = au) captures the general acceptance of item I from users like user U. For example, for a reviewer who 
is similar to Angela (e.g., the same gender and age), how likely is it that "Revolutionary Road" will receive a rating 
of 5 from her. Similar to the estimation in user preference, we use the naive Bayes assumption and assume user 
attributes are independent. Thus, we have 
 

𝑃𝑃𝑃𝑃(𝑅𝑅𝐼𝐼 = 𝑘𝑘 |𝑨𝑨 = 𝒂𝒂𝑼𝑼) = 𝑃𝑃𝑃𝑃(𝑅𝑅𝐼𝐼=𝑘𝑘)𝑃𝑃𝑃𝑃(𝐴𝐴1,𝐴𝐴2,…,𝐴𝐴𝑚𝑚  |𝑅𝑅𝐼𝐼=𝑘𝑘)
𝑃𝑃𝑃𝑃�𝐴𝐴1,𝐴𝐴2,…,𝐴𝐴𝑚𝑚 �

=
𝑃𝑃𝑃𝑃(𝑅𝑅𝐼𝐼=𝑘𝑘)∏ 𝑃𝑃𝑃𝑃�𝐴𝐴𝑗𝑗 �𝑅𝑅𝐼𝐼=𝑘𝑘�𝑗𝑗=𝑚𝑚

𝑗𝑗=1

𝑃𝑃𝑃𝑃�𝐴𝐴1,𝐴𝐴2,…,𝐴𝐴𝑚𝑚 �
,   𝑨𝑨 = {𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑚𝑚 }    

(7) 

in which Pr(RI = k) is the prior probability that the target item I receives a rating value k, and Pr(Aj | RI = k) is the 
conditional probability that user attribute Aj of a reviewer has a value of aj given item I receives a rating k from this 
reviewer. These two probabilities can be learned by counting the review ratings on the target item I in a manner 
similar to what we did in learning user preferences. When user attributes are not available, we use Pr(RI = k), i.e., 
item I's general acceptance regardless of users, to approximate Pr(Ri = k | A = au). In addition, Pr(A1, A2, ..., Am) in 
Eq. (7) is a normalizing constant. 

3.1.3  Influence from Immediate Friends  

Finally, Pr(RUI =k | {RVI =rVI : ∀V ∈ U(I) ∩ N(U)}) is where SNRS utilizes the influences from immediate friends. 
To estimate this probability, SNRS learns the correlations between the target user U and each of his/her immediate 
friends V from the items that they both have rated previously, and then assume each pair of friends will behave 
consistently on reviewing the target item I too. Thus, U's rating can be predicted from rVI according to the 
correlations. A common practice for learning such correlations is that of estimating user similarities or coefficients, 
either based on user profiles or user ratings. However, user correlations are often so delicate that they cannot be fully 
captured by a single similarity or coefficient value. It is even worse that most of those measures seem ad hoc. 
Different measures return different results, and have different conclusions on whether or not a pair of users is really 
correlated [15]. To another extreme, user correlations can be also represented in a joint distribution table of U's and 
V's ratings on the same items that they have rated; i.e., Pr(RUJ, RVJ) ∀J ∈ I(U) ∩ I(V). This table fully preserves the 
correlations between U's and V's ratings. However, in order to build such a distribution with accurate statistics, it 
requires a large number of training samples. For example, for ratings ranging from one to five, the joint distribution 
has 25 degrees of freedom, which is difficult to be estimated robustly with limited training samples. This is 
especially a problem for recommender systems, because in most of these systems, users only review a few items 
compared to the large amount of items available in the system, and the co-rated items between users are even less. 
Therefore, in this study, we use another approach to remedy the problems in both cases.   

Friends are similar, and give similar ratings. Our data analysis in Section 4 on a real online social network (Yelp) 
also shows that immediate friends tend to give similar ratings more than non-friends. Thus, for each pair of 
immediate friends U and V, we consider their ratings on the same item to be close with some error ε. That is, 

 
𝑅𝑅𝑈𝑈𝑈𝑈 =  𝑅𝑅𝑉𝑉𝑉𝑉 +  𝜀𝜀,   𝐼𝐼∈ 𝑰𝑰(𝑈𝑈)∩𝑰𝑰(𝑉𝑉), 𝑉𝑉 ∈ 𝑵𝑵(𝑈𝑈) ∩ 𝑼𝑼(𝐼𝐼). (8) 

 
From Eq. (8), we can see that error ε can be simulated from the histogram of U's and V’s rating differences 

H(RUI – RVI) ∀I ∈ I(U) ∩ I(V). Thus, H(RUI – RVI) serves as the correlation measure between U and V. For rating 
ranges from one to five, H(RUI – RVI) is a distribution of nine values, i.e. from -4 to 4. Compared to similarity 
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measures, it preserves more details in friends' review ratings. Compared to a joint distribution approach, it has fewer 
degrees of freedom.   

Assuming U's and V's rating difference on the target item I is consistent with H(RUI – RVI). Therefore, when RVI 
has a rating rVI on the target item, the probability that RUI has a value k is proportional to H(k - rVI).  
 

𝑃𝑃𝑃𝑃(𝑅𝑅𝑈𝑈𝑈𝑈 = 𝑘𝑘|𝑅𝑅𝑉𝑉𝑉𝑉 = 𝑟𝑟𝑉𝑉𝑉𝑉)∝ 𝐻𝐻(𝑘𝑘 − 𝑟𝑟𝑉𝑉𝑉𝑉). (9) 
 

For example, assume that both U and V rated the items as shown in Table 3.1. Given their ratings in the table, 
we want to predict U’s possible ratings on item I6 according to the correlation with V. From the previous ratings of 
U and V, we find out that two out of five times U’s rating is the same as V’s, and three out of five times U’s rating is 
lower than V’s by one. According to such a correlation, we predict that there is a 40% chance that RUI6 is 4 and 60% 
chance that RUI6 is 3. 

 U V 
I1 5 5 
I2 3 4 
I3 4 4 
I4 2 3 
I5 4 5 
I6 ? 4 

 
Table 3.1: An example of predicting user rating from an immediate friend 

 
The previous example illustrates how we utilize the correlation between the target user and one of his/her 

immediate friends. When the target user has more than one immediate friend who co-rates the target item, the 
influences from all of those friends can be incorporated in a product of normalized histograms of individual friend 
pairs.  

 
𝑃𝑃𝑃𝑃(𝑅𝑅𝑈𝑈𝑈𝑈 = 𝑘𝑘 | {𝑅𝑅𝑉𝑉𝑉𝑉 = 𝑟𝑟𝑉𝑉𝑉𝑉 ∶  ∀ 𝑉𝑉 ∈ 𝑵𝑵(𝑈𝑈) ∩ 𝑼𝑼(𝐼𝐼)})  =   1

𝑍𝑍
∏ 1

𝑍𝑍𝑉𝑉
𝐻𝐻(𝑘𝑘 − 𝑟𝑟𝑉𝑉𝑉𝑉)𝑉𝑉 , (10) 

 
where ZV is the normalizing constant for the histogram of each immediate friend pair, and Z is the normalizing 
constant for the overall product.   

Once we obtain Pr(RU = k | A’= a'I,), Pr(Ri = k | A = au), and Pr(RUI =k | {RVI =rVI : ∀V ∈ U(I) ∩ N(U)}), the 
ultimate rating distribution of RUI, under the factors of user preference, item's general acceptance, and the 
correlations with immediate friends, can be estimated from Eq. (3). 𝑅𝑅𝑈𝑈𝑈𝑈� , the predicted value of 𝑅𝑅𝑈𝑈𝑈𝑈 , is the 
expectation of the distribution as shown in Eq. (11). 

 
𝑅𝑅𝑈𝑈𝑈𝑈� = ∑ 𝑘𝑘 × 𝑃𝑃𝑃𝑃(𝑅𝑅𝑈𝑈𝑈𝑈 = 𝑘𝑘 |𝑨𝑨 = 𝒂𝒂𝑈𝑈 ,𝑨𝑨′ = 𝒂𝒂′𝐼𝐼 , {𝑅𝑅𝑉𝑉𝑉𝑉 = 𝑟𝑟𝑉𝑉𝑉𝑉 : ∀𝑉𝑉 ∈ 𝑼𝑼(𝐼𝐼) ∩ 𝑵𝑵(𝑢𝑢)}𝑘𝑘 . (11)

3.2  Distant Friend Inference 

In the previous section, we introduced the approach to predict the target user's rating on a target item from those of 
his/her immediate friends on the same item. However, in reality, most immediate friends of the target user may not 
have reviewed the target item, because there are a large number of items in recommender systems but users may 
only select a few of them. Therefore, the influences from those friends cannot be utilized in immediate friend 
inference, and it is even worse that the ratings of many users cannot be predicted because they have no immediate 
friends who co-rate the target item. To solve this problem, we propose a method to incorporate the influences from 
distant friends via extending immediate friend inference.  

The idea of distant friend inference is intuitive. Even though V, an immediate friend of the target user U, has no 
rating on the target item, if V has his/her own immediate friends who rated the target item, we should be able to 
predict V's rating on the target item via the immediate friend inference, and then to predict U's rating based on the 
predicted rating of V’s. This process conforms to real scenarios, such as Linda's officemate influences Linda who 
further influences Angela in our previous example. Followed by this intuition, we decide to apply an iterative 
classification method [17, 24, 31] for distant friend inference.  

Iterative classification is an approximation technique for classifying relational entities. This method is based on 
the fact that relational entities are correlated with each other. Estimating the classification of an entity often depends 
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on the estimations of classification of its neighbors. The improved classification of one entity will help to infer the 
related neighbors and vice versa. Unlike traditional data mining which assumes that data instances are independent 
and identically distributed (i.i.d.) samples, and classifies them one by one, iterative classification iteratively 
classifies all the entities in the testing set simultaneously because the classifications of those entities are correlated. 
Note that iterative classification is an approximation technique, because exact inference is computationally 
intractable unless the network structures have certain graph topologies such as sequences, trees or networks with low 
tree width. Iterative classification has been used to classify company profiles [24], hypertext documents [17], and 
emails [6] with reasonable success in the previous research.  

The algorithm for distant friend inference is shown in Table 3.2. This algorithm predicts the users' ratings on 
each target item at a time. The original iterative classification method classifies the whole network of users. 
However, since the number of users in social networks is usually large, we save the computation cost by limiting the 
inference to a user set N which includes the target users of the target item I, and their corresponding immediate 
friends. In each iteration, we generate a random ordering O of the users in N. For each user U in O, if U has no 
immediate friend who belongs to U(I), which is the set of users whose rating (either ground truth or predicted value) 
is observable, the estimation of RUI will be skipped in this iteration. Otherwise, Pr(RUI = k | A’=a'I, A=aU, {RVI = rVI : 
∀V ∈ U(I) ∩ N(U)}) will be estimated by immediate friend inference, and 𝑅𝑅𝑈𝑈𝑈𝑈�  is then obtained from Eq. (11). 
Because user rating is an integer value, in order to continue the iterative process we round 𝑅𝑅𝑈𝑈𝑈𝑈�  to a close integer 
value, and insert into or update U(I) with 𝑅𝑅𝑈𝑈𝑈𝑈�  if different. This entire process iterates M times or until no update 
occurs in the current iteration. In our experiment, the process usually converges within 10 iterations.    

It is worth pointing out that after we compute Pr(RUI = k | A’=a'I, A=aU, {RVI = rVI : ∀V ∈ U(I) ∩ N(U)}), there 
are two other options for updating 𝑅𝑅𝑈𝑈𝑈𝑈�  besides rounding the expectation in distant friend inference. The first option 
is to select 𝑅𝑅𝑈𝑈𝑈𝑈�  with the value k such that it maximizes Pr(RUI = k | A’=a'I, A=aU, {RVI = rVI : ∀V ∈ U(I) ∩ N(U)}). 
However, by doing so, we are actually throwing out clues of small probabilities at the same time. After many 
iterations, the errors caused by the greedy selection will be exacerbated. The target users are likely to be classified 
with the majority class. The other option is to directly use Pr(RUI = k | A’=a'I, A=aU, {RVI = rVI : ∀V ∈ U(I) ∩ N(U)}) 
as soft evidence to classify other users. However, in our experiments, this approach does not return results as good 
as those of rounding the expectation.   

 
1. For each item I in the testing set do 
2.   Select a set of users N for inference. N includes the target users of item I and their corresponding immediate 
friends. 
3.   For iteration from 1 to M do 
4.     Generate a random ordering, O, of users in N 
5.     For each user U in O do 
6.       If U has no immediate friend who exists in U(I) 
7.         Continue 
8.       Else 
9.         Apply immediate friend inference  
10.        𝑅𝑅𝑈𝑈𝑈𝑈�  = ∑k  k *Pr(RUI = k | A=aU, A’=a'I, {RVI = rVI : ∀V ∈ U(I) ∩ N(U)}) 
11.        Insert into or Update U(I) with 𝑅𝑅𝑈𝑈𝑈𝑈�  if different 
12.      End If 
13.    End For 
14.    If no updates in the current iteration 
15.      Break 
16.    End If 
17.  End For 
18.  Output the final predictions for the target users 
19.End For 

  
Table 3.2: Pseudo-code for distant friend inference 
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4.  Dataset 
In this section we present some characteristics of the dataset that we crawled from the online website Yelp.com. As 
one of the most popular web 2.0 websites, Yelp provides local search (such as the best Italian restaurant or auto 
repair nearby) to users. Users can look for information or contribute their reviews for thousands of local commercial 
entities that range from restaurants and stores to hotels and financial services. In addition, Yelp attracts more users 
by maintaining a social network among users: users can easily invite their friends to Yelp or make new friends on 
Yelp. Each registered store at Yelp has a homepage, as shown in Figure 4.1(a), which contains a full list of reviews 
with a numerical rating from one to five stars per review, as well as a profile of store attributes such as category, 
location, price and parking information. Yelp also provides a homepage for each of its users, which includes reviews 
written by the user and links to the friends that are explicitly identified by the user. Note that friends on Yelp have a 
mutual relationship: when a user adds another user as a friend, the first user will be automatically added as a friend 
of the second user. 

Since restaurants are the most popular category at Yelp, in this research we focus on predicting users' ratings on 
restaurants. We crawled and parsed the homepages of all the Yelp restaurants in the Los Angeles area that registered 
before November 2007. We ended up with 4152 restaurants. By following the reviewers' links in the Yelp restaurant 
homepages, we also crawled the homepages of all these reviewers, which resulted in 9067 users. Based on the friend 
links in each user's homepage, we are able to identify friends from the crawled users, and thus reconstruct a social 
network. Note that the friends we collected for each user may only be a subset of the actual friends listed on his/her 
homepage. That is because we require every user in our dataset to have a least one review in the crawled restaurants. 
In other words, the social network that we crawled focuses on dining.  

To illustrate users' ratings and their relationships, we built a graphical tool to represent each restaurant in our 
dataset. Figure 4.1(b) shows the alternative view of "Yoshi's Sushi" in Figure 4.1(a). Each node represents a 
reviewer of the restaurant, and the size of the node represents the corresponding reviewer's rating on this restaurant. 
Two nodes are connected if they claim each other as friends. Since friends in Yelp are mutual, the social network 
structure is an undirected graph. From Figure 4.1(b), we can see that nodes in this graph are highly connected, which 
means many friends are involved in writing reviews for Yoshi’s Sushi.  

 

 
 

(a)      (b) 
Figure 4.1: (a) The homepage of a Yelp restaurant "Yoshi's Sushi" and (b) the corresponding abstract graphical representation of 
Yoshi's Sushi in which each node represents a reviewer in the restaurant, and nodes are connected by explicit friend relations. 
The size of each node is proportional to the corresponding reviewer's rating on this restaurant. 
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A preliminary study on this dataset yields the following results. The total number of reviews in this dataset is 
55,400. Thus, each Yelp user on average wrote 6.11 reviews and each restaurant on average has 13.34 reviews. In 
terms of friends, the average number of immediate friends of every user is 8.41. If we take a closer look at the 
relations between the number of users and the number of their immediate friends (as shown in Figure 4.2 (a)), we 
can see that it actually follows a power-law distribution; this means that most users have only a few immediate 
friends while a few users have a lot of immediate friends. A similar distribution also applies to the relations between 
the number of users and the number of reviews, as shown in Figure 4.2(b). Because most users on Yelp review only 
a few restaurants, we expect the dataset to be sparse. In fact, the sparsity of this dataset, i.e., the percentage of 
user/item pairs whose ratings are unknown, is 99.8%.  

Furthermore, we perform the following analysis on this dataset, particularly focusing on immediate friends’ 
review correlation and rating correlation. Basically, we want to answer two questions: 1) whether or not friends tend 
to review the same restaurant; and 2) whether or not friends tend to give ratings that are more similar than those 
from non-friends. Clearly, these two questions are essential to SNRS. 

 

 
(a)       (b) 

Figure 4.2: (a) The number of users versus the number of immediate friends in the Yelp network, and (b) the number of users 
versus the number of reviews both follow the power-law distribution. 

4.1 Review Correlations of Immediate friends  

We shall first investigate the correlation of immediate friends in reviewing the same restaurants. Specifically, we 
study the following question: if a user reviews a restaurant, what is the chance that at least one of his/her immediate 
friends has also reviewed the same restaurant? To answer this question, we count, for each user, the percentage of 
restaurants that has also being reviewed by at least one of his/her immediate friends. The average percentage over all 
users in the dataset is 18.9%. As a comparison, we calculate the same probability if assuming immediate friends 
review restaurants uniformly at random and independently. In a social network with n users, for a user with q 
immediate friends and a restaurant with m reviewers (including the current user), the chance that at least one of q 

immediate friends appears in m reviewers is 1 −
�𝑛𝑛−𝑞𝑞−1
𝑚𝑚−1 �

�𝑛𝑛−1
𝑚𝑚−1�

.  We calculate this value for every user and every 

restaurant he/she reviewed. The average probability over all users is only 3.8%. Compared to 18.9% as observed in 
the dataset, it is clear that immediate friends do not review restaurants randomly. There are certain correlations 
between friends.  

We also extend the previous study by considering the probability that at least one of a reviewer's friends within 
two hops review the same restaurant. Note that this covers the cases where immediate friends have no reviews for 
the restaurant, but at least one of the second-hop friends does. Such a probability is 46.3%, which is about two and a 
half times as high as the previous result for immediate friends (18.9%). Since SNRS can make recommendations 
only when there are friends who have co-rated the same items, if we limit the friends within one hop (immediate 
friends), then we can only predict ratings for a limited number of users. In other words, this comparison reveals the 
importance of considering distant friends in SNRS. Meanwhile, if we assume friends review restaurants randomly, 
the probability is 34.9% that at least one friend, within two hops, co-reviews the same restaurant as the target user. 

Finally, we compare the average number of co-reviewed restaurants between any two immediate friends and 
any two users on Yelp. The results are 0.84 and 0.03 respectively, which again illustrates the tendency that 
immediate friends co-review the same restaurants.  
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4.2 Rating Correlations of Immediate Friends 

One of the key assumptions in this study is that immediate friends tend to give similar ratings more than non-friends. 
We want to prove this assumption is valid in our Yelp dataset. Specifically, we compare the average rating 
differences (in absolute values) on the same restaurant between reviewers who are immediate friends and non-
friends. We find that, for every restaurant in our dataset, if two reviewers are immediate friends, their ratings on this 
restaurant differ by 0.88 on average with a deviation of 0.89. If they are not, their rating difference is 1.05 and the 
standard deviation is 0.98. This result clearly demonstrates that immediate friends, on average, give more similar 
ratings than non-friends.  

We further study how such rating differences vary as the number of co-rated restaurants between two immediate 
friends increases. The intuition is that the more restaurants two immediate friends co-rate, the more likely they have 
similar taste, and thus the closer their ratings would be. In this study we group the rating differences of friends 
according to their number of co-rated restaurants, and in Figure 4.3 plot the average rating difference as well as the 
number of immediate friend pairs in each group. Note that in Figure 4.3 the left axis is for the average rating 
difference and the right axis is for the number of immediate friend pairs. From this figure, we can see that the rating 
difference between immediate friends decreases as the number of co-rated restaurants increases. For example, if two 
immediate friends have only one co-rated restaurant, their ratings, on average, differ by 0.85. However, if two 
immediate friends have 16 co-rated restaurants, their ratings differ only by 0.35. Thus, this observation validates our 
intuition. Moreover, due to the power law effect, most immediate friends do not co-rate very many restaurants. Thus, 
the number of immediate friend pairs in each group of co-rated restaurants decreases dramatically as the number of 
co-rated restaurants increases. For example, there are 31 pairs of immediate friends who co-rated 15 restaurants in 
our dataset and only 4 pairs of immediate friends who co-rated 21 restaurants.  

 

 
Figure 4.3: The trend of the average rating difference between immediate friend pairs as the number of co-rated restaurants 
increases.  

 
In this section we presented some analysis of our dataset. The results on review correlations as well as rating 

correlations between immediate friends are critical in validating our assumptions in SNRS. In the next section, we 
are going to present a set of experiments to demonstrate the advantages of considering social network information in 
a recommender system.  

5.  Experiments 
In the experiments we evaluate the performance of SNRS on the Yelp dataset, focusing on the issues of the 
prediction accuracy, data sparsity, and cold-start, which are the main issues of current recommender systems. 
Additionally, we will study the role of distant friends in SNRS.  
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The following is the setting for our experiments. First, we used a restaurant's price range as the only item 
attribute when modeling user preference. Even though Yelp provides many restaurant attributes, only two attributes, 
the food category and the price range, are probably the most relevant to user ratings compared to other attributes, 
such as whether or not the restaurant accepts credit cards, whether or not it is wheelchair accessible, etc. However, 
we did not use the food category either. Our reason is that there are more than 50 food categories on Yelp, and most 
users do not have enough reviews in many of these categories. Thus, the conditional probabilities of Pr(A'j|RU) 
cannot be learned for every category value. Second, we do not have any useful user attribute on Yelp either; 
therefore, Pr(Ri = k | A = au) is substituted with Pr(RI = k) when estimating item acceptance. Finally, we set a 
threshold to require every pair of immediate friends to have at least three co-rated restaurants. If they do not, we 
ignore their friend relationships.  

5.1  Comparison Methods 

As a comparison, we implemented the following methods along with SNRS.  
 
Friend Average (FA). To leverage the ratings of friends for inference, the most straightforward approach is to 
predict the ratings of the target users on the target items with the average ratings of their immediate friends on the 
same item. We therefore implemented this method as a baseline.  
 
Weighted Friends (WVF). Unlike treating immediate friends equally as in FA, WVF considers that every immediate 
friend has a different impact (or weight) on the target user. The more the impact from an immediate friend, the 
closer the target user's rating is to the rating of that friend. Thus, the probability of the target user's rating is 
proportional to the accumulated weight in each rating value.  
 

𝑃𝑃𝑃𝑃(𝑅𝑅𝑈𝑈𝑈𝑈 = 𝑘𝑘 | {𝑅𝑅𝑉𝑉𝑉𝑉 = 𝑟𝑟𝑉𝑉𝑉𝑉 :∀𝑉𝑉 ∈ 𝑵𝑵(𝑈𝑈) ∩ 𝑼𝑼(𝐼𝐼)}) =  1
𝑍𝑍
∑ 𝑤𝑤(𝑈𝑈,𝑉𝑉) × 𝛿𝛿(𝑘𝑘, 𝑟𝑟𝑉𝑉𝑉𝑉)𝑉𝑉 , (12) 

 
in which z is a normalizing constant. w(U, V) is the weight between U and V. In this experiment, we use the cosine 
similarity between U's and V's ratings as their weight. δ(k, rvi) is the delta function which returns one only when rVI 
= k, and zero otherwise. WVF is essentially same as a relational-neighbor classifier [18] which performs really well 
on classifying relational datasets such as citations and movies. 
, 
Naive Bayes (NB). Social networks can be also modeled using Bayesian networks [10]. In this study, we 
implemented a special form of Bayesian networks, a naive Bayes classifier. Specifically, when predicting the rating 
of a target user U, the NB classifier assumes U's rating influences the ratings of U's immediate friends, and the 
ratings of U's immediate friends are independent of each other. Although with strong assumptions, NB classifiers 
have been widely used for probabilistic modeling and often result in surprisingly good results [16]. Therefore, we 
also included this method for comparison.  

Given the ratings of the immediate friends on the target item I, we calculate the conditional probability Pr(RUI | 
{RVI : ∀V∈N(U) ∩U(I) }) as follows. 
 

𝑃𝑃𝑃𝑃(𝑅𝑅𝑈𝑈𝑈𝑈 = 𝑘𝑘|{𝑅𝑅𝑉𝑉𝑉𝑉 = 𝑟𝑟𝑉𝑉𝑉𝑉 :∀𝑉𝑉 ∈ 𝑵𝑵(𝑈𝑈) ∩ 𝑼𝑼(𝐼𝐼)}) =  1
𝑍𝑍
𝑃𝑃𝑃𝑃(𝑅𝑅𝑈𝑈 = 𝑘𝑘)∏ 𝑃𝑃𝑃𝑃(𝑅𝑅𝑉𝑉 = 𝑟𝑟𝑉𝑉𝑉𝑉|𝑅𝑅𝑈𝑈 = 𝑘𝑘)𝑉𝑉 , (13) 

 
where Pr(RU=k) is the prior rating distribution of the target user U, which can be estimated by counting the review 
ratings of U. Pr(RV=rVI | RU=k) is the conditional probability that an immediate friend V's rating is equal to rVI given 
U's rating is k. Because there are not enough samples to estimate these probabilities for every individual pair of 
immediate friends, we estimate these probabilities by counting the review ratings for all pairs of immediate friends 
in the dataset. Moreover, Z is a normalizing constant. The predicted rating of the target user U is the rating value that 
has the maximum probability.  
 
Collaborative Filtering (CF). We implemented the standard collaborative filtering algorithm as we described in 
Section 2. The K value we used is 20.  
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5.2  Prediction Accuracy And Coverage 

We carried out this experiment in a 10-fold cross-validation. The prediction accuracy was measured by the mean 
absolute error (MAE), which is defined as the average absolute deviation of predictions to the ground truth data 
over all the instances, i.e., target user/item pairs, in the testing set.  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ |𝑟𝑟𝑈𝑈𝑈𝑈 − 𝑟𝑟𝑈𝑈𝑈𝑈� |𝑈𝑈,𝐼𝐼

𝐿𝐿
, 

(14) 

 
where L is the number of testing instances. The smaller the MAE, the better the inference. 

Since SNRS, FA, WVF, and NB rely on friends' ratings on the target item in order to make predictions; thus, 
there is no prediction when the target user has no friends who have rated the item. Similarly, CF does not make 
predictions unless it finds similar users for the target user. Therefore, another metric that we study for each method 
is the coverage, which is defined as the percentage of the testing instances for which the method can make 
predictions. 

The experimental results are listed in Table 5.1. From this table, we note that SNRS achieves the best 
performance in terms of MAE (0.718), while CF is the worst (0.871). SNRS improves the prediction accuracy of CF 
by 17.8%. The other methods that use the influences from friends also achieve better results than CF. Clearly, 
considering social influence does improve predictions in recommender systems. In terms of the coverage, the 
coverage of all these methods is relatively low; e.g., none of these methods have the coverage better than 0.6. This is 
because the dataset we have is extremely sparse, with a sparsity of 99.8%. However, among these methods, CF is 
the best. Because most of the time, CF is able to find similar users for the target user from all the other users in the 
training set. On the other hand, the coverage of the other methods is decided by whether there is a friend who has 
rated the item, and we pruned many friend relationships by setting a threshold of three co-rated items for each pair 
of friends. Therefore, the coverage of those methods is lower than CF. The coverage of FA, WVF, and NB is even 
lower than that of SNRS, because SNRS can still utilize the influence from distant friends even if immediate friends 
have not rated the restaurant, while the other methods cannot.    

 
 MAE COVERAGE 
SNRS 0.716 0.482 
FA 0.814 0.228 
WVF 0.808 0.228 
NB 0.756 0.237 
CF 0.871 0.552 

 
Table 5.1: Comparison of the MAEs of the proposed Social Network-Based Recommender System (SNRS), Collaborative 
Filtering (CF), Friend Average (FA), Weighted Friends (WVF), and Naive Bayes (NB) in a 10-fold cross-validation.  

5.3  Data Sparsity  

CF suffers from problems with sparse data. In this study, we want to evaluate the performance of SNRS at various 
levels of data sparsity. To do so, we randomly divided the whole user/item pairs in our dataset into ten groups, and 
then randomly selected n sets as the testing set, and the rest as the training set. The value of n controls the sparsity of 
the dataset. At each value of n, we repeated the experiment 20 times. The performance was measured by the average 
MAEs and the coverage. 

Figure 5.1(a) compares the MAEs of SNRS and CF when the percentages of testing sets vary from 10% to 70%. 
Due to the high sparsity of the underlying Yelp dataset, even when the percentage of testing set is 10%, the actual 
sparsity is as high as 99.87%. From Figure 5.1(a), we first observe that the MAEs of SNRS are consistently lower 
than those of the CF, which again shows that SNRS indeed outperforms CF. Second, the prediction accuracy of CF 
is greatly affected by data sparsity. For example, the MAEs of CF increase by 14.4% from 0.868 and 0.993 when the 
testing set is increased from 10% to 70% of the whole dataset. Meanwhile, the MAEs of SNRS grow at a much 
slower pace. For instance, the MAEs of SNRS increase by only 2.8% from 0.716 to 0.736 under the same conditions.  

Figure 5.1(b) compares the coverage of both methods. Unfortunately, the coverage of both methods severely 
drops as the training set becomes sparser. For example, the coverage of CF drops from 0.549 to 0.064 when the size 
of the testing set increases from 10% to 70%, and the coverage of SNRS decreases from 0.482 to 0.123 at the same 
time. This decrease in the coverage is expected, as explained earlier, but the trend of these two methods also 
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indicates their differences. CF performs better with a large training set, allowing it to find more similar users. When 
the training set becomes sparser, CF finds similar users from fewer candidates for each target user. The similarity 
obtained from each pair of users is less accurate because that there are fewer co-rated items between these users. 
Thus, both the prediction accuracy and the coverage of CF are adversely affected by the data sparsity. Meanwhile, 
the coverage of SNRS also decreases because there are fewer friends who have ratings on the target items as the 
dataset becomes sparser. But the coverage of SNRS decreases with a slower pace compared to that of CF. Initially, 
CF has a better coverage than SNRS. However, the coverage of SNRS starts to exceed that of CF after the 
percentage of the testing set is above 30%. Such a change in the trend is because that some users can still be inferred 
since the influences from distant friends are able to propagate to them even when the dataset is sparse. In Section 5.5, 
we will study the role of distant friends again. On the other hand, the prediction accuracy of SNRS is consistent at 
all levels of data sparsity. This is because friends are provided explicitly by social networks, and there is no need for 
SNRS to find similar users from the training set. Therefore, as long as there are friends who have reviewed the target 
item, SNRS can make accurate predictions. 

      

    (a)      (b)   
Figure 5.1: Comparison of the (a) MAEs and the (b) coverage of SNRS and CF at different sizes of the testing set. 

5.4  Cold-Start 

Cold-start is an extreme case of data sparsity where a new user has no reviews. In such a case, CF cannot make a 
recommendation to this new user since CF is not able to find similar users for him/her. SNRS cannot either if this 
new user has also no friends. However, in some cases of cold-start when a new user is invited by some existing users 
in the system, the initial friend relationships of this new user can still make the inference of SNRS possible. Even 
though there is no prior knowledge of the new user's own preference, SNRS can make recommendations to this new 
user based on the preferences of his/her friends. In this study, we simulated the latter case of cold-start by making 
the following experimental settings: 1) We did not use the target user's prior ratings in the training set; thus, there 
was no influence from user preference. We simply set the output from Pr(RU = k | A’= a'I,) as a uniform distribution. 
2) Since we cannot learn the rating correlation between this new user and his/her friends, we directly used friends' 
rating distribution on the target item, Pr({RVI =rVI : ∀V ∈ U(I) ∩ N(U)}), as the result from friend inference. 3) 
Except for the target user, the ratings of all other users were known. 

We simulated cold-start for every user in the dataset. The resulting MAE is 0.706 and the coverage is 0.691. 
This result demonstrates that even in cold-start, SNRS can still perform decently. The coverage of SNRS is high 
compared to that in the 10-fold cross-validation (0.422) because the ratings of every target user's friends are all 
observable in the setting of this experiment.    

5.5  Role of Distant Friends 

In this study we investigate the role of distant friends in SNRS. Specifically, we compared the performance of SNRS 
with and without distant friend inference in a 10-fold cross-validation. The experimental results are shown in Table 
5.2. From these results, we can see that by considering the influences from distant friends, the coverage of SNRS is 

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0% 20% 40% 60% 80%

M
A

E

Percentage of Testing Set

SNRS

CF

0

0.1

0.2

0.3

0.4

0.5

0.6

0% 20% 40% 60% 80%

Co
ve

ra
ge

Percentage of Testing Set

SNRS

CF



UCLA Computer Science Technical Report #090014 

15 

increased from 0.237 to 0.482, which is equivalent to a 103% improvement. However, the improvement is achieved 
at the cost of a slight reduction in the prediction accuracy. In our experiments, the MAE increases from 0.682 to 
0.716, which is only a 5% difference. This is consistent with our intuition that the impact from distant friends is not 
as direct as from immediate friends, and certain errors will be inevitably introduced when considering distant friends. 
On the other hand, compared to the drastic gain in the coverage, the minor loss in precision is still acceptable.  
 

 MAE COVERAGE 
With Distant Friend Inference 0.716 0.482 
Without Distant Friend Inference 0.682 0.237 

 
Table 5.2: Comparison of the performance of SNRS with and without distant friend inference. 

6.  Semantic Filtering of Social Networks 
In the previous section we showed that SNRS improves the prediction accuracy of recommender systems by 
utilizing information such as social influences in social networks. In this section, we shall discuss how to further 
improve the performance of SNRS by applying semantic filtering of social networks. 

Although friends influence each other when selecting items, such influence is sensitive to the types of items. 
For example, two friends who have similar taste on CDs may not necessarily agree with each other in their choice of 
favorite restaurants. Therefore, to recommend restaurants, we should not consider friends who have common 
preferences only in music. In other words, to effectively use the social influence, an appropriate set of friends needs 
to be selected according to the type of target items, which is what we called semantic filtering of social networks. In 
fact, we considered this issue when we performed experiments on Yelp. Rather than considering all friends listed in 
user's profiles, we pruned a set of friends who had reviewed only a small number of common restaurants. For 
example, even though two real friends may have reviewed many common hotels on Yelp, they are not necessarily 
friends in SNRS unless they have enough reviews on common restaurants. However, this is still a poor man's 
version of semantic filtering, because even within the domain of restaurants, friends can be further grouped based on 
their opinions on different food categories, price range, restaurant environment, etc.  

A better selection of relevant friends requires us to know in what aspects two friends influence each other. 
Unfortunately, such information is not available in most current OSNs. Some OSNs, such as Linkedin, ask how 
friends know each other, e.g., whether they were/are classmates or colleagues. Information like this definitely helps 
us understand friend relationships. However, it is still too general to bring a practical usage to recommender systems. 
Instead, the semantics that we really want to know from friend relationships should be more specific to the domain 
of interest. For example, in terms of dining, it would be better to know whether two friends are friends because they 
have a similar taste in food or a similar preference in the price of meals, etc. To obtain such information, the most 
direct solution is for content providers (e.g., Yelp) to explicitly ask users to rate their friends on those aspects. If that 
puts too much of a burden on users, an alternative is for content providers to collect finer-grained user ratings rather 
than overall ratings alone, and then implicitly deduce friend relationships from the semantics in those finer-grained 
ratings. The problem with overall ratings is that they encapsulate decision-reasoning of users on many factors. For 
example, when a user gives a rating of 4 to a restaurant, it is not clear if the user really likes the taste, price, service, 
or environment of this restaurant. If content providers could ask users to rate on those factors, such finer-grained 
ratings would not only allow us to model user preference and item acceptance more precisely, but also help us to 
know on which category two friends are in agreement or whether they influence each other. For instance, two 
friends may not give the same overall rating, but they might still agree on the quality of restaurant service. 

In the following text, we describe an experiment that we designed to demonstrate how relevant friends can be 
selected for inference by obtaining the semantics in friend relationships and user ratings, and then validate its 
improvement on SNRS.  

This experiment was to predict students' ratings for online articles. It was conducted as a class project 
assignment with 22 students. At the beginning of the experiment, we selected 20 online articles. These articles 
mainly focus on two topics: the recent economic crisis, and controversies in technologies such as stem cell research 
and file sharing. These articles all contain strong opinions expressed by the authors. We collected the demographic 
information of students, including gender, age, ethnicity, employment, and interests. We also asked them a set of 
questions related to the articles that we selected. For example, "Has the rise in unemployment affected you or 
someone in your family?" and "Given the current state of the economy, are you concerned about getting a job after 
you graduate?". After that we asked the students to review every article by giving four ratings (from 1 to 5) based on 
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each of the following criteria: 1) Interestingness: Is the article interesting? 2) Agreement: How much do you agree 
with the author? 3) Writing: Is the article well written? and 4) Overall: Overall evaluation. The reason that we 
included the first three ratings is because they usually play the most important roles when we give an overall score 
to an article. Since most students did not know each other before the experiment, it would have been difficult to 
form a social network from their original relationships. We therefore decided to divide the students into groups and 
let them get to know each other by discussing the articles within the groups. Specifically, we divided the students 
into three groups twice. The first grouping was based on students' ethnicities, and the second grouping was based on 
students' responses to the survey questions. The goal of these groupings was to organize the students in such a way 
that the students in a group will more likely to be friends after the group discussions. During the discussions, every 
student needed to explain the reasons why he/she liked or disliked each article. Thus, the other group members were 
able to know more about the speaker. After the discussions, the students evaluated other group members (using 
ratings from 1 to 3) according to the following three aspects: 1) Do you have common interests on the articles? 2) 
Do you agree with his/her opinions on the articles? 3) Do you have common judgments about the author's writing 
skill? In addition to evaluating group members, the students were allowed to revise their previous ratings to the 
articles if they had a new understanding of the articles due to the discussion.  

Compared to the Yelp dataset, there are mainly two changes in this dataset. First, instead of having just an 
overall rating, each article now has three fine-grained ratings (interestingness, agreement, and writing) which, as 
mentioned earlier, provide the semantics of the overall rating. Second, friend relationships have semantics too. 
Rather than just knowing that two students are friends, we are now able to know whether it is because they have 
similar interests or similar opinions, etc. In the following experiment, we are going to compare the prediction 
accuracies of SNRS with and without the consideration of semantic filtering of social networks.  

Similar to the experimental setup in Section 5.3, we randomly divided the student/article pairs into ten groups. 
We randomly selected n groups as the testing set, and the rest as the training set. For each value of n, we repeated 
the experiment 20 times. For each pair in the testing set, we predicted the target student's ratings on the target article 
by applying and not applying semantic filtering of social networks. When we applied semantic filtering to predict a 
particular rating, we only considered the ratings of the target user's friends in the corresponding category. For 
example, to predict the target article's interestingness, we selected the set of students whom the target student had 
rated as friends (with a rating of 3) in terms of having similar interests, and then used their ratings on interestingness 
for inference. Thus, the social networks used for predicting each category are different. On the other hand, without 
semantic filtering, we considered the ratings on interestingness from all the students whom the target user had rated 
as friends in any of the three aspects. We measured the average MAEs for predicting each rating of the article, and 
the corresponding MAEs in CF.    

We show the results of predicting student ratings on the interestingness of the articles in Figure 6.1(a). From 
this figure, we observe two trends. First, regardless of semantic filtering or not, the MAEs of SNRS are persistent for 
different data sparsity, while the MAEs of CF dramatically increase as the data becomes sparser. This phenomenon 
is consistent with our findings on the Yelp dataset in Section 5.3. Second, we find that, at any level of data sparsity, 
the MAEs of SNRS with semantic filtering are consistently lower than those of SNRS without semantic filtering as 
well as those of CF. This result demonstrates that semantic filtering does indeed improve the prediction accuracy of 
SNRS. In Figure 6.1(b), (c), and (d), we plot the results of predicting ratings on the agreement and writing of the 
articles and overall ratings respectively. We observe similar trends in these figures. Note that when predicting the 
overall rating, we consider the overall ratings of all friends of a target student, which means there is no semantic 
filtering. 

In this paper we assume the reviews that users provide are real. However, in reality, there are always users who 
purposely provide false reviews to attack the adversaries or praise themselves, and traditional recommender systems 
have no control on them at all. On the other hand, SNRS is still able to detect and exclude those malicious users 
through reputation systems [19].      

7.  Related Work 
Domings and Richardson proposed to mine customers' network values from a social network [8, 28]. The network 
value comes from the different potentials of customers to influence their social contacts to purchase the same 
products. Thus, the more people they can influence, the higher network value they have. Merchandisers can increase 
the expected lift in profit by sending advertisements only to those users who have high network values. [8] estimates 
the conditional probability of whether a user will purchase a product given the adoption values of his/her friends, 
and marketing actions are tailored by using a relaxation labeling approach. Such a probability is modeled as a 
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weighted sum of each user's internal probability of purchasing a product and an external effect from his/her friends 
[28]. The authors conduct simulation studies, first on a synthesized social network in [8], and then on Epinon.com, a 
review website in [28].  

 

 
(a)       (b)  

 
(c)       (d) 

 
Figure 6.1: Comparisons of the accuracies of CF and SNRS with and without semantic filtering on predicting student ratings on 
(a) interestingness, (b) agreement, (c) writing, and (d) overall aspects of the articles.  

 
There is also previous work on exploiting explicit user trust in recommender systems. [9] presented a FilmTrust 

system which used explicit trust values between users as the weights in collaborative filtering. Similarly, [20] 
proposed a trust-aware recommender system which is also based on explicit trust values between users. They 
proposed a method for trust propagation in which the trust between distant friends is calculated by a linear decay 
model. Although these research efforts realized the importance of person-to-person influences in recommender 
systems, they are limited by the availability of prior knowledge of explicit trust values. These systems need to know 
not only who is trusting whom, but also how much they trust each other. Thus, recommender systems that rely on 
explicit trust values cannot scale. In contrast, our system makes recommendations by using the correlations between 
friends, which can be viewed as implicit trust. We do not need to acquire trust values since they can be obtained 
from the rating correlations between friends. In addition to social influences, our system incorporates user's own 
attributes and the characteristics of items. These two factors are important for making target specific 
recommendations. Otherwise, recommender systems will simply suggest an item to a user whenever his/her trusted 
friend likes it. 

Interestingly, [4] studied the factors that drive people's decision-making and advice-seeking through empirical 
studies, and found out that the profile similarity and rating overlap of a recommender have a significant impact on a 
person's decision. In addition, [4] suggested that recommender systems support the social element of advice seeking 
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through communication and explicit user matching functions. Therefore, advice seekers can judge the validity and 
appropriateness of a recommendation. In Section 6 we proposed a recommender system design. In this design we 
think it is more important to consider the semantics in friend relationships when measuring their similarities based 
on user profiles and rating overlap.  

More directly related work is found in [37]. Here, the authors proposed to combine social networks with 
recommender systems. They estimated the weights in collaborative filtering with an exponential function of the 
minimal distance of two users in a social network. This is, however, an over-simplified correlation between users. 
Distance has no semantic meaning of similarity, and two distant friends may still share common opinions. As noted 
by the authors, this approach does not work well. [37] also proposed another approach to reduce the computational 
cost in recommender systems by limiting the candidate similar users within a user’s social network neighbors. This 
approach actually will make the data sparsity problem of a recommender system even worse, because there are far 
less candidates for similar users than before. 

8.  Conclusions 
Social networks provide an important source of information regarding users and their interactions. This is especially 
valuable to recommender systems. In this paper we presented a social network-based recommender system (SNRS) 
which makes recommendations by considering a user's own preference, an item's general acceptance and influence 
from friends. In particular, we proposed to model the correlations between immediate friends with the histogram of 
friend's rating differences. The influences from distant friends are also considered in an iterative classification. In 
addition, we have collected data from a real online social network. The analysis on this dataset reveals that friends 
have a tendency to review the same restaurants and give similar ratings. In addition, friends' ratings become closer 
as the number of co-rated restaurants increases. We compared the performance of SNRS with other methods, such as 
collaborative filtering (CF), friend average (FA), weighted friends (WVF) and naive Bayes (NB) with the same 
dataset. In terms of the prediction accuracy, SNRS achieves the best result. It yields a 17.8% improvement compared 
to that of CF. In the sparsity test, SNRS returns consistently accurate predictions at different values of data sparsity. 
The coverage of SNRS decreases when the data is sparse but at a slower speed than CF. In the cold-start test, SNRS 
still performs well. We also studied the role of distant friends in SNRS, and found that by considering the influences 
from distant friends, the coverage of SNRS can be significantly improved with only a minor reduction in the 
prediction accuracy. The performance of SNRS can be further improved by selecting relevant friends for inference, 
which can be achieved by collecting the semantics of the friend relationships or fine-grained user ratings. Such an 
approach can be adopted by current content providers.  
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