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Abstr act. Social influence plays an important role in product marketing. However, it has 
rarely been considered in traditional recommender systems. In this paper we present a new 
paradigm of recommender systems which can utilize information in social networks, in-
cluding user preferences, item's general acceptance, and influence from social friends. A 
probabilistic model is developed to make personalized recommendations from such infor-
mation. We extract data from a real online social network, and our analysis of this large da-
taset reveals that friends have a tendency to select the same items and give similar ratings. 
Experimental results on this dataset show that our proposed system not only improves the 
prediction accuracy of recommender systems but also remedies the data sparsity and cold-
start issues inherent in collaborative filtering. Furthermore, we propose to improve the per-
formance of our system by applying semantic filtering of social networks, and validate its 
improvement via a class project experiment. In this experiment we demonstrate how rele-
vant friends can be selected for inference based on the semantics of friend relationships and 
finer-grained user ratings. Such technologies can be deployed by most content providers. 

1  Introduction 

In order to overcome information overload, recommender systems have become a 
key tool for providing users with personalized recommendations on items such as 
movies, music, books, news, and web pages. Intrigued by many practical applica-
tions, researchers have developed algorithms and systems over the last decade. 
Some of them have been commercialized by online venders such as Amazon.com, 
Netflix.com, and IMDb.com. These systems predict user preferences (often 
represented as numeric ratings) for new items based on the user's past ratings on 
other items. There are typically two types of algorithms for recommender systems 
-- content-based methods and collaborative filtering. Content-based methods 
measure the similarity of the recommended item (target item) to the ones that a 
target user (i.e., user who receives recommendations) likes or dislikes [25, 22, 30] 
based on item attributes. On the other hand, collaborative filtering finds users with 
tastes that are similar to the target user’s based on their past ratings. Collaborative 
filtering will then make recommendations to the target user based on the opinions 
of those similar users [3, 5, 27].  

Despite all of these efforts, recommender systems still face many challenging 
problems. First, there are demands for further improvements on the prediction ac-
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curacy of recommender systems. In October 2006, Netflix announced an open 
competition with the grand prize of $1,000,000 for the best algorithm that predicts 
user ratings for films (http://www.netflixprize.com). The improvement in the pre-
diction accuracy can increase user satisfaction, which in turn leads to higher prof-
its for those e-commerce websites. Second, algorithms for recommender systems 
suffer from many issues. For example, in order to measure item similarity, con-
tent-based methods rely on explicit item descriptions. However, such descriptions 
may be difficult to obtain for items like ideas or opinions. Collaborative filtering 
has the data sparsity problem and the cold-start problem [1]. In contrast to the 
huge number of items in recommender systems, each user normally only rates a 
few. Therefore, the user/item rating matrix is typically very sparse. It is difficult 
for recommender systems to accurately measure user similarities from those li-
mited number of reviews. A related problem is the cold-start problem. Even for a 
system that is not particularly sparse, when a user initially joins, the system has 
none or perhaps only a few reviews from this user. Therefore, the system cannot 
accurately interpret this user's preference.  

To tackle those problems, two approaches have been proposed [3, 29, 21, 23]. 
The first approach is to condense the user/item rating matrix through dimensional-
ity reduction techniques such as Singular Value Decomposition (SVD) [3, 29]. By 
clustering users or items according to their latent structure, unrepresentative users 
or items can be discarded, and thus the user/item matrix becomes denser. Howev-
er, these methods do not significantly improve the performance of recommender 
systems, and sometimes make the performance even worse. 

The second approach is to "enrich" the user/item rating matrix by 1) introduc-
ing default ratings or implicit user ratings, e.g., the time spent on reading articles 
[23]; 2) using half-baked rating predictions from content-based methods [21]; or 
3) exploiting transitive associations among users through their past transactions 
and feedback [12]. These methods improve the performance of recommender sys-
tems to some extent. In this paper we try to solve these problems from a different 
perspective. In particular, we propose a new paradigm of recommender systems 
by utilizing information in social networks, especially that of social influence. 

Traditional recommender systems do not take into consideration explicit so-
cial relations among users, yet the importance of social influence in product mar-
keting has long been recognized [32, 35]. Intuitively, when we want to buy a 
product that is not familiar, we often consult with our friends who have already 
had experience with the product, since they are those that we can reach for imme-
diate advice. When friends recommend a product to us, we also tend to accept the 
recommendation because their inputs are trustworthy. Many marketing strategies 
that have leveraged this aspect of human nature have achieved great success. One 
classic example is the Hotmail's free email service. The marketing strategy of 
Hotmail is to attach a promotion message at the bottom of every outgoing email: 
“Get your private, free email at http://www.hotmail.com.” People who receive the 
email will sign up and then further propagate this promotion message. As a result, 
the number of Hotmail user accounts grew from zero to 12 million in 18 months 
on only a $500,000 advertising budget—thereby out-performing many conven-

http://www.hotmail.com/�
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tional marketing strategies [14]. Thus, social influences play a key role when 
people are making decisions of adopting products. 

Additionally, the integration of social networks can theoretically improve the 
performance of current recommender systems. First, in terms of the prediction ac-
curacy, the additional information about users and their friends obtained from so-
cial networks improves the understanding of user behaviors and ratings. There-
fore, we can model and interpret user preferences more precisely, and thus 
improve the prediction accuracy. Second, with friend information in social net-
works, it is no longer necessary to find similar users by measuring their rating si-
milarity, because the fact that two people are friends already indicates that they 
have things in common. Thus, the data sparsity problem can be alleviated. Finally, 
for the cold-start issue, even if a user has no past reviews, recommender system 
still can make recommendations to the user based on the preferences of his/her 
friends if it integrates with social networks. All of these intuitions and observa-
tions motivate us to design a new paradigm of recommender systems that can take 
advantage of information in social networks.  

The recent emergence of online social networks (OSNs) gives us an opportu-
nity to investigate the role of social influence in recommender systems. With the 
increasing popularity of Web 2.0, many OSNs, such as Myspace.com, Face-
book.com, and Linkedin.com have emerged. Members in those networks have 
their own personalized space where they not only publish their biographies, hob-
bies, interests, blogs, etc., but also list their friends. Friends or visitors can visit 
these personal spaces and leave comments. Note that in this paper we define 
friends as any two users who are connected by an explicit social link. We define 
immediate friends as those friends who are just one hop away from each other in a 
social network graph, and distant friends as friends who are multiple hops away. 
OSNs provide platforms where people can place themselves on exhibit and main-
tain connections with friends. As OSNs continue to gain more popularity, the un-
precedented amount of personal information and social relations improve social 
science research where it was once limited by a lack of data.  

In our research, we are interested in the role of explicit social relations in re-
commender systems, such as how user preferences or ratings are correlated with 
those of friends, and how to use such correlations to design a better recommender 
system. In particular, we design an algorithm framework which makes recom-
mendations based on user's own preferences, the general acceptance of the target 
item, and the opinions from social friends. We crawl a real online social network 
from Yelp.com, and perform extensive analysis on this dataset. Some of the key 
questions, such as whether or not friends tend to select the same item, and whether 
or not friends tend to give similar ratings, have been studied in this dataset. We al-
so use this dataset to evaluate the performance of our proposed system on the pre-
diction accuracy, data sparsity, and cold-start. The experimental results of our sys-
tem show significant improvement against traditional collaborative filtering in all 
of those aspects. For example, the prediction accuracy has improved by 17.8% 
compared to traditional collaborative filtering. Furthermore, we propose to use the 
semantics of friend relationships and finer-grained user ratings to improve the 
prediction accuracy.   
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The remainder of the paper is organized as follows. First, in Section 2 we give 
a background of traditional collaborative filtering algorithms. Then we formally 
propose a social network-based recommender system in Section 3. In Section 4 we 
introduce the dataset that we crawled from Yelp, and present some analytical stu-
dies on this dataset. Following that, we evaluate the performance of the proposed 
system on the Yelp dataset in Section 5. In Section 6 we propose to further im-
prove the prediction accuracy of the system by applying semantic filtering of so-
cial networks, and validate its improvement via a class experiment. In Section 7 
we review related studies, and conclude in Section 8.  

2  Background 

After the pioneering work in the Grouplens project in 1994 [27], collaborative fil-
tering (CF) soon became one of the most popular algorithms in recommender sys-
tems. Many variations of this algorithm have also been proposed [2, 21, 11, 36, 
13]. In this paper we will use the traditional CF as one of the comparison methods. 
Therefore, the remainder of this section will focus on this algorithm. 

The assumption of CF is that people who agree in the past tend to agree again 
in the future. Therefore, CF first finds users with taste similar to the target user's. 
CF will then make recommendations to the target user by predicting the target us-
er's rating to the target item based on the ratings of his/her top-K similar users. 
User ratings are often represented by discrete values within a certain range, e.g., 
one to five. A one indicates an extreme dislike to the target item, while a five 
shows high praise. Let RUI be the rating of the target user U on the target item I. 
Thus, RUI is estimated as the weighted sum of the votes of similar users as follows. 
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where the summations over I are over the common items for which both user U 
and V have voted. 

Other variations to this algorithm include different weighting techniques. For 
example, when two users have less than 50 co-rated items, [11] proposed to insert 
a significance weighting factor of n/50 to the original weight, where n is the num-
ber of co-rated items. As we can see, traditional collaborative filtering and its var-
iations do not utilize the semantic friend relations among users in recommender 
systems; however, this is essential to the buying decisions of users. In the follow-
ing sections, we are going to present a new paradigm of recommender systems 
which improves the performance of traditional recommender systems by using the 
information in social networks.   

3  A Social Network-Based Recommender  System 

Before we introduce the system, let us first show a typical scenario. Angela wants 
to watch a movie on a weekend. Her favorite movies are dramas. From the Inter-
net, she finds two movies particularly interesting, "Revolutionary Road" and "The 
Curious Case of Benjamin Button." These two movies are all highly rated in the 
message board at Yahoo Movies. Because she cannot decide which movie to 
watch, she calls her best friend Linda whom she often hangs out with. Linda has 
not viewed these two movies either, but she knew that one of her officemates had 
just watched "Revolutionary Road" and highly recommended it. So Linda sug-
gests "Why don't we go to watch Revolutionary Road together?" Angela is cer-
tainly willing to take Linda’s recommendation, and therefore has a fun night at the 
movies with her friend. If we review this scenario, we can see at least three factors 
that really contribute to the Angela's final decision. The first factor is Angela's 
own preference for drama movies. If Angela did not like drama movies, she would 
be less likely to pick something like "Revolutionary Road" to begin with. The 
second factor is the public reviews on these two movies. If these movies received 
horrible reviews, Angela would most likely lose interest and stop any further in-
vestigation. Finally, it is the recommendation from Angela's friend, Linda, that 
makes Angela finally choose "Revolutionary Road." Interestingly, Linda's opinion 
is also influenced by her officemate. If we recall the decisions that we make in our 
daily life, such as finding restaurants, buying a house, and looking for jobs, many 
of them are actually influenced by these three factors.  

Figure 3.1 further illustrates how these three factors impact customers' final 
buying decisions. Intuitively, a customer's buying decision or rating is decided by 
both his/her own preference for similar items and his/her knowledge about the 
characteristics of the target item. A user's preference, such as Angela’s interest in 
drama movies, is usually reflected from the user’s past ratings to other similar 
items, e.g. the number of drama movies that Angela previously viewed and the 
average rating that Angela gave to those movies. Knowledge about the target item 
can be obtained from public media such as magazines, television, and the Internet. 
Meanwhile, the feedbacks from friends are another source of knowledge regarding 
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the item, and they are often more trustworthy than advertisements. When a user 
starts considering the feedbacks from his/her friends, he/she is then influenced by 
his/her friends. Note that this influence is not limited to that from our immediate 
friends. Distant friends can also cast their influence indirectly to us; e.g., Angela 
was influenced by Linda's officemate in the previous scenario. Each one of these 
three factors has an impact on a user’s final buying decision. If the impact from all 
of them is positive, it is very likely that the target user will select the item. On the 
contrary, if any has a negative influence, e.g., very low ratings in other user re-
views, the chance that the target user will select the item will decrease. With such 
an understanding in mind, we are going to propose a social network-based re-
commender system (SNRS) in the following subsections. As we mentioned, social 
influences can come from not only immediate friends but also distant friends. The 
techniques for handling these types of influences are different. We shall begin 
with the immediate friend inference, in which we only consider influences from 
immediate friends. Then, in the distant friend inference, we will describe how we 
incorporate influences from distant friends via leveraging the immediate friend in-
ference.  

 
 

Figure 3.1: The three factors that influence a customer’s buying decision: user preference 
for similar items, information regarding the target item from the public media, and feed-
backs from friends. 

3.1 Immediate Friend Inference 

We introduce the following naming conventions for the variables used in this pa-
per. We use capitalize letters to represent variables, and use capitalize and bold 
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letters to represent the corresponding sets. The value for each variable or variable 
set is represented by the corresponding lowercase letter. 

Formally, let us consider a social network as a graph G = (U, E) in which U 
represents nodes (users) and E represents links (social relations). Each user U in U 
has a set of attributes AU as well as immediate neighbors (friends) N(U) such that 
if V ∈ N(U), (U, V) ∈ E. The values of attributes AU are represented as aU. More-
over, a recommender system contains the records of users’ ratings, which can be 
represented by a triple relation of T =  (U, I, R) in which U is the users in the so-
cial network G; I is the set of items (products or services), and each item I in I has 
a set of attributes A'I. R stands for the ratings such that each RUI in R is user U’s 
rating on item I. RUI has a numeric value k (e.g. k∈{1, 2,… 5}). Moreover, we de-
fine I(U) as the set of items that user U has reviewed, and refer to the set of re-
viewers of item I as U(I). The goal of this recommender system is to predict 
Pr(RUI =  k | A’=a'I, A=aU, {RVI = rVI : ∀V∈U(I)∩N(U)}); i.e., the probability dis-
tribution of the target user U's rating on the target item I given the attribute values 
of item I, the attribute values of user U, and the ratings on item I rated by U's im-
mediate friends. Once we obtain this distribution, RUI is calculated as the expecta-
tion of the distribution. Items with high estimated ratings will be recommended to 
the target user, and users with high estimated ratings on the target item are the po-
tential buyers. 

In order to estimate Pr(RUI =  k | A’=a'I, A=aU, {RVI = rVI : ∀V∈U(I)∩N(U)}), 
we adopt the naive Bayes assumption which assumes that the influences from item 
attribute values, user attribute values, and immediate friends' ratings are indepen-
dent. Although this assumption simplifies the correlations among these variables, 
the naive Bayes model has been shown to be quite effective in many applications 
including textual document classification [16]. By making this assumption, the 
original conditional probability can be factorized as follows,  
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First, Pr(RU =  k | A’=  a'I,) is the conditional probability that the target user U 

will give a rating k to an item with the same attribute values as item I. This proba-
bility represents U's preference for items similar to I. Because this value depends 
on the attribute values of items rather than an individual item, we drop the sub-
script I in RUI for simplification. Second, Pr(RI =  k | A = aU) is the probability that 
the target item I will receive a rating value k from a reviewer whose attribute val-
ues are the same as U. This probability reflects the general acceptance of the target 
item I by users like U. For the same reason, because this value depends on the 
attribute values of users rather than a specific user, we drop the subscript U in RUI. 
Finally, Pr(RUI =  k | {RVI =  rVI : ∀V∈ U(I)∩N(U)}) is the probability that the tar-
get user U gives a rating value k to the target item I given the ratings of U's imme-
diate friends on item I. This is where we actually take social influences into con-
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sideration in our system. In addition, Z is a normalizing constant. We shall present 
the methods to estimate each of the factors in the following subsections.   

3.1.1  User  Preference 

As we pointed out, Pr(RU =  k | A' =  a'I) measures the target user U's preference 
for the items similar to item I. For example, if we want to know how high Angela 
will rate "Revolutionary Road," Pr(RU =  k | A' =  a'I) gives us a hint of how likely 
it is that Angela will give a rating k to a drama movie which is also casted by Kate 
Winslet. To estimate this probability, we adopt the naive Bayes assumption again. 
We assume that the item attributes in A', e.g., category and cast, are independent 
of each other. Therefore, we have 
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where Pr(A'1, A'2, ..., A'n) can be treated as a normalizing constant, Pr(RU =  k) is 
the prior probability that U gives a rating k, and Pr(A'j |  RU =  k) is the conditional 
probability that each item attribute A'j in A' has a value a'j given U rated k; e.g., 
Pr(movie type =  drama | RU =  4) is the probability that a movie will be a type of 
drama movie, given that U gives a rating 4. The last two probabilities can be esti-
mated from counting the review ratings of the target user U. Specifically,  

 

,
)(

1)(
)Pr(

nU
kR

kR U
U +

+=
==

I
I

and 
(5) 

 

,
)(

1),''(
)|''Pr(

mkR
kRaA

kRaA
U

Ujj
Ujj +=

+==
===

I
I

 
(6) 

 
where |I(U)| is the number of reviews of user U's in the training set, |I(RU =  k)| is 
the number of reviews that user U gives a rating value k, and |I (A'j =  a'j, RU =  k)| 
is the number of reviews that U gives a rating value k while attribute A'j of the cor-
responding target item has a value a'j. Notice that we insert an extra value 1 to the 
numerators in both equations, and add n, the range of review ratings to the deno-
minator in Eq. (5), and m, the range of A'j's values, to the denominator in Eq. (6). 
This method is also known as Laplace estimate, a well-known technique in esti-
mating probabilities [7], especially on a small size of training samples. Because of 
Laplace estimate, "strong" probabilities, like 0 or 1, from direct probability com-
putation can be avoided.  
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Moreover, in some cases when item attributes are not available, we can ap-
proximate Pr(RU =  k | A' =  a'I) by the prior probability Pr(RU =  k). Even though 
Pr(RU =  k) does not contain information specific to certain item attributes, it does 
take into account U's general rating preference; e.g., if U is a generous person, 
he/she gives high ratings regardless of the items.    

3.1.2  Item Acceptance   

Pr(RI =  k | A = au) captures the general acceptance of item I from users like user 
U. For example, for a reviewer who is similar to Angela (e.g., the same gender 
and age), how likely is it that "Revolutionary Road" will receive a rating of 5 from 
her. Similar to the estimation in user preference, we use the naive Bayes assump-
tion and assume user attributes are independent. Thus, we have 
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in which Pr(RI =  k) is the prior probability that the target item I receives a rating 
value k, and Pr(Aj |  RI =  k) is the conditional probability that user attribute Aj of a 
reviewer has a value of aj given item I receives a rating k from this reviewer. 
These two probabilities can be learned by counting the review ratings on the target 
item I in a manner similar to what we did in learning user preferences. When user 
attributes are not available, we use Pr(RI =  k), i.e., item I's general acceptance re-
gardless of users, to approximate Pr(RI =  k | A = au). In addition, Pr(A1, A2, ..., Am) 
in Eq. (7) is a normalizing constant. 

3.1.3  Influence from Immediate Fr iends  

Finally, Pr(RUI =k | {RVI =rVI : ∀V ∈ U(I) ∩ N(U)}) is where SNRS utilizes the in-
fluences from immediate friends. To estimate this probability, SNRS learns the 
correlations between the target user U and each of his/her immediate friends V 
from the items that they both have rated previously, and then assume each pair of 
friends will behave consistently on reviewing the target item I too. Thus, U's rat-
ing can be estimated from rVI according to the correlations. A common practice for 
learning such correlations is through estimating user similarities or coefficients, 
either based on user profiles or user ratings. However, user correlations are often 
so delicate that they cannot be fully captured by a single similarity or coefficient 
value. It is even worse that most of those measures seem ad hoc. Different meas-
ures return different results, and have different conclusions on whether or not a 
pair of users is really correlated [15]. To another extreme, user correlations can be 
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also represented in a joint distribution table of U's and V's ratings on the same 
items that they have rated; i.e., Pr(RUI, RVI) ∀I ∈ I(U) ∩ I(V). This table fully pre-
serves the correlations between U's and V's ratings. However, in order to build 
such a distribution with accurate statistics, it requires a large number of training 
samples. For example, for ratings ranging from one to five, the joint distribution 
has 25 degrees of freedom, which is difficult to be estimated robustly with limited 
training samples. This is especially a problem for recommender systems, because 
in most of these systems, users only review a few items compared to the large 
amount of items available in the system, and the co-rated items between users are 
even less. Therefore, in this study, we use another approach to remedy the prob-
lems in both cases.   

Friends are similar, and give similar ratings. Our data analysis in Section 4 on 
a real online social network also shows that immediate friends tend to give more 
similar ratings than non-friends. Thus, for each pair of immediate friends U and V, 
we consider their ratings on the same item to be close with some error ε. That is, 
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From Eq. (8), we can see that error ε can be simulated from the histogram of 
U's and V’s rating differences H(RUI – RVI) ∀I ∈ I(U) ∩ I(V). Thus, H(RUI – RVI) 
serves as the correlation measure between U and V. For rating ranges from one to 
five, H(RUI – RVI) is a distribution of nine values, i.e. from -4 to 4. Compared to 
similarity measures, it preserves more details in friends' review ratings. Compared 
to a joint distribution approach, it has fewer degrees of freedom.   

Assuming U's and V's rating difference on the target item I is consistent with 
H(RUI – RVI). Therefore, when RVI has a rating rVI on the target item, the probabili-
ty that RUI has a value k is proportional to H(k - rVI).  
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For example, assume that both U and V rated the items as shown in Table 3.1. 
Given their ratings in the table, we want to predict U’s possible ratings on item I6 
according to the correlation with V. From the previous ratings of U and V, we find 
out that two out of five times U’s rating is the same as V’s, and three out of five 
times U’s rating is lower than V’s by one. According to such a correlation, we 
predict that there is a 40% chance that RUI6 is 4 and 60% chance that RUI6 is 3. 

 
 U V 

I1 5 5 
I2 3 4 
I3 4 4 
I4 2 3 
I5 4 5 
I6 ? 4 

 
Table 3.1: An example of predicting user rating from an immediate friend 
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The previous example illustrates how we utilize the correlation between the 

target user and one of his/her immediate friends. When the target user has more 
than one immediate friend who co-rates the target item, the influences from all of 
those friends can be incorporated in a product of normalized histograms of indi-
vidual friend pairs.  
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where ZV is the normalizing constant for the histogram of each immediate friend 
pair, and Z is the normalizing constant for the overall product.   

Once we obtain Pr(RU =  k | A' =  a'I,), Pr(RI =  k | A = au), and Pr(RUI =k | 
{RVI =rVI : ∀V ∈ U(I) ∩ N(U)}), the ultimate rating distribution of RUI, under the 
factors of user preference, item's general acceptance, and the correlations with 
immediate friends, can be estimated from Eq. (3). R’UI, the estimated value of RUI, 
is the expectation of the distribution as shown in Eq. (11).  
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3.2 Distant Friend Inference 

In the previous section, we introduced the approach to predict the target user's rat-
ing on a target item from those of his/her immediate friends on the same item. 
However, in reality, most immediate friends of the target user may not have re-
viewed the target item, because there are a large number of items in recommender 
systems but users may only select a few of them. Therefore, the influences from 
those friends cannot be utilized in immediate friend inference, and it is even worse 
that the ratings of many users cannot be predicted because they have no immediate 
friends who co-rate the target item. To solve this problem, we propose a method to 
incorporate the influences from distant friends via extending immediate friend in-
ference.  

The idea of distant friend inference is intuitive. Even though V, an immediate 
friend of the target user U, has no rating on the target item, if V has his/her own 
immediate friends who rated the target item, we should be able to predict V's rat-
ing on the target item via the immediate friend inference, and then to predict U's 
rating based on the estimated rating of V’s. This process conforms to real scena-
rios, such as Linda's officemate influences Linda who further influences Angela in 
our previous example. Followed by this intuition, we decide to apply an iterative 
classification method [17, 24, 31] for distant friend inference.  

Iterative classification is an approximation technique for classifying relational 
entities. This method is based on the fact that relational entities are correlated with 
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each other. Estimating the classification of an entity often depends on the estima-
tions of classification of its neighbors. The improved classification of one entity 
will help to infer the related neighbors and vice versa. Unlike traditional data min-
ing which assumes that data instances are independent and identically distributed 
(i.i.d.) samples, and classifies them one by one, iterative classification iteratively 
classifies all the entities in the testing set simultaneously because the classifica-
tions of those entities are correlated. Note that iterative classification is an approx-
imation technique, because exact inference is computationally intractable unless 
the network structures have certain graph topologies such as sequences, trees or 
networks with low tree width. Iterative classification has been used to classify 
company profiles [24], hypertext documents [17], and emails [6] with reasonable 
success in the previous research.  

The algorithm for distant friend inference is shown in Table 3.2. This algo-
rithm predicts the users' ratings on each target item at a time. The original iterative 
classification method classifies the whole network of users. However, since the 
number of users in social networks is usually large, we save the computation cost 
by limiting the inference to a user set N which includes the target users of the tar-
get item I, and their corresponding immediate friends. In each iteration, we gener-
ate a random ordering O of the users in N. For each user U in O, if U has no im-
mediate friend who belongs to U(I), which is the set of users whose rating (either 
ground truth or estimated value) is observable, the estimation of RUI will be 
skipped in this iteration. Otherwise, Pr(RUI = k | A'=a' I, A=aU, {RVI = rVI : ∀V∈ 
U(I)∩N(U)}) will be estimated by immediate friend inference, and  R’UI is then 
obtained from Eq. (11). Because user rating is an integer value, in order to contin-
ue the iterative process we round  R’UI to a close integer value, and insert into or 
update U(I) with  R’UI if different. This entire process iterates M times or until no 
update occurs in the current iteration. In our experiment, the process usually con-
verges within 10 iterations.    

It is worth pointing out that after we compute Pr(RUI = k | A’=a' I, A=aU, {RVI 
= rVI : ∀V∈U(I)∩N(U)}), there are two other options for updating R’UI besides 
rounding the expectation in distant friend inference. The first option is to select 
R’UI with the value k such that it maximizes Pr(RUI = k | A’=a' I, A=aU, {RVI = rVI : 
∀V∈U(I)∩N(U)}). However, by doing so, we are actually throwing out clues of 
small probabilities at the same time. After many iterations, the errors caused by 
the greedy selection will be exacerbated. The target users are likely to be classi-
fied with the majority class. The other option is to directly use Pr(RUI = k | A’=a' I, 
A=aU, {RVI = rVI : ∀V∈U(I)∩N(U)}) as soft evidence to classify other users. 
However, in our experiments, this approach does not return results as good as 
those of rounding the expectation.   
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1. For each item I in the testing set do 
2.   Select a set of users N for inference. N includes the target users of item I and 
their corresponding immediate friends. 
3.   For iteration from 1 to M do 
4.     Generate a random ordering, O, of users in N 
5.     For each user U in O do 
6.       If U has no immediate friend who exists in U(I) 
7.         Continue 
8.       Else 
9.         Apply immediate friend inference  
10.         R’UI = ∑k  k *Pr(RUI = k | A=aU, A'=a'I, {RVI = rVI : ∀V∈U(I)∩N(U)}) 
11.        Insert into or Update U(I) with  R’UI if different 
12.      End If 
13.    End For 
14.    If no updates in the current iteration 
15.      Break 
16.    End If 
17.  End For 
18.  Output the final predictions for the target users 
19.End For 

  
Table 3.2: Pseudo-code for distant friend inference 

4  Dataset 

In this section, we introduce the dataset that we use for this research, and present 
some interesting characteristics of this dataset.  Our dataset is obtained from a real 
online social network Yelp.com. As one of the most popular web 2.0 websites, 
Yelp provides users local search for restaurants, shopping, spas, nightlife, hotels, 
auto services, and financial services etc. Users that come to this site can either 
look for information from Yelp or make their own voices by writing reviews for 
some local commercial entities that they have experienced. Yelp provides a home-
page for each local commercial entity. An example of a homepage for a restaurant 
at Yelp, “Yoshi's Sushi”, is shown in Figure 4.1(a). On top of this homepage is a 
profile of this restaurant, which includes restaurant attributes such as category, lo-
cation, hours, price range and parking information etc. In addition, this homepage 
contains a list of reviews of users who have visited this restaurant before. Each re-
view comes with a numerical rating ranging from one to five stars. Five starts 
means the highest rating to this restaurant, and one star is the lowest rating.  

Besides maintaining traditional features of recommender systems, Yelp pro-
vides social network features so that it can attract more users. Specifically, Yelp 
allows users to invite their friends to join Yelp or make new friends existing at 
Yelp. The friendship at Yelp is mutual relationship, which means that when a user 
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adds another user as a friend, the first user will be automatically added as a friend 
of the second user. Yelp also provide a homepage for each of its users. Each user 
homepage contains basic personal information, all the reviews written by this user, 
and links to the friends that are explicitly identified by this user.     

Since restaurant is the most popular category at Yelp, we picked restaurant as 
the problem domain.  We crawled and parsed the homepages of all the Yelp res-
taurants in the Los Angeles area that registered before November 2007. We ended 
up with 4152 restaurants. By following the reviewers' links in the Yelp restaurant 
homepages, we also crawled the homepages of all these reviewers, which resulted 
in 9414 users. Based on the friend links in each user's homepage, we are able to 
identify friends from the crawled users, and thus reconstruct a social network. 
Note that the friends we collected for each user may only be a subset of the actual 
friends listed on his/her homepage. That is because we require every user in our 
dataset to have a least one review in the crawled restaurants. In other words, the 
social network that we crawled focuses on dining.  

To illustrate users' ratings and their relationships, we built a graphical tool to 
represent each restaurant in our dataset. Figure 4.1(b) shows the alternative view 
of "Yoshi's Sushi" in Figure 4.1(a). Each node represents a reviewer of the restau-
rant, and the size of the node represents the corresponding reviewer's rating on this 
restaurant. Two nodes are connected if they claim each other as friends. Since 
friends in Yelp are mutual, the social network structure is an undirected graph. 
From Figure 4.1(b), we can see that nodes in this graph are highly connected, 
which means many friends are involved in writing reviews for “Yoshi’s Sushi”.  

A preliminary study on this dataset yields the following results. The total num-
ber of reviews in this dataset is 55,801. Thus, each Yelp user on average writes 
5.93 reviews and each restaurant on average has 13.44 reviews. In terms of 
friends, the average number of immediate friends of every user is 8.18. If we take 
a closer look at the relations between the number of users and the number of their 
immediate friends (as shown in Figure 4.2 (a)), we can see that it actually follows 
a power-law distribution; this means that most users have only a few immediate 
friends while a few users have a lot of immediate friends. A similar distribution 
also applies to the relations between the number of users and the number of re-
views, as shown in Figure 4.2(b). Because most users on Yelp review only a few 
restaurants, we expect the dataset to be extremely sparse. In fact, the sparsity of 
this dataset, i.e., the percentage of user/item pairs whose ratings are unknown, is 
99.86%.  

Furthermore, we perform the following analysis on this dataset, particularly 
focusing on immediate friends’ review correlation and rating correlation. Basical-
ly, we want to answer two questions: 1) whether or not friends tend to review the 
same restaurant; and 2) whether or not friends tend to give ratings that are more 
similar than those from non-friends. Clearly, these two questions are essential to 
SNRS. 
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(a) 

 

 
(b) 

 
Figure 4.1: (a) The homepage of a Yelp restaurant "Yoshi's Sushi" and (b) the correspond-
ing abstract graphical representation of Yoshi's Sushi in which each node represents a re-
viewer in the restaurant, and nodes are connected by explicit friend relations. The size of 
each node is proportional to the corresponding reviewer's rating on this restaurant. 
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(a)                                                           (b) 

Figure 4.2: (a) The number of users versus the number of immediate friends in the Yelp 
network, and (b) the number of users versus the number of reviews both follow the power-
law distribution. 

4.1 Review Correlations of Immediate Friends  

Let us first study the correlation of immediate friends in reviewing the same res-
taurants. Specifically, we want to know if a user reviews a restaurant, what is the 
chance that at least one of his/her immediate friends has also reviewed the same 
restaurant? To answer this question, we count, for each user, the percentage of res-
taurants that has also being reviewed by at least one of his/her immediate friends. 
The average percentage over all users in the dataset is 18.6%. As a comparison, 
we calculate the same probability if assuming immediate friends review restau-
rants uniformly at random and independently. In a social network with n users, for 
a user with q immediate friends and a restaurant with m reviewers (including the 
current user), the chance that at least one of q immediate friends appears in m re-

viewers is 
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.We calculate this value for every user and every restaurant 

he/she reviewed. The average probability over all users is only 3.7%. Compared to 
18.6% as observed in the dataset, it is clear that immediate friends do not review 
restaurants randomly. There are certain correlations between friends.  

We also extend the previous study by considering the probability that at least 
one of a reviewer's friends within two hops review the same restaurant. Note that 
this covers the cases where immediate friends have no reviews for the restaurant, 
but at least one of the second-hop friends does. Such a probability is 45.2%, which 
is about two and a half times as high as the previous result for immediate friends 
(18.6%). Since SNRS can make recommendations only when there are friends 
who have co-rated the same items, if we limit the friends within one hop (imme-
diate friends), then we can only predict ratings for a limited number of users. In 
other words, this comparison reveals the importance of considering distant friends 
in SNRS. Meanwhile, if we assume friends review restaurants randomly, the 
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probability is 34.2% that at least one friend, within two hops, co-reviews the same 
restaurant as the target user. 

Finally, we compare the average number of co-reviewed restaurants between 
any two immediate friends and any two users on Yelp. The results are 0.85 and 
0.03 respectively, which again illustrates the tendency that immediate friends co-
review the same restaurants.  

4.2 Rating Correlations of Immediate Friends 

To show that whether immediate friends tend to give more similar ratings than 
non-friends, we compare the average rating differences (in absolute values) on the 
same restaurant between reviewers who are immediate friends and non-friends. 
We find that, for every restaurant in our dataset, if two reviewers are immediate 
friends, their ratings on this restaurant differ by 0.88 on average with a deviation 
of 0.89. If they are not, their rating difference is 1.05 and the standard deviation is 
0.98. This result clearly demonstrates that immediate friends, on average, give 
more similar ratings than non-friends.  

In this section we presented some characteristics of our dataset. The results on 
review correlations as well as rating correlations between immediate friends are 
critical in validating our assumptions in SNRS. In the next section, we are going 
to present a set of experiments to demonstrate the advantages of considering social 
network information in a recommender system.  

5  Exper iments 

In the experiments we evaluate the performance of SNRS on the Yelp dataset, fo-
cusing on the issues of the prediction accuracy, data sparsity, and cold-start, which 
are the main issues of current recommender systems. Additionally, we will study 
the role of distant friends in SNRS.  

The following is the setting for our experiments. We used a restaurant's price 
range as the item attribute. Since there is no useful user attribute on Yelp, we 
substituted Pr(RI =  k |  A = au) with Pr(RI =  k) when estimating item acceptance. 
Finally, we set a threshold to require every pair of immediate friends to have at 
least three co-rated restaurants. If they do not, we ignore their friend relationships.  

5.1  Comparison Methods 

As a comparison, we implemented the following methods along with SNRS.  
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Friend Average (FA). To leverage the ratings of friends for inference, the 
most straightforward approach is to predict the ratings of the target users on the 
target items with the average ratings of their immediate friends on the same item. 
We therefore implemented this method as a baseline.  

Weighted Friends (WVF). Unlike treating immediate friends equally as in FA, 
WVF considers that every immediate friend has a different impact (or weight) on 
the target user. The more the impact from an immediate friend, the closer the tar-
get user's rating is to the rating of that friend. Thus, the probability of the target 
user's rating is proportional to the accumulated weight in each rating value.  
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in which z is a normalizing constant. w(U, V) is the weight between U and V. In 
this experiment, we use the cosine similarity between U's and V's ratings as their 
weight. δ(k, rVI) is the delta function which returns one only when rVI =  k, and zero 
otherwise. WVF is essentially same as a relational-neighbor classifier [18] which 
performs really well on classifying relational datasets such as citations and mov-
ies. 

Naive Bayes (NB). Social networks can be also modeled using Bayesian net-
works [10]. In this study, we implemented a special form of Bayesian networks, a 
naive Bayes classifier. Specifically, when predicting the rating of a target user U, 
the NB classifier assumes U's rating influences the ratings of U's immediate 
friends, and the ratings of U's immediate friends are independent of each other. 
Although with strong assumptions, NB classifiers have been widely used for prob-
abilistic modeling and often result in surprisingly good results [16]. Therefore, we 
also included this method for comparison.  

Given the ratings of the immediate friends on the target item I, we calculate 
the conditional probability Pr(RUI |  {RVI : ∀V∈N(U) ∩U(I) }) as follows. 
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where Pr(RU=k) is the prior rating distribution of the target user U, which can be 
estimated by counting the review ratings of U. Pr(RV=rVI |  RU=k) is the condition-
al probability that an immediate friend V's rating is equal to rVI given U's rating is 
k. Because there are not enough samples to estimate these probabilities for every 
individual pair of immediate friends, we estimate these probabilities by counting 
the review ratings for all pairs of immediate friends in the dataset. Moreover, Z is 
a normalizing constant. The estimated rating of the target user U is the rating val-
ue that has the maximum probability.  

Collaborative Filtering (CF). We implemented the standard collaborative fil-
tering algorithm as we described in Section 2. The K value we used is 20.  
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5.2  Prediction Accuracy And Coverage 

We carried out this experiment in a 10-fold cross-validation. The prediction accu-
racy was measured by the mean absolute error (MAE), which is defined as the 
average absolute deviation of predictions to the ground truth data over all the in-
stances, i.e., target user/item pairs, in the testing set.  
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where L is the number of testing instances. The smaller the MAE, the better the in-
ference. 

Since SNRS, FA, WVF, and NB rely on friends' ratings on the target item in 
order to make predictions; thus, there is no prediction when the target user has no 
friends who have rated the item. Similarly, CF does not make predictions unless it 
finds similar users for the target user. Therefore, another metric that we study for 
each method is the coverage, which is defined as the percentage of the testing in-
stances for which the method can make predictions. 

The experimental results are listed in Table 5.1. From this table, we note that 
SNRS achieves the best performance in terms of MAE (0.718), while CF is the 
worst (0.871). SNRS improves the prediction accuracy of CF by 17.8%. The other 
methods that use the influences from friends also achieve better results than CF. 
Clearly, considering social influence does improve predictions in recommender 
systems. In terms of the coverage, the coverage of all these methods is relatively 
low; e.g., none of these methods have the coverage better than 0.6. This is because 
the dataset we have is extremely sparse, with a sparsity of 99.86%. However, 
among these methods, CF is the best. Because most of the time, CF is able to find 
similar users for the target user from all the other users in the training set. On the 
other hand, the coverage of the other methods is decided by whether there is a 
friend who has rated the item, and we pruned many friend relationships by setting 
a threshold of three co-rated items for each pair of friends. Therefore, the coverage 
of those methods is lower than CF. The coverage of FA, WVF, and NB is even 
lower than that of SNRS, because SNRS can still utilize the influence from distant 
friends even if immediate friends have not rated the restaurant, while the other 
methods cannot.    

 MAE COVERAGE 
SNRS 0.716 0.482 
FA 0.814 0.228 
WVF 0.808 0.228 
NB 0.756 0.237 
CF 0.871 0.552 

 
Table 5.1: Comparison of the MAEs of the proposed Social Network-Based Recommender 
System (SNRS), Collaborative Filtering (CF), Friend Average (FA), Weighted Friends 
(WVF), and Naive Bayes (NB) in a 10-fold cross-validation.  
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5.3  Data Sparsity  

CF suffers from problems with sparse data. In this study, we want to evaluate the 
performance of SNRS at various levels of data sparsity. To do so, we randomly 
divided the whole user/item pairs in our dataset into ten groups, and then random-
ly selected n sets as the testing set, and the rest as the training set. The value of n 
controls the sparsity of the dataset. At each value of n, we repeated the experiment 
100 times. The performance was measured by the average MAEs and the cover-
age. 

Figure 5.1(a) compares the MAEs of SNRS and CF when the percentages of 
testing sets vary from 10% to 70%. Due to the high sparsity of the underlying 
Yelp dataset, even when the percentage of testing set is 10%, the actual sparsity is 
as high as 99.87%. From Figure 5.1(a), we first observe that the MAEs of SNRS 
are consistently lower than those of the CF, which again shows that SNRS indeed 
outperforms CF. Second, the prediction accuracy of CF is greatly affected by data 
sparsity. For example, the MAEs of CF increase by 14.4% from 0.868 and 0.993 
when the testing set is increased from 10% to 70% of the whole dataset. Mean-
while, the MAEs of SNRS grow at a much slower pace. For instance, the MAEs 
of SNRS increase by only 2.8% from 0.716 to 0.736 under the same conditions.  

Figure 5.1(b) compares the coverage of both methods. Unfortunately, the 
coverage of both methods severely drops as the training set becomes sparser. For 
example, the coverage of CF drops from 0.549 to 0.064 when the size of the test-
ing set increases from 10% to 70%, and the coverage of SNRS decreases from 
0.482 to 0.123 at the same time. This decrease in the coverage is expected, as ex-
plained earlier, but the trend of these two methods also indicates their differences. 
CF performs better with a large training set, allowing it to find more similar users. 
When the training set becomes sparser, CF finds similar users from fewer candi-
dates for each target user. The similarity obtained from each pair of users is less 
accurate because that there are fewer co-rated items between these users. Thus, 
both the prediction accuracy and the coverage of CF are adversely affected by the 
data sparsity. Meanwhile, the coverage of SNRS also decreases because there are 
fewer friends who have ratings on the target items as the dataset becomes sparser. 
But the coverage of SNRS decreases with a slower pace compared to that of CF. 
Initially, CF has a better coverage than SNRS. However, the coverage of SNRS 
starts to exceed that of CF after the percentage of the testing set is above 30%. 
Such a change in the trend is because that some users can still be inferred since the 
influences from distant friends are able to propagate to them even when the data-
set is sparse. In Section 5.5, we will study the role of distant friends again. On the 
other hand, the prediction accuracy of SNRS is consistent at all levels of data 
sparsity. This is because friends are provided explicitly by social networks, and 
there is no need for SNRS to find similar users from the training set. Therefore, as 
long as there are friends who have reviewed the target item, SNRS can make accu-
rate predictions. 
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Figure 5.1: Comparison of the (a) MAEs and the (b) coverage of SNRS and CF at different 
sizes of the testing set. 

5.4  Cold-Start 

Cold-start is an extreme case of data sparsity where a new user has no reviews. In 
such a case, CF cannot make a recommendation to this new user since CF is not 
able to find similar users for him/her. SNRS cannot either if this new user has also 
no friends. However, in some cases of cold-start when a new user is invited by 
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some existing users in the system, the initial friend relationships of this new user 
can still make the inference of SNRS possible. Even though there is no prior 
knowledge of the new user's own preference, SNRS can make recommendations 
to this new user based on the preferences of his/her friends. In this study, we simu-
lated the latter case of cold-start by making the following experimental settings: 1) 
We did not use the target user's prior ratings in the training set; thus, there was no 
influence from user preference. We simply set the output from Pr(RU =  k | A' =  
a'I,) as a uniform distribution. 2) Since we cannot learn the rating correlation be-
tween this new user and his/her friends, we directly used friends' rating distribu-
tion on the target item, Pr({RVI = rVI : ∀V∈U(I)∩N(U)}), as the result from friend 
inference. 3) Except for the target user, the ratings of all other users were known. 

We simulated cold-start for every user in the dataset. The resulting MAE is 
0.706 and the coverage is 0.691. This result demonstrates that even in cold-start, 
SNRS can still perform decently. The coverage of SNRS is high compared to that 
in the 10-fold cross-validation (0.422) because the ratings of every target user's 
friends are all observable in the setting of this experiment.    

5.5  Role of Distant Friends 

In this study we investigate the role of distant friends in SNRS. Specifically, we 
compared the performance of SNRS with and without distant friend inference in a 
10-fold cross-validation. The experimental results are shown in Table 5.2. From 
these results, we can see that by considering the influences from distant friends, 
the coverage of SNRS is increased from 0.237 to 0.482, which is equivalent to a 
103% improvement. However, the improvement is achieved at the cost of a slight 
reduction in the prediction accuracy. In our experiments, the MAE increases from 
0.682 to 0.716, which is only a 5% difference. This is consistent with our intuition 
that the impact from distant friends is not as direct as from immediate friends, and 
certain errors will be inevitably introduced when considering distant friends. On 
the other hand, compared to the drastic gain in the coverage, the minor loss in pre-
cision is still acceptable. 
 

 MAE COVERAGE 
With Distant Fr iend Inference 0.716 0.482 
Without Distant Fr iend Inference 0.682 0.237 

 
Table 5.2: Comparison of the performance of SNRS with and without distant friend infe-
rence. 
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6  Semantic Filter ing of Social Networks 

In the previous section we showed that SNRS improves the prediction accuracy of 
recommender systems by utilizing information such as social influences in social 
networks. In this section, we shall discuss how to further improve the performance 
of SNRS by applying semantic filtering of social networks. 

Although friends influence each other when selecting items, such influence is 
sensitive to the types of items. For example, two friends who have similar taste on 
CDs may not necessarily agree with each other in their choice of favorite restau-
rants. Therefore, to recommend restaurants, we should not consider friends who 
have common preferences only in music. In other words, to effectively use the so-
cial influence, an appropriate set of friends needs to be selected according to the 
type of target items, which is what we called semantic filtering of social networks. 
In fact, we considered this issue when we performed experiments on Yelp. Rather 
than considering all friends listed in user's profiles, we pruned a set of friends who 
had reviewed only a small number of common restaurants. For example, even 
though two real friends may have reviewed many common hotels on Yelp, they 
are not necessarily friends in SNRS unless they have enough reviews on common 
restaurants. However, this is still a poor man's version of semantic filtering, be-
cause even within the domain of restaurants, friends can be further grouped based 
on their opinions on different food categories, price range, restaurant environment, 
etc.  

A better selection of relevant friends requires us to know in what aspects two 
friends influence each other. Unfortunately, such information is not available in 
most current OSNs. Some OSNs, such as Linkedin, ask how friends know each 
other, e.g., whether they were/are classmates or colleagues. Information like this 
definitely helps us understand friend relationships. However, it is still too general 
to bring a practical usage to recommender systems. Instead, the semantics that we 
really want to know from friend relationships should be more specific to the do-
main of interest. For example, in terms of dining, it would be better to know 
whether two friends are friends because they have a similar taste in food or a simi-
lar preference in the price of meals, etc. To obtain such information, the most di-
rect solution is for content providers (e.g., Yelp) to explicitly ask users to rate their 
friends on those aspects. If that puts too much of a burden on users, an alternative 
is for content providers to collect finer-grained user ratings rather than overall rat-
ings alone, and then implicitly deduce friend relationships from the semantics in 
those finer-grained ratings. The problem with overall ratings is that they encapsu-
late decision-reasoning of users on many factors. For example, when a user gives 
a rating of 4 to a restaurant, it is not clear if the user really likes the taste, price, 
service, or environment of this restaurant. If content providers could ask users to 
rate on those factors, such finer-grained ratings would not only allow us to model 
user preference and item acceptance more precisely, but also help us to know on 
which category two friends are in agreement or whether they influence each other. 
For instance, two friends may not give the same overall rating, but they might still 
agree on the quality of restaurant service. 
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In the following text, we describe an experiment that we designed to demon-
strate how relevant friends can be selected for inference by obtaining the seman-
tics in friend relationships and user ratings, and then validate its improvement on 
SNRS.  

This experiment was to predict students' ratings for online articles. It was 
conducted as a class project assignment with 22 students. At the beginning of the 
experiment, we selected 20 online articles. These articles focus on three topics: the 
recent economic crisis, controversies in technologies such as stem cell research 
and file sharing, and controversies in culture like gay marriage. These articles all 
contain strong opinions expressed by the authors. We collected the demographic 
information of students, including gender, age, ethnicity, employment, and inter-
ests. We also asked them a set of questions related to the articles that we selected. 
For example, "Has the rise in unemployment affected you or someone in your 
family?" and "Given the current state of the economy, are you concerned about 
getting a job after you graduate?". After that we asked the students to review 
every article by giving four ratings (from 1 to 5) based on each of the following 
criteria: 1) Interestingness: Is the article interesting? 2) Agreement: How much do 
you agree with the author? 3) Writing: Is the article well written? and 4) Overall: 
Overall evaluation. The reason that we included the first three ratings is because 
they usually play important roles when we give an overall score to an article. 
Since most students did not know each other before the experiment, it would have 
been difficult to form a social network from their original relationships. We there-
fore decided to divide the students into groups and let them get to know each other 
by discussing the articles within the groups. Specifically, we divided the students 
into three groups twice. The first grouping was based on students' ethnicities, and 
the second grouping was based on students' responses to the survey questions. The 
goal of these groupings was to organize the students in such a way that the stu-
dents in a group will more likely to be friends after the group discussions. During 
the discussions, every student needed to explain the reasons why he/she liked or 
disliked each article. Thus, the other group members were able to know more 
about the speaker. After the discussions, the students evaluated other group mem-
bers (using ratings from 1 to 3) according to the following three aspects: 1) Do 
you have common interests on the articles? 2) Do you agree with his/her opinions 
on the articles? 3) Do you have common judgments about the author's writing 
skill? In addition to evaluating group members, the students were allowed to re-
vise their previous ratings to the articles if they had a new understanding of the ar-
ticles due to the discussion.  

Compared to the Yelp dataset, there are mainly two changes in this dataset. 
First, instead of having just an overall rating, each article now has three fine-
grained ratings (interestingness, agreement, and writing) which, as mentioned ear-
lier, provide the semantics of the overall rating. Second, friend relationships have 
semantics too. Rather than just knowing that two students are friends, we are now 
able to know whether it is because they have similar interests or similar opinions, 
etc. In the following experiment, we are going to compare the prediction accura-
cies of SNRS with and without the consideration of semantic filtering of social 
networks.  



25 

Similar to the experimental setup in Section 5.3, we randomly divided the 
student/article pairs into ten groups. We randomly selected n groups as the testing 
set, and the rest as the training set. For each value of n, we repeated the experi-
ment 100 times. For each pair in the testing set, we predicted the target student's 
ratings on the target article by applying and not applying semantic filtering of so-
cial networks. When we applied semantic filtering to predict a particular rating, 
we only considered the ratings of the target user's friends in the corresponding cat-
egory. For example, to predict the target article's interestingness, we selected the 
set of students whom the target student had rated as friends (with a rating of 3) in 
terms of having similar interests, and then used their ratings on interestingness for 
inference. Thus, the social networks used for predicting each category are differ-
ent. On the other hand, without semantic filtering, we considered the ratings on in-
terestingness from all the students whom the target user had rated as friends in any 
of the three aspects. We measured the average MAEs for predicting each rating of 
the article, and the corresponding MAEs in CF.    

We show the results of predicting student ratings on the interestingness of the 
articles in Figure 6.1(a). From this figure, we observe two trends. First, regardless 
of semantic filtering or not, the MAEs of SNRS are persistent for different data 
sparsity, while the MAEs of CF dramatically increase as the data becomes sparser. 
This phenomenon is consistent with our findings on the Yelp dataset in Section 
5.3. Second, we find that, at any level of data sparsity, the MAEs of SNRS with 
semantic filtering are consistently lower than those of SNRS without semantic fil-
tering as well as those of CF. This result demonstrates that semantic filtering does 
indeed improve the prediction accuracy of SNRS. In Figure 6.1(b), (c), and (d), 
we plot the results of predicting ratings on the agreement and writing of the ar-
ticles and overall ratings respectively. We observe similar trends in these figures. 
Note that when predicting the overall rating, we consider the overall ratings of all 
friends of a target student, which means there is no semantic filtering. 

In this paper we assume the reviews that users provide are real. However, in 
reality, there are always users who purposely provide false reviews to attack the 
adversaries or praise themselves, and traditional recommender systems have no 
control on them at all. On the other hand, SNRS is still able to detect and exclude 
those malicious users through reputation systems [19].      

7  Related Work 

Domings and Richardson proposed to mine customers' network values from a so-
cial network [8, 28]. The network value comes from the different potentials of 
customers to influence their social contacts to purchase the same products. Thus, 
the more people they can influence, the higher network value they have. Mer-
chandisers can increase the expected lift in profit by sending advertisements only 
to those users who have high network values. [8] estimates the conditional proba-
bility of whether a user will purchase a product given the adoption values of 
his/her friends, and marketing actions are tailored by using a relaxation labeling 
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approach. Such a probability is modeled as a weighted sum of each user's internal 
probability of purchasing a product and an external effect from his/her friends 
[28]. The authors conduct simulation studies, first on a synthesized social network 
in [8], and then on Epinon.com, a review website in [28].  

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
Figure 6.1: Comparisons of the accuracies of CF and SNRS with and without semantic fil-
tering on predicting student ratings on (a) interestingness, (b) agreement, (c) writing, and 
(d) overall aspects of the articles.  

 
There is also previous work on exploiting explicit user trust in recommender 

systems. [9] presented a FilmTrust system which used explicit trust values be-
tween users as the weights in collaborative filtering. Similarly, [20] proposed a 
trust-aware recommender system which is also based on explicit trust values be-
tween users. They proposed a method for trust propagation in which the trust be-
tween distant friends is calculated by a linear decay model. Although these re-
search efforts realized the importance of person-to-person influences in 
recommender systems, they are limited by the availability of prior knowledge of 
explicit trust values. These systems need to know not only who is trusting whom, 



28  

but also how much they trust each other. Thus, recommender systems that rely on 
explicit trust values cannot scale. In contrast, our system makes recommendations 
by using the correlations between friends, which can be viewed as implicit trust. 
We do not need to acquire trust values since they can be obtained from the rating 
correlations between friends. In addition to social influences, our system incorpo-
rates user's own attributes and the characteristics of items. These two factors are 
important for making target specific recommendations. Otherwise, recommender 
systems will simply suggest an item to a user whenever his/her trusted friend likes 
it. 

Interestingly, [4] studied the factors that drive people's decision-making and 
advice-seeking through empirical studies, and found out that the profile similarity 
and rating overlap of a recommender have a significant impact on a person's deci-
sion. In addition, [4] suggested that recommender systems support the social ele-
ment of advice seeking through communication and explicit user matching func-
tions. Therefore, advice seekers can judge the validity and appropriateness of a 
recommendation. In Section 6 we proposed a recommender system design. In this 
design we think it is more important to consider the semantics in friend relation-
ships when measuring their similarities based on user profiles and rating overlap.  

More directly related work is found in [37]. Here, the authors proposed to 
combine social networks with recommender systems. They estimated the weights 
in collaborative filtering with an exponential function of the minimal distance of 
two users in a social network. This is, however, an over-simplified correlation be-
tween users. Distance has no semantic meaning of similarity, and two distant 
friends may still share common opinions. As noted by the authors, this approach 
does not work well. [37] also proposed another approach to reduce the computa-
tional cost in recommender systems by limiting the candidate similar users within 
a user’s social network neighbors. This approach actually will make the data spar-
sity problem of a recommender system even worse, because there are far less can-
didates for similar users than before. 

8  Conclusions 

Social networks provide an important source of information regarding users and 
their interactions. This is especially valuable to recommender systems. In this pa-
per we presented a social network-based recommender system (SNRS) which 
makes recommendations by considering a user's own preference, an item's general 
acceptance and influence from friends. In particular, we proposed to model the 
correlations between immediate friends with the histogram of friend's rating dif-
ferences. The influences from distant friends are also considered in an iterative 
classification. In addition, we have collected data from a real online social net-
work. The analysis on this dataset reveals that friends have a tendency to review 
the same restaurants and give similar ratings. We compared the performance of 
SNRS with other methods, such as collaborative filtering (CF), friend average 
(FA), weighted friends (WVF) and naive Bayes (NB) with the same dataset. In 
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terms of the prediction accuracy, SNRS achieves the best result. It yields a 17.8% 
improvement compared to that of CF. In the sparsity test, SNRS returns consis-
tently accurate predictions at different values of data sparsity. The coverage of 
SNRS decreases when the data is sparse but at a slower speed than CF. In the 
cold-start test, SNRS still performs well. We also studied the role of distant 
friends in SNRS, and found that by considering the influences from distant 
friends, the coverage of SNRS can be significantly improved with only a minor 
reduction in the prediction accuracy. The performance of SNRS can be further 
improved by selecting relevant friends for inference, which can be achieved by 
collecting the semantics of the friend relationships or fine-grained user ratings. 
Such an approach can be adopted by current content providers.  
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