in Proceedings AAATI Workshop on Knowledge Discovery in Databases, 1993 Washington D.C.

Pattern-Based Clustering for Database Attribute Values *

Matthew Merzbacher

Wesley W. Chu

Computer Science Department
University of California

Los Angeles, CA 90024

Abstract

We present a method for automatically clustering
similar attribute values in a database system span-
ning mulitple domains. The method constructs an
attribute abstraction hierarchy for each attribute
using rules that are derived from the database in-
stance. The rules have a confidence and popularity
that combine to express the “usefullness” of the
rule.

Attribute values are clustered if they are used as
the premise for rules with the same consequence.
By iteratively applying the algorithm, a hierarchy
of clusters can be found. The algorithm can be
improved by allowing domain expert supervision
during the clustering process. An example as well
as experimental results from a large transportation
database are included.

1 Introduction

In a conventional database system, queries are an-
swered with absolute certainty. If a query has no
exact answer, then the user’s needs remain unsatis-
fied. A cooperative query answering (CQA) system
behaves like a conventional system when the query
can be answered normally, but tries to find an ap-
proximate answer when the original query condi-
tion cannot be matched exactly [5, 6]. When a
query has no answer, the query conditions are re-
laxed to obtain an approximate answer. For ex-
ample, consider a query about C-21 cargo aircraft
in a transportation application. If no such aircraft
is available, the query can be approximated by re-
placing C-21 with a nearby approximation, such as
C-12 or C-20.

To restrict the search space of relaxation to a
small set of possible answers, we employ an abstrac-
tion mechanism that can discriminate likely candi-

*Supported by DARPA contract N00174-91-C-0107

dates efficiently. The attribute abstraction hierar-
chy (AAH) groups like values for each attribute.
Attributes are relaxed by finding their value in the
hierarchy and replacing it with other values in the
same cluster. If searching one cluster in the hier-
archy is unsuccessful in yielding an answer, then
the condition can be further relaxed by travers-
ing up another level in the hierarchy. Eventually,
the query will be sufficiently relaxed to generate
an answer[3]. There is an AAH for each attribute
domain. Figure 1 shows a classification of aircraft
types for the aircraft example. Each level of the
hierarchy represents a level of abstraction. For ex-
ample, C-21 1s clustered with C-12 and C-20 at the
bottom level and with C-23 and C-130 aircraft at
the next level, and so on. The numbers in the hier-
archy represent the “nearness” of the values below
each node, ranging from zero to one.

Q9
B
W w
S o
T m

00€-L02-9
29-8-00
€.-8-00
1,-8-00
19-8-00
€9-8-00
05-8-00
€€-8-00
0v-01-0a
0€-0T-00
4002-2v2-9
0002-Lv.-9
00T-Lv2-9
05-TT0T-1
00T-TTOT-1

dS00v-2v.-9

Figure 1: AAH for Aircraft Type

For databases with many attributes having a
large number of values, manaully constructing the
AAHs is time consuming and prone to error. Thus
the hierarchies must be induced automatically, but
previous knowledge discovery techniques are inade-
quate for CQA. Attribute Oriented Induction [1]
provides summary information and charactarizes
tuples in the database, but is inappropriate for
attribute values and focuses too closely on a spe-

Aircraft Length Runway Turning Taxi Weight Storage
Type Takeoff Landing Width Radius Space Max. Empty Space
C-5 13600 5000 90 150 60 769000 665000 21508
C-141B 9000 5000 90 137 50 343000 239000 10454
KC-10 11800 5400 90 148 60 590000 414000 11600
C-130E 6250 3000 60 74 40 173700 NULL 5173
C-130H 6250 3000 60 74 40 173700 NULL 5173
C-9A 8100 3200 10 72 50 108000 90000 4325
C-12 4500 4500 75 43 40 12500 11000 915
Cc-21 6000 3400 75 53 40 18300 13500 747
C-20 5000 5000 75 52 40 69700 44000 2518
C-23 4000 3000 60 54 30 22900 16200 1690
B-707-300 10800 7000 90 124 50 336600 230000 5600
DC-8-33 9400 5500 90 98 50 315000 224000 10000
DC-8-50 9400 5500 90 98 50 315000 224000 10000
DC-8-61 10400 6100 90 113 50 325000 261000 8100
DC-8-62 11500 6100 90 115 50 350000 230000 8825
DC-8-63 10400 6100 90 132 50 355000 261000 10800
DC-8-T1 8850 6100 90 113 50 355000 261000 10800
DC-8-73 9800 6100 90 132 50 355000 261000 10800
DC-10-10 9500 5800 90 144 75 440000 335000 11000
DC-10-30 11850 6100 90 150 75 572000 391000 11600
DC-10-40 10600 5800 90 150 75 572000 391000 11600
B-747SP 7500 5600 90 122 75 696000 410000 14100
B-747-100 9500 6600 90 142 75 750000 526400 17500
B-747-200C 11800 6600 90 142 75 775000 590000 17500
B-747-200F 10500 6600 90 142 75 775000 590000 17500
[-1011-100 10640 7300 90 142 75 466000 320000 10800
L-1011-500 9760 7300 90 127 75 496000 338000 10800
B-727-100 9200 4800 90 80 60 207500 160000 5600
L.-100-30 6000 4900 75 85 50 155000 122000 5800

Table 1: The database table AIRCRAFT

cific target. Conceptual Clustering [8, 7] is a top-
down method, iteratively subdividing the tuple-
space into smaller sets. The top-down approach
does not yield clusters the best correlation near the
bottom of the hierarchy. CQA operates from the
bottom of the hierarchy, so better clustering near
the bottom is desirable. Further, we require a near-
ness measure for the clustered attribute values. To
remedy these shortcomings, we present a bottom
up approach for constructing attribute abstraction
hierarchies called Pattern-Based Knowledge Induc-
tion (PKI) that includes a nearness measure for the
clusters.

PKI can cluster attribute values with or without
expert direction, and thus is well-suited to non-
numeric domains. However, it also works for nu-
merical domains, particularly when pre-clustered

sub-ranges of the numerical domain are identified
in advance. PKI also works well when there are
NULL values in the data. Our experimental re-
sults confirm that the method is scalable to large
systems.

PKI determines clusters by deriving rules from
the instance of the current database. The rules are
not 100% certain; instead, they are rules-of-thumb
about the database, such as

If AIRCRAFT 1s In the class of B-747 then
RUNWAY TAKEOFF LENGTH >= 6600

Each rule has a popularity that measures how often
the rule applies, and a confidence indicating how
well the rule “fits” the database. In certain cases,
a more sophisticated rule with high confidence can
be derived by combining simpler rules.

The PKI approach generates a set of useful rules
which can then be used to construct the AAH by
clustering the premises of rules sharing a similar
consequence. For example, if the following three
rules:

If ATRCRAFT = B-747-200C then

RUNWAY TAKEOFF LENGTH <= 6600 feet
If ATIRCRAFT = B-747-200F then

RUNWAY TAKEOFF LENGTH <= 6600 feet
If AIRCRAFT = B-747-100 then

RUNWAY TAKEOFF LENGTH <= 6600 feet

have high confidence, then this indicates that these
three types of 747 should be clustered together.
Supporting and contradicting evidence from rules
for other attributes is gathered and, based on
weights assigned by an expert, PKI builds an initial
set, of clusters. Each invocation of the clustering al-
gorithm adds a layer of abstraction to the hierarchy.
The attribute abstraction hierarchy is constructed
by applying the algorithm iteratively.

This paper is organized as follows. We first in-
troduce the example domain in detail. Then, af-
ter reviewing terms and definitions, we present the
Pattern-Based Knowledge Induction (PKI) algo-
rithm for classifying attribute values into clusters.
We then present the experimental results of cluster-
ing a large transportation database. An example is
also given to illustrate the principle using the rela-
tion shown in Table 1.

2 Pattern—Based Knowledge
Induction (PKI)

In this section, we show how pattern-based knowl-
edge induction systematically acquires rules from
database instances. The induced knowledge is then
used to cluster semantically similar values.

2.1 Definitions

Patterns are conditions on attributes in the data-
base, such as:

RUNWAY WIDTH > 80, or
TURNING RADIUS = 144 feet

The objects that satisfy the pattern are said to
match the pattern.

Cardinality The cardinality of a pattern P, de-
noted |P|, is the number of distinct objects that
match P.

For example, from the data, the pattern 140 <=
TURN RADIUS <= 150 i1s matched by nine tuples

and thus has a cardinality of nine.

Rule A rule is an inferential relationship between

two patterns A and B, represented by A — B,
indicating that when A is true, B also holds. A is
the premise and B is the consequence of the rule.

The usefulness of a rule can be measured in terms
of how often and how well the rule applies to the
database. To provide quantitative values for these
properties, we introduce the notions of confidence
and popularity, each defined in terms of cardinality.
The confidence of a rule is an indication of how
often that rule holds true.

Confidence The confidence of a rule A — B, de-
noted by {(A — B), is

i @

£(A—>B) —

Confidence ranges from 0 to 1. If the confidence of
a rule 1s 1 then the rule is deterministic.

For example, assuming |A| = 100, |B| = 320, and
|A N B| = 80, then £&(A — B) = 80%, however,
&(B — A) = 25%. Note that the confidences of
rules for two opposite inference directions are nei-
ther symmetric nor complementary.

More sophisticated boolean combinations of rules
can be derived from the basic rules [2].

Popularity i1s another important measure of a
rule, indicating “how common” the rule is. Con-
sider the rule

TYPE = C—5 — RUNWAY WIDTH = 90 ft.

that has confidence of 100% but only applies to
one tuple in ATRCRAFT. This rule has less seman-
tic importance than another rule with lower confi-
dence, but which applies to more of the tuples in
the database, such as

AIRCRAFT is in the class B-747 —
RUNWAY TAKEOFF LENGTH = 6600 feet

which applies to four tuples (although it only holds
for three of the four).

The popularity of a rule measures how often a
rule can be applied. Thus, popularity is solely de-
pendent on the premise of the rule and independent
of the consequence.

Popularity Let A—B be a rule that applies to a

relation R, and |R| be the number of tuples in R
(cardinality of R). The popularity of the rule over
R is defined as

WA — B) = % (2)

2.2 Knowledge Induction

We now show how to gather a basic set of infer-
ential rules which we will use for clustering. The
premise and consequence of the gathered rules will
be comprised entirely of atomic patterns, which are
the most basic kind of pattern.

Atomic Patterns Atomic patterns are the pat-
terns whose conditions are on a single attribute,
such as “RUNWAY TAKEOFF LENGTH = 5000” or
“WEIGHT = 100 tons”.

The atomic pattern set for RUNWAY WIDTH at-
tribute in Table 1 is:

RUNWAY WIDTH = 10
RUNWAY WIDTH = 60
RUNWAY WIDTH = 7
RUNWAY WIDTH = 90

The algorithm to induce knowledge from a relation
via atomic patterns follows directly:

Algorithm: Induce Rules

Derive atomic patterns for each attribute
For each pair of atomic pattermns (/,.J)
consider [— J as a candidate rule
calculate the popularity and
confidence of I — .J

For storage and maintanence reasons, rules with
popularity or confidence below certain threshold
values may be discarded, though in this paper we
retain all rules, as our clustering algorithm dis-
counts rules with low popularity and confidence.
The AIRCRAFT relation alone has 1790 atomic

rules.

3 The Clustering Algorithm

We now show how to use the rules generated by
PKI to construct a hierarchy. The cluster algorithm
groups attribute values which appear as premises
in rules with the same consequence based on the
following rule:

Rule of Shared Consequence If two rules share
a consequence and have the same attribute as a
premise (but different values), then those values are
candidates for clustering.

For example, the two rules

A=a, —B=1b
A=ay; —B=1b

(confidence =¢&;) .
(confidence = f;) (3)

have identical consequences (B = b) and have the
same attribute (A) as a premise with different val-
ues (a; and as).

3.1 The Clustering Correlation

Using the rule of shared consequence, the clustering
correlation between two values is the product of the
confidences of the two rules, & x &;. To account for
two values sharing consequences from several dif-
ferent attributes, the overall clustering correlation
between two attribute values, 7, is the sum of the
individual correlations. That is, if a1 and as are
values of attribute A, and there are m attributes
B1,Bs9,...,By, 1n the relation, then

y(ai,az) = Z;n:l &(A=a; —B; =b;) x
f(A =as — B; = bl) (4)

We normalize by dividing by m — 1.

(a1, a2) = ——(ar, az) (5)

m—1
By inspection, ¥(ai,as) = %(az,a1) and thus
¥(a1,a2) = ¥(az,a1). 7 measures the “nearness”
of two attribute values, and can thus be used for
binary clustering.

3.2 Binary Clustering

We now present a binary clustering algorithm that
uses 7 values to identify clusters.

Algorithm: Binary Cluster

repeat
INDUCE RULES and determine ¥
sort 7 in descending order
for each ¥(aj,a;)
if a; and a; are unclustered
cluster a; and aj
replace a; and a; in DB
with joint value J;;
until fully clustered

The binary clustering algorithm is a “greedy” al-
gorithm, putting the two attribute values with the
highest overall 7 together. Then, the two values
with the next highest 7 are clustered, but only if
those values have not already been clustered, and
so on, until 7 falls below a specified threshold value
or all values are clustered.

To construct the next level of the hierarchy, we
substitute a joint value J; ; for each set of values
a; and a; that are clustered together. We repeat

the algorithm using the new values, generating new
rules, recalculating 7, and clustering the highest
new values. The process repeats until the hierarchy
is complete.

3.3 n-ary Clustering

The binary clustering algorithm yields a binary hi-
erarchy insted of a more general n-ary hierarchy.
The obvious extension to achieve n-ary clustering is
to use a generalized 7 that measures the correlation
between an arbitrary n values instead of just two.
However, evaluating such a formula would require
considering all possible combinations of values in-
stead of all possible pairs, and would thus be too
costly for a large number of attribute values.

Instead of modifying 7 to allow n-ary clustering,
we approximate the n-ary 7 using a combination
of the binary values. Multiple values are clustered
together if the 7 between each possible pair of them
is above a prespecified threshold; that is, ay, as and
az are clustered together if ¥(a1, az), ¥(a1, as), and
¥(asz, az) are all above the threshold.

After each iteration, the threshold is reduced by
a pre-specified amount to allow more clustering and
create a hierarchy. Eventually, the threshold is low
enough to include all values. We note that the user
may select different threshold values for the corre-
lation coefficient to control the depth of the n-ary
AAH. These threshold values are based on applica-
tion context and requirements.

3.4 Weighted Clustering

Thusfar, each attribute has had an equal weight-
ing on the clustering over every other attribute.
In general, different attributes should have vary-
ing impact on the final clustering. To allow control
over the selection of attributes for clustering, we al-
low the expert to assign weights to each attribute.
Let 7 be the normalized weighted sum of the rules,
and wg,(A) be the weight assigned to attribute B;
when clustering attribute A, then,

_ 1 &

710(&1’&2) = W(A) ;sz(A) X
E(A=a; —B;=b)x
§(Aa=az —B; =) (6)

where

Thus, different clusters can be constructed by as-
signing weights for each attribute based on domain
context and user profile.

4 A Transportation Example

Consider a transportation database used to simu-
late scenarios of troop and supply movement. The
database is used by strategists to plan a time
phased force deployment and contains specifica-
tions of aircraft, ships and the cargo they carry.
As an example, we have selected the AIRCRAFT
relation, which includes various requirements about
the aircraft used in the database as specified in the
nine attributes in the example relation shown in
Table 1. In this example, we will cluster the at-
tribute AIRCRAFT TYPE based on the other eight
attributes.

We first calculate 7 for each pair of values in
AIRCRAFT TYPE, shown in Table 2. Due to space
considerations, only pairs with 7 over .75 are listed.

a1 a2 (a1, az)
C-130E C-130H 1.00
DC-8-33 DC-8-50 1.00
DC-8-63 DC-8-73 97
DC-10-30 DC-10-40 .95
B-747-200C B-747-200F .95
DC-8-61 DC-8-71 .92
B-747-200C B-747-100 .92
L-1011-100 L-1011-500 .89
DC-8-61 DC-8-63 .88
B-747-100 B-747-200F .86
DC-8-61 DC-8-73 .81

Table 2: AIRCRAFT types with ¥ > .75

The binary algorithm clusters the two values
with the highest 7, C-130E and C-130H. Then, the
next highest values, DC-8-33 and DC-8-50 are clus-
tered, because those values have not already been
clustered. The algorithm continues, clustering each
pair of unclustered values until 7 falls below the
specified threshold value or all values are clustered.
For example, B-747-200C is not clustered with B—
747-100 because it has already been clustered with
B-747-200F, which has a higher 7 (.95 instead of
.86). The algorithm creates a forest of binary clus-
ters, shown in Figure 2.

We now substitute a joint value (J; ;) for each
clustered pair and repeat the algorithm. We gener-
ate new rules, recalculate 7, and cluster the highest

C-130H DC-8-73 DC-10-40
qﬁoo 4(47 @7
C-130E DC-8-63 DC-10-30
C-oA DC-8-71 DC-8-50 L-1011-500
@2 {20 00.00 <@4
c-1418 DC-8-61 DC-8-33 L-1011-100
KC-10 c21 DC-8-62 B-747-200F
cs c12 B-707-300 B-747-200C

Figure 2: Clusters after one iteration

C-20
L-1011-500
3.25 Cc-21 DC-8-50 9.44
3.25 00.00 0.62 L-1011-100
Cc-12 DC-8-33
B-747SP

Cc-23 DC-8-73
7.47 B-747-200F
4.72 C-130H DC-8-63 4.87
00.00 90.14 8.03 B-747-200C
C-130E DC-8-71

. B-747-100
C-9A DC-8-61
62 DC-10-40
c-1418 DC-8-62 @7
22.36 <@2 DC-10-30
KC-10 B-707-300
8.73
c5

Figure 3: Clusters after two iterations

new values, creating Figure 3. The process repeats
until the hierarchy is complete as shown in Figure

4.

0€-00T-1

05-8-00
01-01-0

29-8-00
dsiyL-a

00€-202-8
19-8-00

00T-TTOT-1
00S-TT0T-1

1,-800
€9-8-00
£,-800

0g-01-0a

0r-01-0a

00T-Lv2-8
L8

000Z-Lv.-8
4002-Lv2-8

Figure 4: Final Binary AAH

The n-ary clustering algorithm is straightfor-
ward. Using an initial threshold of .80 yields the
initial cluster shown in Figure 5. Note that a differ-
ent threshold would yield a different initial cluster.

After each iteration, the threshold is reduced by a
pre-specified amount to allow more clustering. The
second layer, with a threshold of .75, is shown in
Figure 6. Eventually, the threshold is low enough to
include all values, yielding the n-ary cluster shown
in Figure 1. Compare this with the binary cluster
shown in Figure 4.

—=
=
==
==
=
=

QQ?%UUUUUUUU????TT
I DA A A B
SO JITTPTPTTTYIPELEFFIN JFER
IMbloy~v~ooagwl I &by L LFh
BN WP P®OK®AEW 5 &
S 88990 cur
IS S 63 609
m o (2} ©
T

Figure 5: Clusters after one iteration

(threshold = .80)

=

HOET-O
30€T-0
€€-8-0d
0v—-0T-0d
0€-0T-0d

400¢-Lv.-4d

05-8-0d
000¢-Lv.-4d

00€-20.-9
29-8-0a
£.-8-00
1.-8-00
19-8-04
£9-8-00
00T-Lv.-4
05-TT0T-1
00T-TT0T-1

dS00v-Lv.-9d

Figure 6: Clusters after second iteration

(threshold = .75)

5 Experimental Results

PKI generates hierarchies for cooperative query
answering with the correlation coefficients. As we
go up the hierarchy, the correlation coefficients val-
ues are reduced. Thus, these numbers can be used
for determining an appropriate cutoff point for ter-
minating query relaxation. Further, since the cor-
relation coefficients are normalized between zero
and one, they can be combined from different hi-
erarchies when more than one attribute is relaxed.
This allows control of relaxation over several hierar-
chies simultaneously. The n-ary algorithm retains
the feature that the correlations monotonically de-
crease as we go up the hierarchy.

The PKI clustering algorithm works well for dis-
crete values, but is not as suitable for continuous
domains, such as numeric values. Clustering of con-
tinuous numeric domains is more effectively han-
dled by an algorithm which takes advantage of the
ordering and range of the data, such as DISC [4].
These methods can be used to pre-cluster the nu-
meric domain into ranges which can then be used
as input to PKI, thus significantly improving the
performance of the algorithm.

The PKI algorithm for rule detection is expo-
nential on the number of attribute values. For the

RUNTIME (mins.)

RELATION ATTRIBUTES TUPLES ORIGINAL IMPROVED
CARGO_DETAILS 12 195598 280 55
GEOLOC 16 52686 144 43
CARGO_CATEGORIES 8 56416 65 27
UNIT_CHARACTERISTICS 23 12740 12 6
TP_MOVEMENT_REQS 84 8464 8 3
SHIPS 41 153 7 4
CHSTR_SHIP 16 806 4 2
FM_ELEMENTS 2 1228 4 2
ULNS 12 1232 3 2
ASSETS_SHIPDAYS 6 4130 3 2
remainder (84 relations) < 50 < 1000 <1 <1

Table 3: Relations in Transportation Database with a RUNTIME exceeding 1 minute

algorithm to be used in very large domains, pre-
clustering of attributes, as described above, will
decrease the number of values in numeric domains
and thus reduce the number of atomic patterns and
potential rules. Pre-clustering can also help in non-
numeric domains, if the domain expert makes an
initial pass through the database and selects val-
ues which are closely related. The domain expert
can also be consulted to dictate which pairs of at-
tributes are most likely to generate “useful” rules
and further direct the PKI algorithm and reduce
the computational complexity.

We have implemented PKI using C on a Sun
SPARCstation TPC and used it to generate hierar-
chies for 94 different relations in the transportation
domain. The relations have a variety of attributes
including numbers, dates and text strings. The size
of these relations range from 84 attributes and 8464
tuples to 12 attributes and 195,000 tuples. PKI
takes less than a minute to generate hierarchies for
all but the very largest relations. Table 3 shows the
size of each relation (in attibutes and tuples), and
the runtime required to generate hierarchies for all
attributes. Of the 94 relations, only the ten requir-
ing more than a minute to complete are listed.

In addition to using preclustering, efficiency can
also be improved by eliminating rules with low pop-
ularity. By setting a popularity threshold, we re-
quire that all rules apply to several tuples. The
running time of the algorithm is exponential on
the number of rules, so increasing the popularity
threshold from one to two improved the algorithm
run-time by 80% for the largest relation. Table 3
shows the improvement in runtime if the popularity
threshold 1s increased to two. However, if rules are
eliminated, then the values in the premise of those

rules can no longer be clustered. Thus, eliminating
rules will yield hierarchies that only cluster values
that appear more frequently in the database. These
incomplete hierarchies still prove useful, as CoBase
[3] can use partial hierarchies when full ones are
not available. Since incomplete hierarchies include
only values which appear frequently in the data-
base, they require much less space than full hierar-
chies. Thus, they are appropriate for applications
where a general overview of the clustering is needed,
without all the specific details, as well as applica-
tions with strict time or space requirements. Also,
setting a popularity threshold should not be used
with key attributes, since a key implies that every
value is distinct.

For very large databases, statistical sampling
methods can be used for rule gathering. Instead
of considering all tuples when evaluating a rule, a
randomly selected sample of the tuples in the rela-
tion can be used to estimate the rule’s confidence
and popularity.

Both the n-ary and binary algorithms generate
hierarchies with no overlapping clusterings. If the
domain dictates that values may belong to more
than one cluster, the selection criterion must be
modified. Instead of taking the pairs with the high-
est 7, all pairs with 7 above the threshold are clus-
tered.

The threshold value for n-ary clustering must be
selected based on domain semantics. In the exam-
ple, we selected an initial value of .8 and lowered
the value by .05 each iteration until the hierarchy
was complete. Choosing a higher initial threshold
and smaller reduction per iteration will yield a hier-
archy more similar to the original binary clustering.

6 Conclusions

In this paper, we have presented a Pattern-Based
Knowledge Induction mechanism that generates
rules relating attribute values in a relational data-
base. The rules can then be used to cluster at-
tribute values and construct binary AAHs. Such
induction provides a correlation measure of near-
ness between the clustered attributes. Based on the
initial binary clustering and specified threshold val-
ues, we can construct an n-ary attribute abstraction
hierarchy suitable for use with cooperative query
answering systems such as CoBase. The algorithm
works well for discrete non-numeric domains and
can use semantics and domain expert direction for
pre-clustering to reduce computational complexity.
The expert can also add weights to place empha-
sis on selected attributes, thus generating an AAH
based on the context of a specific application.

References

[1] Y. Cai, N. Cercone, and J. Han. Attribute-
oriented induction in relational databases. In
G. Piatetsky-Shapiro and W. J. Frawley, edi-
tors, Knowledge Discovery in Databases. AAAI
Press/The MIT Press, Menlo Park, CA, 1991.

[2] Q. Chen, W. W. Chu, and R. Lee. Pattern-
based knowledge induction from databases. In
Database Systems for Next Generation Applica-
tions. World Science Publishing Co., 1992.

[3] W.W. Chu, Q. Chen, and R. Lee. Cooperative
query answering via type abstraction hierarchy.
In S.M. Deen, editor, Cooperating Knowledge
Based Systems, pages 271-292. North-Holland,
Elsevier Science Publishing Co., Inc., 1991.

[4] W. W. Chu and K. Chiang. A distribution
sensitive clustering method for numerical val-
ues. Technical Report 93-0006, UCLA Com-
puter Science Department, 1993.

[5] F. Cuppers and R. Demoloube. Cooperative an-
swering: a methodology to provide intelligent
access to databases. In Proc. 2nd International
Conference on Ezpert Database Systems, Vir-
ginia, USA, 1988.

[6] J. Minker, G.A. Wilson, and B.H. Zimmerman.
Query expansion by the addition of clustered
terms for a document retrieval system. Infor-
mation Storage and Retrieval 8:329-348, 1972.

[7] J. R. Quinlan. The effect of noise on concept
learning. In R. S. Michalski, J. G. Carbonell,
and T. M. Mitchell, editors, Machine Learning,
volume 2. Morgan Kaufmann Publishers, Inc.,

Los Altos, CA, 1986.
[8] R. E. Stepp IIT and R. S. Michalski. Concep-

tual clustering: Inventing goal-oriented classifi-
cations of structured objects. In R. S. Michalski,
J. G. Carbonell, and T. M. Mitchell, editors,
Machine Learning, volume 2. Morgan Kauf-
mann Publishers, Inc., Los Altos, CA, 1986.

