Abstraction of High Level Concepts from Numerical Values
in Databases *

Wesley W. Chu and Kuorong Chiang |
Computer Science Department
University of California, Los Angeles

Abstract

A conceptual clustering method is proposed for discovering high level concepts of numerical
attribute values from databases. The method considers both frequency and value distributions
of data, thus is able to discover relevant concepts from numerical attributes. The discov-
ered knowledge can be used for representing data semantically and for providing approximate
answers when exact ones are not available.

Our knowledge discovery approach is to partition the data set of one or more attributes
into clusters that minimize the relazation error. An algorithm is developed which finds the
best binary partition in O(n) time and generates a concept hierarchy in O(n?) time where n
is the number of distinct values of the attribute. The effectiveness of our clustering method is
demonstrated by applying it to a large transportation database for approximate query answer-

ing.

Key words: approximate query answering, type abstraction hierarchy, conceptual clustering,
discretization, data summarization, knowledge discovery in databases.

1 Introduction

Knowledge discovered from databases can be used to abstract the data into high level concepts.
The discovered concept, or abstraction, usually implies a certain context, thus providing more
information than the raw data. As a result, the abstraction can be used to characterize databases
and process queries intelligently [6, 3]. In particular, abstraction can be used to derive approximate
answers — when the objects requested by a query are not available, the query conditions can
be relaxed to their corresponding abstraction where “neighborhood objects” can be found and
returned as the approximate answers.

For clustering objects into “neighborhoods,” two groups of methods can be used: statistical
clustering and numerical taxonomy [12, 1, 7, 17], and conceptual clustering [15, 10, 14]. In sta-
tistical clustering and numerical taxonomy, most similarity metrics are defined between pairs of
objects. Objects are pair-wise clustered in a bottom up manner until all objects are in a single
cluster. In Conceptual clustering, the “goodness measures” are usually defined for the overall
partitioning of objects instead of for pairs of objects. Clustering methods are designed that max-
imize the goodness measure. For approximate query answering [3, 5], the goal is to minimizes
the relazation error of the approximate answers where the relaxation error is defined based on

*This work is supported in part by DARPA contract N00174-91-C-0107
TThe authors may be reached at {wwc,kuorong}@cs.ucla.edu

the overall partitioning of objects. This is closer to the similarity metrics in conceptual clustering
methods.

Most current conceptual clustering systems use exact match when comparing two attribute
values. That is, the values are categorical and can only be equal or not equal. These systems
only consider frequency distribution of data because they are concerned with the grouping of
values rather than the values themselves. Such clustering, however, is inadequate for providing
approximate answers as illustrated in the following example.

Consider two clusters C; = {0,100} and C3 = {0,1}. C; and C; are equivalent based on fre-
quency distribution alone because they both have two distinct values. For representing abstraction,
however, they are very different because the values in 'y are much closer to each other than those
in Cy. That is, C'y defines a much coherent abstraction than Cy does. Therefore, for discovering
abstraction, a clustering method must consider both the frequency and the value distributions of
data. In this paper, we propose a DIstribution Sensitive Clustering (DISC) method that considers
both the frequency and the value distributions in discovering high level concepts from data.

The rest of the paper is organized as follows. After a brief discussion of prior related work,
we develop the notion of relazation error as a quality measure for clusters. Then we present the
DISC algorithm for generating concept hierarchies called Type Abstraction Hierarchies (TAH)
for a single attribute as well as multiple attributes that minimize the relaxation error. Next, we
present application of TAH for providing approximate query answers. Finally, we compare the
performance of the TAH generated by DISC with the traditional index tree for approximate query
answering.

2 Related Work

Prior work in discretization aims at decreasing cardinality of data by maximizing/minimizing
certain heuristic measures. A commonly used measure is the information entropy [16]. It can be
shown that the entropy is maximum when the data is partitioned most evenly. (We call this the
ME method [2, 18].) However, no semantic meaning is attached to the resultant clusters because
the discretization is concerned with the frequency distribution rather than the value distribution
in the cluster. Therefore, the ME method is not suitable for abstracting numerical data.

COBWERB [8], a conceptual clustering system, uses category utility (C'U) [9] as a quality mea-
sure to classify the objects described by a set of attributes into a classification tree. Formally, for
a partition from a class C' to m mutually exclusive classes C1, ..., C,,, the category utility (CU) is
defined as the increase in the average class goodness'. That is,

_ Z;cnzl P(Ck)G(Ck) - G(C) (1)

where P(C}) is the occurrence probability of Cy in C, and G(Cj) and G(C') are the goodness
functions for C, and C, respectively. That is,

G(Ce) =3 > Pl) (2)

a€AzieX}

G(C)=3%_ > P (3)

a€AzieX®

CU(Ch,...,Cm)

where A is the set of all the attributes, and X} and X* are the distinct values of attribute a in
C} and C respectively.

'COBWEB does not use the term goodness. We use it for ease of presentation.

COBWEB cannot be used for abstracting numerical data because it only deals with categor-
ical data. Moreover, its classification tree serves as the database for the instances and requires
a large storage space. Furthermore, matching of objects with existing classes is time-consuming.
For providing approximate answers, we want to build a classification tree in addition to the orig-
inal database. The tree can be viewed as an index, thus making efficient storage and retrieval
important.

3 Relaxation Error - A Goodness Measure for Clustering Nu-
merical Values

To deal with numerical values, we need to generalize category utility. To simplify our presentation,
let us consider the single-attribute case. For a class C' = {z1, ..., 2,}, (3) reduces to

G(C) = Y Pai)? (4)

where z; is the i-th distinct attribute value and P(z;) is the occurring probability of z; in C.

Consider the following experiment. The class C' in (4) is represented by an urn with balls,
each of them representing an attribute value. The number of balls equals the occurring frequency
of the corresponding value. We randomly draw two balls from the urn with replacement. If the
two balls have the same value, we score 1. Otherwise, we score 0. If we do this experiments a
large number of times, the expected score we have will be G(C'). Let s(z;, ;) be the score for the
drawn values z; and z;, then s(z;,2;) = 1 if 2; = z; and 0 otherwise. Thus, (4) becomes

i) =3

n
=1y

n

P(zi) P(z))s(2i, 25)- (5)
=1

Equation (5) cannot serve as a quality measure for numerical values as illustrated in the
following. Consider the two clusters C; = {0,100} and C3; = {0,1} as mentioned in section 1.
According to (5), C; is as good as Cy: G(Cq) = G(C3) = 0.5. Intuitively, this is unsatisfying
because the values in 'y are much closer to each other than those in 1. As a result, a label such
as small can be attached to C'y but not to C.

In order for (5) to be a goodness measure for numerical values, we need to change the scor-
ing rule. Let S(z;,2z;) = 1 — 22l where A is the maximum difference between two values.?
Sz, z;) = 1if o = ;. S(x;,z;) decreases when |z; — z;| increases. And S(z;,2z;) = 0 when
|z; — z;] = A. Replacing s(z;,z;) by S(z;,2;) in (5), we have

G(C) = Y3 Pla Pl - 21

=1 7=1
After rearrangement by noticing 377 377y P(z;)P(z;) = 1, we have

G(C)=1- znjznjp(xi)P(xj)u’i;J. (6)

=1 7=1

2The same scoring rule is independently proposed in [11] for matching two numerical values.

Let us define the relazation error of C', denoted by RE(C'), as the normalized expected difference
between any two values in C'. Formally,

RE(C)= 303 Pl Pley) 22 g
Thus,
G(C) = 1= RE(C). (8)

Using the new goodness measure for the above example where A = 100, we have G(C7) = 0.5
and G(C3) = 0.995. Clearly, C3 is better than Cj.

From the standpoint of query relaxation, let us define the relazation error of z;, RE(z;), as
the average difference from z; to z;, j=1,...,n. Formally,

RE() = Y Pay) 0

7=1

where P(z;) is the occurring probability of z; in C'. RE(z;) can be used to measure the quality
of an approximate answer where z; in a query is relaxed to z;, j=1,...,n. Summing RFE(z;) over

all values z; in C', we have
n

RE(C) =Y P(z;)RE(z;). (10)
=1
Thus, RE(C) is the expected error of relaxing any value in C'.
To express the category utility in terms of the relaxation error, we substitute (8) into (1):

2i= PCY[1 = RE(CY)] = [1 = RE(C)]

m

_ RE(C) - ¥t P(CHRE(CE) (11)

m

CcU =

From (11) notice that RE(C') is a constant for a given C, so C'U is maximum (i.e., the best
partition) when the term) j.; P(Cy)RE(Cy) (i.e., the average relaxation error of the partition
from C to Cq,...,C),) is minimum. Thus in the next section, we shall develop the DISC algorithm
that minimizes the relaxation error of the partition.

4 The DISC Algorithm

We shall now present the DISC algorithm for clustering numerical values that minimizes the
relaxation error. We start from one cluster consisting of all the values of an attribute, and then we
find “cuts”? to recursively partition the cluster. The partitioning is terminated when the number
of distinct values in the resultant cluster is less than a pre-specified threshold.

Given a cluster with n distinct values, the number of partitions to examine is exponential with
respect to n. To reduce computation complexity, we shall only develop binary cut algorithm which
partitions a cluster into two sub-clusters. The clustering algorithm DISC is given in Table 1.

®A cut cis a value that separates a cluster of numbers {z|a < z < b} into two sub-clusters {z|a < z < ¢} and
{z|c < z < b}.

Algorithm DISC(C)
if the number of distinct values in C' < T, return /* T is a threshold */
call BinaryCut(C) to find the best cut, cut, for C' such that relaxation error is minimized
partition values in C' based on cut
let the resultant sub-clusters be C7 and Cy

call DISC(Cy) and DISC(Cy)

Algorithm BinaryCut(C)
/* input cluster C = {zq,...,z,} */
for h = 1ton —1 /* evaluate each cut */
Let P be the partition with clusters Cy = {z1,..., 23} and Cy = {41, ..., 20}
compute relaxation error RE(P) for P
it RE(P) < MinRE then
MinRE = RE(P) , cut = h /* the best cut */

Return cut as the best cut

Table 1: The algorithms DISC and BinaryCut

4.1 Computation Complexity of DISC

Let us consider the time complexity of computing the relaxation error of a cluster. Let n be the
number of distinct values in C, f; be the frequency of the value z;, and N be the total number of
values in C' which equals "7, f;. Based on [13], equation (7) can be transformed to

RE(C) = 25 32 F(BN = F(A))(zhar — 1) (12)
h=1

where F'(h) is the accumulated frequency Zf“zl fi. Note that in (12), both frequency and value
distributions are considered — RE(C') equals the sum over all gaps (the value distribution) weighted
by the accumulated frequencies on both sides of each gap (the frequency distribution).

Using (12), RE(C') can be computed in O(n) time. Such computation is executed n — 1 times
in the algorithm BinaryCut, thus the overall time complexity of BinaryCut is O(n?).

only attribute values that changes membership from C1 to C2

previou&ui ynt cut

C C1 Cc2

1 2 h n
Figure 1: Membership change

Further improvement of BinaryCut is possible by the following observation. For each iteration
in BinaryCut, only a single value changes its membership from one sub-cluster to another (see
Figure 1). In general, for a cluster C' = {z,,...,z,}, only two cases of membership change can
happen: (1) C is changed to C’ = {zy, ..., z,4+1} where a new value z,4; larger than any existing
values is inserted and (2) C is changed to C” = (2441, ..., 2,} where an old value z, smaller than

Algorithm BinaryCut(C)
/* The input is C = {z1,...,z,}. N =14 fi. */
/* Initially, C is empty and Cy = C. Each iteration moves z; from Cy to Cy */
Initialization:
T=N=5=0,Ny=N,MimRE = Biggest Number
W = SICUN = F(0) (e — o), 8 = Y52t P(R)N — F(h)](2nsr — o1)
for h=1 to n — 1 do /* evaluate each possible cut h */
T =T+ Ni(zp — zp-1) /* z1, changes membership from C; to Cq */
S=8+fiT
RE(Cy) = 25/N}
S'=8— fiW
Ny = Ny — fh
W=W - IVQ(:C}L_H — $h)
RE(Cy) =28'/N2
AveRE = JLRE(Cy) + R RE(C)
if AveRE < MinRE then
MinRE = AveRE, cut = h [/* remember the best cut */
Return cut as the best cut.

Table 2: Improved BinaryCut algorithm

any existing values is deleted. Since the modification to the partition resulting from these changes
is only limited to one member, we shall derive equations for computing RE(C’) and RE(C")
recursively from RE(C).

Based on equation (12), for the cluster C’, we have

RE(C") = ey fu+1]2 Z F(R)N + fog1 — F(W)(zhg1 — z1)-

where N = >77_, fn. After manipulation, we have

2
[A‘T + fv—|—1]2

where S(v) = 32020 P(R)[N — F(h)](zh41 — z5) and T(v) = S0Z) F(h)(zh41 — 74). Note that
(13) can be computed in constant time for a given S(v) and T'(v). From the definitions of S(v)
and 7'(v), we observe

RE(C") = {5(0) + fora[T(v) + N(zp41 — 2)]} (13)

Tv+1)=T(w)+ N(zyp1 — zy) (14)
S(0+1) = 8(0)+ fypr T(0 + 1) (15)
Substituting (14) and (15) into (13), we have RE(C") = 25(v+ 1)/[N + fy41]°.

Similar to (13), we obtain

2

B =N —7p

[5'(u) = fuW (u)] (16)

where S'(u) = 32021 F(B)[N = F(h)|(zh41 — 1) and W(u) = 02 [N — F(R)](2he1 — 24). Similar
to (14) and (15), we have
§'u+1) = 5"(w) = fulV (u) (17)

W(u+1) = W(u) = (N =)@ - 2) (18)

And RE(C") = 25"(u+ 1)/[N — f.]?.

Based on equations (14), (15), (17), and (18), the improved algorithm for BinaryCut is shown
in Table 2.

For each iteration in the improved BinaryCut, we can now calculate the relaxation error of the
partition in constant time. Since there are n — 1 iterations, the loop takes O(n) time to complete.
Because initializing the variables W and S’ also takes O(n) time, the time complexity of BinaryCut
is therefore linear. Since the algorithm DISC calls BinaryCut at most n — 1 times, the worst case
time complexity of DISC is O(n?).

5 Application to Approximate Query Answering

We shall now use an example to show how the concept hierarchies generated by DISC, called the
Type Abstraction Hierarchy (TAH), can be used for providing approximate answers.

TAH for SQUARE-FEET TAH for WEIGHT

Y

f \\\\\\\\‘m

RE(C)=.373

€

1294, 300 K N
e\

@ first relaxation
@ second relaxation

Figure 2: TAHs for SQUARE-FEET and WEIGHT generated by DISC from a transportation
database. Higher nodes have higher relaxation errors.

Example. Consider the query “find a cargo with size 300 square feet and weight 740 kg.”
The corresponding SQL query is
select CARGO-ID
from CARGOS
where SQUARE-FEET = 300 and WEIGHT = 740.

The query conditions are too specific; no answers are found for the query. To obtain approximate
answers, the query is modified by relaxing cargo size and weight according to the TAHs for
SQUARE-FEET and WEIGHT (see Figure 2). (These TAHs are generated by DISC from a
transportation database for the CARGOS relation.) As a result, the query is modified to

select CARGO-ID
from CARGOS
where 294 < SQUARE-FEET < 300 and 737 < WEIGHT < 741.

The modified query is submitted to the database and the following cargo is returned:

CARGO-ID SQUARE-FEET WEIGHT
10 296 740

The quality of the answer can be measured by equation (9). From the CARGOS relation, we obtain
A(SQUARE-FEET) = 32 and A(WEIGHT) = 39. Thus, RE(SQUARE-FEET = 300) = 0.125
and RE(WEIGHT = 740) = 0. Assuming the two attributes SQUARE-FEET and WEIGHT
are equally important, then the quality of the answer can be measure by the sum of individual
relaxation errors, which equals 0.125.

If more answers are needed, the conditions can be further relaxed by moving one more step up

the TAHs:

select CARGO-ID
from CARGOS
where 294 < SQUARE-FEET < 306 and 737 < WEIGHT < 749.

The following four cargos are returned for this query:

CARGO-ID SQUARE-FEET WEIGHT

10 296 740
21 301 737
30 304 746
44 306 745

For the above answer, RE(SQUARE-FEET = 300) = 0.117 and RE(WEIGHT = 740) = 0.090
with a sum of 0.207. This answer yields more relaxation error than the previous one because the
values deviate more from those of the requested cargo.

Thus from the above example, we see that the TAHs generated by DISC can be used for
relaxing query conditions to obtain “neighborhood answers” and their quality measure when the
requested answer is not available.

6 Multi-dimensional Type Abstraction Hierarchy (MTAH)

In many applications, abstraction needs to be characterized by multiple attributes, e.g., nearness of
geographical locations. Given two locations represented by longitudes and latitudes, they are near
to each other only if their longitudes and latitudes are close to each other. To cluster objects of
multiple attributes, DISC can be extended to M-DISC (Table 3). The generated multi-dimensional
TAHs are called MTAHs. The algorithm DISC is a special case of M-DISC and TAH is a special
case of MTAH.

MTAHs can be used to modify queries for providing approximate answers as shown in section
5. They can also be used as “semantic indices” where each internal node of an MTAH stores an
attribute name and a cut value, and the leaf nodes contain pointers to physical data blocks. To
locate an object, the query conditions are compared to the cuts of the nodes: if they are less than
or equal to the cut, then the comparison continues to the left child, otherwise it continues to the
right. When a leaf node is reached, the stored pointer is used to retrieve the object. If the object
is not available in the database, a traversal up the MTAH enlarges the “neighborhood” of the
requested object. The best n objects covered in this neighborhood can then be returned as the
approximate answers where n is a threshold.

Algorithm M-DISC(C)
if the number of values in C' < T, return /* T is a threshold */
for each dimension d
call BinaryCut(C) to find the best cut &
compute relaxation error reduction ARF based on h
if ARE > Maz Reduction then /* remember the best cut */
Maz Reduction = ARFE, BestDimension = d, cut = h
partition C' based on cut of the dimension BestDimension
let the resultant sub-clusters be €7 and Cy
call M-DISC(C4) and M-DISC(Cy)

Table 3: Multi-dimensional DISC algorithm
the nearest 3 locations
in the neighborhood neighborhood of the query object

of (long,lat)
10.23 /

(O]
Q 37 target location
= . % — (long,lat)
T © N latitude=34.72
- RE(C)=.677
>
N &
S
sz \Longitude=10.23
' 2 ‘ 625
: <= >
L] L] 1 2 3 = .
Gafsa Sfax Bizerte Monasti
El_Borma Gabes Djedeida 0
359 Jerba ;gmlsn A A
jah
A 222 —
31.72
8.1 9.27 11.4 .
: target location
Longitude (long,lat)

Figure 3: A map of cities in Tunisia and its corresponding MTAH generated by M-DISC

For example, Figure 3 shows a simplified map of Tunisia and the corresponding MTAH gener-
ated by M-DISC. The MTAH can provide the neighborhood region of the target location (long,lat).
In this case, Monastir is the city in the smallest neighborhood (10.23 < long < 11.4,34.72 < lat <
37.28) of the target location. The next larger neighborhood (8.1 < long < 11.4,34.72 < lat <
37.28) includes 4 more cities: Bizerte, Djedeida, Tunis, and Saminjah (shown in the shaded region
in Figure 3).

Also shown in Figure 3 are the relaxation errors at each node of the MTAH, RE(C'), which are
computed from equation (7). Note that the relaxation error of a region increases as the dispersion
of objects in that region increases. For example, the cities in region 1 (RE(Cy) = .359) are more
dispersed than those in region 3 (RE(C3) = .145).

7 Performance Comparison of DISC with ME

7.1 Single Attribute

Empirical results based on a large transportation database show that clusters discovered by DISC
have less relaxation error than those by the Maximum Entropy method (ME). It can be shown
that only when the data distribution is symmetrical at the median, then the ME method and
DISC perform equally well:

Theorem. Let D and M be the optimal binary cuts by DISC and ME respectively. If the
distribution of data is symmetrical at the median, then D = M (i.e., the cuts determined by DISC
and ME are the same).

Outline of the proof. The best binary cut determined by the ME method is at the median
of the distribution since the resulting partition is the most even. Since the category utility C'U is
a function of the cut, the best cut ¢ determined by DISC can be found by solving the equation
CU'(¢) = 0. For symmetrical distributions, the best cut is at the median. Therefore, ME and
DISC find the same binary cut. (For a formal proof, the interested readers shall refer to [4].)

For skewed distributions, which holds for most data in the transportation database, DISC
performs better than ME. Empirical results show that the performance improvement of DISC over
ME increases as the skewness increases [4].

7.2 Multiple Attributes

In addition to the relaxation error, we shall introduce two additional performance measures, ac-
curacy of the answer and efficiency of the retrieval?, to compare the performance of DISC with

ME:

retrieved relevant answers

accuracy of the answer =
all relevant answers

retrieved relevant answers

efficiency of the retrieval = -
all retrieved answers

where “all relevant answers” are the best n answers determined by exhaustive search. In general,
there is a trade-off between the two measures: the higher the accuracy of the answer, the lower
the efficiency of the retrieval.

We generate an MTAH and an ME tree® based on attributes Longitudes and Latitudes of 972
geographical locations from a transportation database. We generate 500 queries with the form:
“find the n locations nearest to (long,lat)” where n is randomly selected from 1 to 20, and long and
lat are generated based on the distributions of Longitudes and Latitudes from the location relation
in the database. To answer the query using the MTAH or the ME tree, we first locate the most
specific node in the tree that “covers” n/ locations where n’ > n. Then we compute the n’ distances
to (long,lat) and use them to select the nearest n locations (see Iigure 3). The accuracy, efficiency,
and the average distance from the best n answers to the target location (long,lat), averaged over
the 500 queries, are shown in Table 4. Notice that the answers provided by the MTAH not only
are closer to the target location, but also are more accurate and efficient than those of the ME
tree. Further, the MTAH is far more efficient than the exhaustive search, yet provides answers
very close to those generated by the exhaustive search.

*These measures are known as recall and precision in Information Retrieval.
5Since the classification tree generated by the ME method is balanced, it can be viewed as an efficient index.

MTAH ME-Tree FExhaustive Search
accuracy 0.7 0.45 1.0
efficiency 0.41 0.29 0.011
ave distance (miles) | 55.2 70.4 49

Table 4: Comparison of the MTAH and the ME tree

8 Conclusion

In this paper, we present a DIstribution Sensitive Clustering method (DISC) for numerical at-
tribute values. For an attribute of n distinct values, DISC finds the best binary partition in
O(n) time and generates a Type Abstraction Hierarchy (TAH) in O(n?) time. To demonstrate
the efficiency of DISC, we have used DISC to generate TAHs for a large transportation database
which consists of 94 relations, the largest one of which has 12 attributes and 195,598 tuples. DISC
generates all the numerical TAHs in less than one hour of processing time on a Sun Sparc 10
Workstation.

The generated TAHs are used in the Cooperative Database System (CoBase) [5] at UCLA for
providing approximate answers. The approximate query answers derived from TAHs are empiri-
cally evaluated in terms of accuracy, efficiency, and relaxation error. We show that the approximate
query answers derived from the TAH generated by DISC are better than those derived from an
index tree generated by the Maxmum Entropy method.

References

[1] M. R. Anderberg. Cluster Analysis for applications. Academic Press, New York, 1973.

[2] David K. Y. Chiu, Andrew K. C. Wong, and Benny Cheung. Information discovery through
hierarchical maximum entropy discretization and synthesis. In Gregory Piatetsky-Shapiro
and William J. Frawley, editors, Knowledge Discovery in Databases. AAAI Press/The MIT
Press, 1991.

[3] Wesley W. Chu and Q. Chen. Neighborhood and associative query answering. Journal of
Intelligent Information Systems, 1(3/4), 1992.

[4] Wesley W. Chu and Kuorong Chiang. A distribution sensitive clustering method for numerical
values. Technical Report 93-0006, UCLA Computer Science Department, 1993.

[5] Wesley W. Chu, M. A. Merzbacher, and L. Berkovich. The design and implementation of
CoBase. In Proceedings of ACM SIGMOD, Washington D. C., USA, May 1993.

[6] F. Cuppens and R. Demoloube. Cooperative answering: a methodology to provide intelligent
access to databases. In Proceedings of the 2th International Conference on FExpert Database
Systems, Virginia, USA, 1988.

[7] B. Everitt. Cluster Analysis. Heinemann Educational Books, London, 1980.

[8] D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning,
2(2):139-172, 1987.

[9] M. A. Gluck and J. E. Corter. Information, uncertainty, and the unity of categories. In
Proceedings of the Tth Annual Conference of the Cognitive Science Society, pages 283-287,
Irvine, CA, 1985.

[10] Stephen Jose Hanson and Malcolm Bauer. Conceptual clustering, categorization, and poly-
morphy. Machine Learning, 3:343-372, 1989.

[11] Yannis E. Ioannidis, Tomas Saulys, and Andrew J. Whitsitt. Conceptual learning in database
design. ACM Transactions on Information Systems, 10(3):265-293, 1992.

[12] A. K. Jain and R. C. Dubes. Algorithms for Cluster Analysis. Prentice Hall, Englewood
Cliffs, NJ, 1988.

[13] Maurice G. Kendall and Alan Stuart. The Advanced Theory of Statistics, volume 1. Hafner
Publishing Company, 1969.

[14] M. Lebowitz. Experiments with incremental conceptual formation. Machine Learning,
2(2):103-138, 1987.

[15] R. S. Michalski and R. E. Stepp. Learning from observation: Conceptual clustering. In R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning, volume 1. Margan
Kaufmann Publishers, Inc., 1983.

[16] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. University of
Illinois Press, Urbana, Ill, 1964.

[17] P. H. A. Sneath and R. R. Sokal. Numerical Tazonomy: The Principles and Practice of
Numerical Classification. W. H. Freeman and Company, San Francisco, 1973.

[18] Andrew K. C. Wong and David K. Y. Chiu. Synthesizing statistical knowledge from incom-
plete mixed-mode data. IFFE Transactions on Pattern Analysis and Machine Intelligence,

9(6):796-805, 1987.

