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Using Pattern Decomposition Methods for Finding All 
Frequent Patterns in Large Datasets  

  

Abstract 
Efficient algorithms to mine frequent patterns are crucial to many tasks in data mining.  
Since the Apriori algorithm was proposed in 1994, there have been several methods 
proposed to improve its performance.  However, most still adopt its candidate set 
generation-and-test approach.  In addition, many methods do not generate all frequent 
patterns, making them inadequate to derive association rules.  We propose a pattern 
decomposition (PD) algorithm that quickly reduces the size of the dataset on each pass 
making it more efficient to mine all frequent patterns in a large dataset. The proposed 
algorithm avoids the costly process of candidate set generation and saves a great amount 
of counting time with reduced datasets. Our empirical evaluation shows that the 
algorithm outperforms Apriori by one order of magnitude and is more scalable. 

1. Introduction 
A fundamental component in data mining tasks is finding frequent patterns in a given 
dataset.  Frequent patterns are ones that occur at least a user-given number of times 
(minimum support) in the dataset.  They allow us to perform essential tasks such as 
discovering association relationships among items, correlation, sequential pattern mining, 
and much more [7].   
 
Algorithms proposed in [1, 5, 6, 9] find all frequent sets in a dataset. The Apriori 
algorithm [1] accomplishes this by employing a bottom-up search.  It generates candidate 
sets starting at size 2 up to the maximal frequent set size.  At each pass, it determines 
which candidates are frequent by counting their occurrence.  Due to combinatory 
explosion, this leads to poor performance when frequent pattern sizes are large. To avoid 
this problem, some algorithms output only maximal frequent sets  [2, 3, 4].  Pincer-
Search [4] uses a bottom-up search along with top-down pruning.  Max-Miner [2] uses a 
bottom-up search with a heuristic to try to identify frequent sets as early as possible.  
Even though performance improvements may be substantial, maximal frequent sets have 
limited use in terms of association rule mining.  A complete set of rules cannot be 
extracted without support information of frequent subsets. 
 
Almost all previous algorithms use the candidate set generate-and-test approach.  FP-tree-
based mining [9] is an exception. It has performance improvements over Apriori since it 
uses a compressed data representation and does not need to generate candidate sets. 
However, FP-tree-based mining uses a complicated data structure and performance gains 
are sensitive to the support threshold.  
 
In this paper we propose an innovative algorithm called PD (Pattern Decomposition) that 
generates all frequent sets.  It dynamically reduces the dataset in each pass by reducing 
the number of transactions and their size to give better performance.  Counting time is 
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clearly less in a reduced dataset.  In addition, the algorithm does not need to generate 
candidate sets; the reduced dataset contains only itemsets whose subsets are all frequent. 
Intuitively, a transaction that contains infrequent itemsets can be decomposed to smaller 
itemsets since together they do not meet the minimum support threshold.  The smaller 
itemsets after separation are often identical with others and can be combined, thus 
reducing the size of the dataset. 
 
The remainder of the paper is organized as follows.  In Section 2 we introduce the PD 
algorithm.  We show details of the algorithm in Section 3.  Section 4 gives top-level 
algorithms for frequent pattern mining using decomposition.  Section 5 compares the 
performance between the PD and Apriori algorithms. Section 6 discusses comparison 
with other techniques.  Section 7 gives an application for PD.  Section 8 summarizes the 
important points of this paper. 

2. Introducing Pattern Decomposition (PD) 
We begin by providing some basic definitions.  The terms transaction, itemset and item 
keep the same meaning as in literature.  We define others as follows: 
 

1) A pattern p consists of an itemset and its occurrence, denoted by p.IS and p.Occ 
respectively.  The size of p is the number of items in its itemset, denoted by p.Len.  
For example, if p = <{a,b,d,e,f}, 3>, then p.IS = {a,b,d,e,f},  p.Occ = 3, and p.Len 
= 5.  For simplicity, we write p = abdef:3. 

 
2) A dataset D is a set of patterns. 

 D = { p: p is a pattern } 
For example, D0 = {abc:1,  abd:2,  abe:1, ace:1, ade:1, bce:1, bde:1, cde:1} 

 
Note that the term pattern in the dataset differs from transaction in that a pattern refers to 
both an itemset and its occurrence.  

 
      3)  The support of an itemset I in a dataset D is  

 Sup(I | D)  =  �p.Occ, for all p D and I  p.IS 
We call the pair (I, Sup(I | D)) the candidate pattern of D.  If q is a candidate 
pattern of D, then q.Occ = Sup(q.IS | D). For a given minimum support m, if 

q.Occ � m, then q is a frequent pattern of <D, m>. 
For example, patterns abd:2,  ab:4, abcd:0 are candidate patterns of dataset D0; 
abd:3, ace:0, ad:2 are not candidate patterns of D0. The pattern ab:4 is a frequent 
pattern of (D0 ,4). 

4) A composition pattern is the pair <set of itemsets, occurrence>.  
For example, p = <{{a,b,c,d }, {b,c,d,e}}, 3>, w.r.t. p = abcd, bcde:3. 

 
 
The PD algorithm uses a dataset Dk on the kth pass to determine the frequent set Lk and 
the infrequent set ~Lk.  Dk is decomposed with ~Lk to determine Dk+1. 
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There are two reasons to decompose a pattern if it contains infrequent itemsets: 1) to 
remove the infrequent itemsets from the pattern, thus eliminating the need to generate 
candidates 2) to reduce the size of the dataset.  The decomposed patterns are used to build 
the next dataset. 
 
Let us illustrate how a pattern in the dataset is decomposed on a specific pass: 

1) Suppose we are given a pattern p= abcdef:1 D1 where a,b,c,d,e L1 and f �L1.  
To decompose pattern p with ~L1, we simply delete f from p, leaving us with a 
new pattern abcde:1 in D2. 

2) Suppose a pattern p= abcde:1 D2 and ae �L2. Since ae cannot occur in a future 
frequent set, we decompose p= abcde:1 to a composition pattern q= abcd,bcde:1 by 
removing a and e respectively from p. 

3) Suppose a pattern p= abcd,bcde:1 D3 and acd �L3. Since acd �abcd, abcd is 
decomposed into abc, abd, bcd.  Their sizes are less than 4, so they are not 
qualified for D4. Itemset bcde does not contain acd, so it remains the same and is 
included in D4. 

 
Now let us illustrate the complete process for 
mining frequent patterns.  In Figure 1, we show 
how PD is used to find all frequent patterns in a 
given dataset.  Suppose the original data set is D1 
with minimal support of 2.  We first count the 
support of all items in D1 to determine L1 and ~L1.  
In this case, frequent 1-itemset L1 = {{a}, {b}, {c}, 
{d}, {e}} and infrequent 1-itemset ~L1 = {{f}, {g}, 
{h}, {k}}.  Then we decompose each pattern in D1 

using ~L1 to get D2.  In the second pass, we 
generate and count all 2-item sets contained in D2 to 
determine L2 and ~ L2, shown as in the figure. Then 
we decompose each pattern in D2 to get D3.  This 
continues until we determine D5 from D4, which is 
the empty set and we terminate.  The final result is 
the union of all frequent sets L1 through L4.   
 
We notice that there are three ways to reduce the 
size of the dataset denoted by �, �, � in Figure 1. 
In �, when patterns after decomposition yield the 
same itemset, we combine them by summing their 
occurrence. Here, abcg and abc reduce to abc.  
Since both their occurrences are 1, the final pattern 
is abc:2 in D2.   
In �, we remove patterns if their sizes are smaller 
than the required size of next dataset.  Here, 
patterns abc and abd with sizes of 3 cannot be in D4 
and are deleted. 

D1 
1: a b c d e f:  1 
2: a b c g:  1 
3: a b d h:  1 
4: b c d e k:  1 
5: a b c:  1 � 

D2 
1: a b c d e:  1 
2: a b c:  2 
3: a b d:  1 
4: b c d e:  1 

D3 
1: abcd, bcde:  1 
2: a b c:  2 
3: a b d:  1 
4: b c d e:  1 

D4 
1: b c d e:  2 

L1    
IS Occ 
{a} 4 
{b} 5 
{c} 4 
{d} 3 
{e} 2 

~L1    
IS Occ
{f} 1 
{g} 1 
{h} 1 
{k} 1 
 

g 

L2    
IS Occ
{ab} 4 
{ac} 3 
{ad} 2 
{bc} 4 
{bd} 3 
{be} 2 
{cd} 2 
{ce} 2 
{de} 2 

~L2    
IS   Occ 
{ae} 1 

� 

L3    
IS Occ 
{abc} 3 
{abd} 2 
{bcd} 2 
{bce} 2 
{bde} 2 
{cde} 2 

~L3    
IS Occ
{acd} 1 
 

L4    
IS     Occ 
{bcde} 2 

~L4   
IS Occ 

D5=  

� 

Figure 1. Pattern Decomposition Example 
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In �, when a part of a given pattern has the same itemset with another pattern after 
decomposition, we combine them by summing their occurrence. Here, bcde is the itemset 
of pattern 4 and part of pattern 1’s itemset after decomposition, so the final pattern is 
bcde:2 in D4. 

 
Notably, the algorithm differs fundamentally from previous algorithms in that it avoids 
candidate set generation and reduces the dataset on each pass.  Counting time is thus also 
reduced. 

3. The PD-decompose Algorithm 
The PD-decompose algorithm is shown in Figure 2. 
Here, s is an itemset; ~qk is the infrequent k-itemsets 
of s in ~Lk. When k=1, PD-decompose simply 
removes the infrequent items in ~q1 from itemset s. 
When k���������	
���
����
���� �	��
����� �	��� �	���
the itemsets in ~qk. Then in step 5, we call quick-
split to perform a calculation on the tree. The result 
is stored in Sbs. In step 6, we map Sbs back to 
itemsets. We give details in the following 
paragraphs.  

 
One simple way to decompose the itemset s by an infrequent k-item set t, as explained in 
[4], is to replace s by k itemsets, each obtained by removing a single item in t from s. For 
example, for s = abcdefgh and t = aef, we decompose s by removing a, e, f respectively to 
obtain {bcdefgh, abcdfgh, abcdegh}. We call this method simple-split. When the 
infrequent sets are large, simple-split is not efficient.  The main objective of PD-decompose 
is to decompose an itemset s by its infrequent k itemsets.  It consists mainly of two parts:  
1) building the frequency tree  2) splitting itemsets using the tree via a method called 
quick-split and returning the resulting itemsets.     
 

A frequency tree is a tree structure whose nodes on each 
level are ordered by the number of occurrences in the 
itemset.  Nodes that are the most common at each level 
are placed first.  We construct a frequency tree from the 
itemsets in ~qk. The trees from a set t is built by:  1) 

identifying the most common item x in t, t ={i-{x}: i t, 

x i}, t ={i: i t, x i}  2) building tree r with x as root 
and trees from t  as its subtrees  3) building trees from t  
as r’s brothers.  The quick-split technique is then applied 
to the tree to return results of the split. 
 

Example Suppose we are given a pattern p∈ D3 where p.IS = abcdefgh.  In the third pass, 
we find infrequent 3-itemsets {aef, aeg, aeh, afg, afh, agh, abe, abf, abg, abh, ace, acf, 
acg, ach, ade, adf, adg, adh}.  First, we build up a frequency tree, as shown in Figure 3.  

Figure 2. PD-decompose 

PD-decompose(itemset s, ~qk) 
 1: if(k=1) 
 2:      t = remove items in ~qk from s 
  3:  else { 
 4:      build ordered frequency tree r; 
 5:      Sbs = Quick-split( r ); 
 6:      t = mapping Sbs to itemsets; 
         } 
 7: return t 

a b 
c 
d 
f 
g 
h 

b 
c 
d
g 
h 

b 
c 
d 
h 

b 
c 
d 

e 

f 

g 

h 

 Figure 3. Frequency Tree  
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The first level consists of only a’s.  The second level consists of items e, f, g, and h, with 
e occurring the most at its level.  The third level is constructed in similar fashion.   
 
To speed up calculation, an itemset is represented by a bitset with 0 and 1 specifying the 
absence or presence of an item at a corresponding position respectively. In the above 
example, we have 8 items a, b, … , h corresponding to positions 0-7 in a 8-bit bitset. So 
p.IS = abcdefgh = {11111111}; abcd = {11110000}; bcdefgh = {01111111}.  
 

Quick-split is given in Figure 4. It performs a 
calculation on a frequency tree to get an array 
of bitsets, which represent a group of 
decomposed itemsets.  Splitting is 
accomplished by calculating bitset results in 
a bottom-up fashion in the tree.  We illustrate 
how it works with the example below. 
 
Note here that newBS() is a function to get a 
new bitset with default value of all 1’s. In our 
example, newBS() returns {11111111}.  
newBS(~x) returns a bitset of 1’s except at 

the position of x  i.e. newBS(~b) = {10111111}.  We now begin to calculate bitsets in a 
bottom-up fashion.  Since leaf nodes return empty bitsets, we begin at node e and finish 
at a. 
 
• Node e 
At node e, there are six subtrees, each returning the empty set �since they are leaves 
(step 1).  In steps 2 and 3, we must determine the bitset subres[x] (subtree-result[x]) for 
each subtree x.  For subres[b], � union newBS(~b)={10111111} is still {10111111}.  
Similary, subres[c]={11011111}, and so on for each subtree.  
At step 4, result is initialized to {11111111}.   
Let us denote & as bitwise AND.  In steps 5 and 6, we must perform this operation for 
each subtree.  At the first iteration we have {11111111} & {10111111} = {10111111}.  
We take this result and perform this operation for each subres[x].  The final result after 
step 6 is {10000000}. 
At step 7, we notice that the size (number of 1’s) of result={10000000} is less than the 
frequent item size of 3.  Therefore the resulting bitset is removed, and �is returned. 
 
• Node f 
Simlar to node e,  is returned. 
 
• Node g 
The result at step 7 is {10001110}.  Since its size (4) is greater than the frequent item 
size, the result is returned. 
 
• Node h 
The result {10001111} is returned. 

Quick-split(Tree r) // returns an array of BitSet 

 1: if(r is leaf) return ; 

 2: forall x r.subs do  

 3:     subres[x] = Quick-cal(x) �newBS�(~x) 
 4: result =newBS(); 

 5: forall x r.subs do 
  6:      result = result & subres[x]; 

 7: remove b  result, b.size��k 
 8: return result; 

 
 Figure 4. Quick-split algorithm 
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• Node a 
We can finally compute the final resulting bitset since we have results from a’s subtrees. 
Steps 2 and 3 

subresult[e] =  union newBS(~e) = {11110111} 
subresult[f] =  union newBS(~f) = {11110111} 
subresult[g] = {10001110} union newBS(~g) ={10001110,  11111101} 
subresult[h] = {10001111} union newBS(~h) ={ 10001111, 11111110} 

 
Steps 5 and 6 

result  = {11111111} & subresult[e] = {11110111} 
result  = {11110111} & subresult[f]  =  {11110011} 
result  = {11110011} & subresult[g] = {11110011} & {10001110,  11111101} 
 = {10000010, 11110001} ={11110001} 
result  = {11110001} & subresult[h] = {11110001} & {10001111,  11111110} 
 = {10000001, 11110000} ={11110000} 

 
At the final iteration, this result is combined with newBS(~a), giving a final result of 
{11110000, 01111111} from Quick-split.  We map the bitsets back to itemsets by having 
1 represent that the item at a certain position is present and 0 if it is not.  The quick split 
result is {abcd, bcdefgh}. 
 

4. The PD Algorithm 
In this section we will show the PD algorithm that uses PD-decompose to find all 
frequent patterns in a transaction dataset T. 
 
PD in Figure 5 is the top-level function that does the counting to determine frequent and 
infrequent sets.  It calls PD-rebuild in Figure 6 to determine Dk+1 at each pass.  PD 
accepts a transaction dataset as its input and returns the union of all frequent sets as the 
result.   

 

PD ( transaction-set T ) 

 1: D1 = {<t, 1>| t  T }; k=1; 
 2: while (Dk� ) do begin 

 3:      forall  p  Dk do    // counting 

 4:           forall k-itemset s  p.IS do 
 5:                Sup(s|Dk) += p.Occ; 
 6:      decide Lk and ~Lk ; 
    //build Dk+1 

 7:      Dk+1= PD-rebuild(Dk, Lk, ~Lk);   
 8:      k++; 
 9:  end 
 10:Answer =  Lk 

PD-rebuild (Dk, Lk, ~Lk) 
 1: Dk+1 = ;  ht = an empty hash table; 

 2:  forall  p  Dk do  begin 
  3:     // qk, ~qk can be taken from previous counting 

         qk={s|s  p.IS  Lk }; ~qk={t|t  p.IS  ~Lk } 
 4:     u = PD-decompose(p.IS, ~qk); 

 5:     v ={s �����������	
����

�
�

�	������ 
 6:     add <u-v, p.Occ> to Dk+1; 

 7:     forall s  v do 
 8:         if s in ht then ht.s.Occ+= p.Occ; 
 9:         else put <s,p.Occ> to ht; 
 10: end 
 11: Dk+1 = Dk+1  {p  ht}; 

Figure 5. PD  Figure 6. PD-rebuild 
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*  itemset I1 is k-item independent with I2 if the number of their common items is less than k.  
e.g. {1,2,3} and {2,3,4} has a common set of {2,3}, so they are 3(and above)-item independent, 
but not 2-item independent.  This helps avoiding duplicate counts in the hash table after 
decomposition. 
 

5. Performance Comparisons with Apriori 
Our experiments were performed on a 330MHz Pentium PC machine with 128 MB main 
memory, running on Microsoft Windows 2000.  All algorithms were written in Java 
JDK1.2.2.  The test data sets were generated in the same fashion as the IBM Quest 
project [1].  We used three data sets T10.I4.D100K, T20.I6.D100K, and T25.I10.D100K 
to compare PD with the Apriori algorithm. In the datasets, the number of items N was set 
to 1000.  The corruption level [4] for a seed large itemset was fixed, obtained from a 
normal distribution with mean 0.5 and variance 0.1.  In the first dataset, all items in a 
seed large itemset were corruptible while in the latter two datasets half were corruptible.  
In the dataset T10.I4.D100K, the average transaction size |T| and average maximal 
potentially frequent itemset size |I| are set to 10 and 4, respectively, while the number of 
transactions |D| in the dataset is set to 100K. In T20.I6.D100K, |T|=20, |I|=6, |D|=100K. 
In T25.I10.D100K, |T|=25, |I|=10, |D|=100K. 

5.1 Relative Performance 
Figures 7-9 show our test results for datasets T10.I4.D100K, T20.I6.D100K, and 
T25.I10.D100K respectively.  The left graphs show the execution times for different 
minimum support.   We can see that PD is about an order of magnitude faster than 
Apriori for all given minimal support.  The right graphs show execution times for each 
pass given minsup=0.25%.  Initially, execution times are comparable.  In later passes 
when frequent sets become numerous and longer, PD clearly outperforms Apriori. The 
main reason is that Apriori counts candidates support in the original dataset with 100K 
transactions whose average size is |T|; while PD counts in a reduced dataset with about 
5K patterns whose average size is much less than |T|.  
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Figure 7.  Execution times 
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Figure 8.  Execution times 
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Figure 9.  Execution times 
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5.2 Scale-up Experiment 
To test the scalability with the number of 
transactions, experiments on dataset 
T25.I10.D100K are used.  The support 
threshold is set to 0.75%. The results are 
presented in Figure 10.  The time for 
Apriori algorithm linearly increases with 
the number of transactions from 50K to 
250K.  However, the execution time for 
PD doesn’t necessary increase as the 
number of transactions increases.  To 
better understand this point, one can think 
of many people buying the same set of 
items in a supermarket.   
With a larger number of transactions |D|, 
there is a greater chance patterns after 

decomposition can combine with others. Suppose two datasets D  and D  have different 
numbers of transactions with | D ����� �; it is possible after decomposition to have 
|D1 ����1 �� i.e. a much bigger dataset after decomposition may become smaller. This 
means increasing the number of transactions may decrease the time for PD to mine all 
frequent patterns. For this reason we say PD has better scalability than Apriori. 

6. Comparison and Discussion 

6.1 Comparison with FP-tree-based mining 
FP-tree-based mining is reported in [9] to be faster than other recent techniques in 
literature including TreeProjection [18]. It first builds up FP-tree and then recursively 
builds conditional FP-trees to mine frequent patterns.  It has performance gains since it 
uses a compressed data representation and does not need to generate candidate sets. From 
[9] however, the performance improvement over Apriori is sensitive to the support 
threshold.   
 
The main costs in FP-tree-based mining involve recursively building conditional FP-
trees; the number of conditional FP-trees could be in the same order of magnitude as the 
number of frequent itemsets. Secondly, FP-tree is a complicated data structure in terms of 
its large number of pointers. In order to build the conditional FP-tree efficiently, each 
node needs three pointers. Suppose the item, counter, and pointer is encoded in 4 bytes; 
the storage overhead of pointers in a node would be 60%.  Moreover, the performance 
gain of FP-tree-based mining could be greatly reduced if there exist a large number of 
random and short frequent sets since the number of common prefixes are few.  
 
PD, like the FP-tree-based algorithm, uses a compressed data representation to find the 
frequent patterns.  However, it uses a very simple data structure and dynamically shrinks 
the dataset in each pass. As shown in Figure 7-9, performance gains over Apriori are not 
very sensitive to support threshold on our three test datasets.  

Figure 10.  Number of transactions scale-up 
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6.2 Comparison with Pincer-search 
The idea of using a newly discovered infrequent set to split its supersets was 
independently proposed in Pincer-search [4]. It was reported to have performance 
improvements up to several orders of magnitude compared to the best algorithms at that 
time. Pincer-search uses both the bottom-up and top-down searches. Its primary search 
direction is still bottom-up, but a restricted search is also conducted in the top-down 
direction.  
However, there are several differences between PD and Pincer-search. First, the quick-
split algorithm is more efficient than the MFCS-gen in [4] which we called simple-split in 
section 3. Intuitively in quick-split, using a frequency tree saves much computation on 
shared items than using simple split. Second, we use quick-split to decompose a pattern 
of the dataset while Pincer-search uses simple-split to split candidate sets. It addition, it 
discovers only maximal frequent sets and cannot provide enough information to generate 
association rules. 

6.3 Further Improvements 
First, we note that quick-split is not the only technique we can use for pattern 
decomposition. For an itemset s, suppose qk is its frequent k-item sets and ~qk is its 
infrequent k-item sets, if | qk | << | ~qk |, one can follow that it would be more efficient to 
calculate decomposition results from qk rather than from ~qk. For k=2 when infrequent 
sets are often large, we use maximal clique techniques discussed in [4, 10, 11] to get s 
decomposition result from q2. 
 
Second, PD is flexible in that it can be extended in various ways or applied with other 
algorithms.  We can extend PD to output maximal frequent patterns whenever the support 
of a pattern in the dataset is bigger than or equal to minimal support. 

7. Application 
The motivation of our work originates from the problem of finding multi-word 
combinations in a group of medical report documents, where sentences can be viewed as 
transactions and words can be viewed as items.  The problem is to find all multi-word 
combinations that occur at least in 2 sentences of a document.  
 
The work in [17] shows multi-word combinations can more accurately index documents 
better than using single-word indexing terms because they more precisely delineate the 
concepts or content of a domain specific document collection. Note that before mining 
multi-word combinations we need to: 1) stem, i.e. delete suffixes from each word; 2) 
remove stop words [17].  
 
Figure 11(f) shows a sample medical report. Its topic is “Aspirin greatly underused in 
people with heart disease”. After stemming and removing stop words, there are 135 
distinct words. The 34 frequent words are shown in Figure 11(a) in decreasing order of 
frequency.  Frequent 2-word, 3-word, 4-word, 5-word combinations are listed in Figures 
11(b)-(e).   
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Multi-word combinations have interesting properties. For example, for the frequent 1-
word table in Figure 11(a), we may infer that “heart”, “aspirin”, and “patient” are the 
most important concepts in the text since they occur more often than others. When we 
study the frequent 2-word table in Figure 11(b), we see a large number of 2-word 
combinations with “aspirin”, i.e. “aspirin patient”,  “heart aspirin”,  “aspirin use”, 
“aspirin take”, etc. We may infer that this document emphasizes “aspirin” more than any 
other word. Frequent 3-word, 4-word, and 5-word combinations in Figures 11(c)-(e) give 
increasingly better impressions of the central idea. We believe that using multi-word 
combinations is better than using only single words to cluster and summarize text, but we 
are still investigating how to use them effectively.  
 
Using the proposed PD algorithm, we notice a performance improvement of more than 
two orders of magnitude over Apriori when mining multi-word combinations with more 
than 500 frequent words in the document and a multi-word combination size greater than 

heart, aspirin, patient, doct, study, they, risk, prevent, take, diseas, 
stafford, use, too, may, thi, we, attack, ther, intern, bia, gener, peopl, 
problem, call, know, not, pain, some, reduc, medicat, very, becaus, data, 
regul 

aspirin patient, heart aspirin, aspirin use, aspirin take, aspirin risk, 
aspirin study, patient take, patient study, heart diseas, heart patient, 
diseas peopl, prevent too, they not, they ther, they take, doct data, doct 
some, doct too, doct use, doct stafford, aspirin regul, aspirin becaus, 
aspirin reduc, aspirin some, aspirin pain, aspirin not, aspirin attack, 
aspirin too, aspirin diseas, use regul, aspirin they, aspirin doct, stafford 
intern, take not, risk reduc, study take, patient becaus, patient some, 
patient not, patient too, patient use, patient they, patient doct, heart 
regul, heart peopl, heart attack, heart too, heart use, heart stafford, use 
some, heart study, heart doct 

aspirin patient take, aspirin patient study, heart aspirin patient, aspirin 
doct some, aspirin patient some, heart aspirin use, doct use some, aspirin 
take not, aspirin they not, aspirin patient not, aspirin they take, aspirin 
study take, patient doct use, heart aspirin diseas, heart use regul, heart 
aspirin regul, aspirin patient too, heart aspirin attack, aspirin risk reduc, 
patient take not, patient they not, heart patient too, heart aspirin too, 
patient use some, patient doct some, patient they take, patient study take, 
aspirin doct use, heart doct stafford, aspirin patient use, heart diseas 
peopl, aspirin use regul, aspirin patient they, heart patient study, heart 
aspirin study, aspirin patient becaus, aspirin patient doct, aspirin use 
some, they take not 

heart aspirin use regul, aspirin they take not, aspirin patient take not, 
patient doct use some, aspirin patient study take, patient they take not, 
aspirin patient use some, aspirin doct use some, aspirin patient they not, 
aspirin patient they take, aspirin patient doct some, heart aspirin patient 
too, aspirin patient doct use, heart aspirin patient study 

aspirin patient they take not, aspirin patient doct use some 

(a) Frequent 1-word table (total 34) 

(b) Frequent 2-word table (total 52) 

(c) Frequent 3-word table (total 39) 

(d) Frequent 4-word table (total 14) 

(e) Frequent 5-word table (total 2) 

Aspirin greatly underused in people with heart disease 
 
DALLAS (AP) -- Too few heart patients are taking aspirin despite 
its widely known ability to prevent heart attacks, according to a 
study released Monday. 
 
The study, published in the American Heart Association’s journal 
Circulation, found that only 26 percent of patients who had heart 
disease and could have benefited from aspirin took the pain 
reliever. 
 
"This suggests that there’s a substantial number of patients who are 
at higher risk of more problems because they’re not taking aspirin," 
said Dr. Randall Stafford, an internist at Harvard’s Massachusetts 
General Hospital who led the study. "As we all know, this is a very 
inexpensive medication -- very affordable." 
 
The regular use of aspirin has been shown to reduce the risk of 
blood clots that can block an artery and trigger a heart attack. 
Experts say aspirin can also reduce the risk of a stroke and angina, 
or severe chest pain. 
 
Because regular aspirin use can cause some side effects -- such as 
stomach ulcers, internal bleeding and allergic reactions – doctors 
are too often reluctant to prescribe it for heart patients, Stafford 
said. 

 
"There's a bias in medicine toward treatment and within that bias 
we tend to underutilize preventative services -- even if they've 
been clearly proven," said Marty Sullivan, a professor of 
cardiology at Duke University in Durham, N.C. 
 
Stafford's findings were based on 1996 data from 10,942 doctor 
visits by people with heart disease. The study may underestimate 
aspirin use; some doctors may not have reported instances in 
which they recommended patients take over-the-counter 
medications, he said. 
 
He called the data "a wake-up call" to doctors who focus too much 
on acute medical problems and ignore general prevention. 

(f) A sample medical report 

Figure 11. An example of multi-word combination 
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10. The reason could be that words in a sentence occur logically and not at random; and 
long sentences are effectively decomposed to short patterns. 

8. Conclusion 
In this paper, we propose a pattern decomposition algorithm to find frequent patterns for 
large datasets. The PD algorithm dynamically shrinks the dataset in each pass. It is 
efficient because it avoids the costly candidate set generation procedure and greatly saves 
counting time by using reduced datasets. Our experiments show that the PD algorithm 
has an order of magnitude improvement over the Apriori algorithm on standard test data. 
Since PD reduces the dataset, mining time does not necessary increase as the number of 
transactions increases, and experiments do show that PD has better scalability than 
Apriori. We are successfully using PD to mine multi-word combinations from medical 
report documents.   Without an efficient technique, we would otherwise need to limit the 
length of sentences. 
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