
 Page 1 / 13

Using Pattern Decomposition Methods for Finding All
Frequent Patterns in Large Datasets

Abstract
Efficient algorithms to mine frequent patterns are crucial to many tasks in data mining.
Since the Apriori algorithm was proposed in 1994, there have been several methods
proposed to improve its performance. However, most still adopt its candidate set
generation-and-test approach. In addition, many methods do not generate all frequent
patterns, making them inadequate to derive association rules. We propose a pattern
decomposition (PD) algorithm that quickly reduces the size of the dataset on each pass
making it more efficient to mine all frequent patterns in a large dataset. The proposed
algorithm avoids the costly process of candidate set generation and saves a great amount
of counting time with reduced datasets. Our empirical evaluation shows that the
algorithm outperforms Apriori by one order of magnitude and is more scalable.

1. Introduction
A fundamental component in data mining tasks is finding frequent patterns in a given
dataset. Frequent patterns are ones that occur at least a user-given number of times
(minimum support) in the dataset. They allow us to perform essential tasks such as
discovering association relationships among items, correlation, sequential pattern mining,
and much more [7].

Algorithms proposed in [1, 5, 6, 9] find all frequent sets in a dataset. The Apriori
algorithm [1] accomplishes this by employing a bottom-up search. It generates candidate
sets starting at size 2 up to the maximal frequent set size. At each pass, it determines
which candidates are frequent by counting their occurrence. Due to combinatory
explosion, this leads to poor performance when frequent pattern sizes are large. To avoid
this problem, some algorithms output only maximal frequent sets [2, 3, 4]. Pincer-
Search [4] uses a bottom-up search along with top-down pruning. Max-Miner [2] uses a
bottom-up search with a heuristic to try to identify frequent sets as early as possible.
Even though performance improvements may be substantial, maximal frequent sets have
limited use in terms of association rule mining. A complete set of rules cannot be
extracted without support information of frequent subsets.

Almost all previous algorithms use the candidate set generate-and-test approach. FP-tree-
based mining [9] is an exception. It has performance improvements over Apriori since it
uses a compressed data representation and does not need to generate candidate sets.
However, FP-tree-based mining uses a complicated data structure and performance gains
are sensitive to the support threshold.

In this paper we propose an innovative algorithm called PD (Pattern Decomposition) that
generates all frequent sets. It dynamically reduces the dataset in each pass by reducing
the number of transactions and their size to give better performance. Counting time is

 Page 2 / 13

clearly less in a reduced dataset. In addition, the algorithm does not need to generate
candidate sets; the reduced dataset contains only itemsets whose subsets are all frequent.
Intuitively, a transaction that contains infrequent itemsets can be decomposed to smaller
itemsets since together they do not meet the minimum support threshold. The smaller
itemsets after separation are often identical with others and can be combined, thus
reducing the size of the dataset.

The remainder of the paper is organized as follows. In Section 2 we introduce the PD
algorithm. We show details of the algorithm in Section 3. Section 4 gives top-level
algorithms for frequent pattern mining using decomposition. Section 5 compares the
performance between the PD and Apriori algorithms. Section 6 discusses comparison
with other techniques. Section 7 gives an application for PD. Section 8 summarizes the
important points of this paper.

2. Introducing Pattern Decomposition (PD)
We begin by providing some basic definitions. The terms transaction, itemset and item
keep the same meaning as in literature. We define others as follows:

1) A pattern p consists of an itemset and its occurrence, denoted by p.IS and p.Occ
respectively. The size of p is the number of items in its itemset, denoted by p.Len.
For example, if p = <{a,b,d,e,f}, 3>, then p.IS = {a,b,d,e,f}, p.Occ = 3, and p.Len
= 5. For simplicity, we write p = abdef:3.

2) A dataset D is a set of patterns.

 D = { p: p is a pattern }
For example, D0 = {abc:1, abd:2, abe:1, ace:1, ade:1, bce:1, bde:1, cde:1}

Note that the term pattern in the dataset differs from transaction in that a pattern refers to
both an itemset and its occurrence.

 3) The support of an itemset I in a dataset D is

 Sup(I | D) = �p.Occ, for all p D and I p.IS
We call the pair (I, Sup(I | D)) the candidate pattern of D. If q is a candidate
pattern of D, then q.Occ = Sup(q.IS | D). For a given minimum support m, if

q.Occ � m, then q is a frequent pattern of <D, m>.
For example, patterns abd:2, ab:4, abcd:0 are candidate patterns of dataset D0;
abd:3, ace:0, ad:2 are not candidate patterns of D0. The pattern ab:4 is a frequent
pattern of (D0 ,4).

4) A composition pattern is the pair <set of itemsets, occurrence>.
For example, p = <{{a,b,c,d }, {b,c,d,e}}, 3>, w.r.t. p = abcd, bcde:3.

The PD algorithm uses a dataset Dk on the kth pass to determine the frequent set Lk and
the infrequent set ~Lk. Dk is decomposed with ~Lk to determine Dk+1.

 Page 3 / 13

There are two reasons to decompose a pattern if it contains infrequent itemsets: 1) to
remove the infrequent itemsets from the pattern, thus eliminating the need to generate
candidates 2) to reduce the size of the dataset. The decomposed patterns are used to build
the next dataset.

Let us illustrate how a pattern in the dataset is decomposed on a specific pass:

1) Suppose we are given a pattern p= abcdef:1 D1 where a,b,c,d,e L1 and f �L1.
To decompose pattern p with ~L1, we simply delete f from p, leaving us with a
new pattern abcde:1 in D2.

2) Suppose a pattern p= abcde:1 D2 and ae �L2. Since ae cannot occur in a future
frequent set, we decompose p= abcde:1 to a composition pattern q= abcd,bcde:1 by
removing a and e respectively from p.

3) Suppose a pattern p= abcd,bcde:1 D3 and acd �L3. Since acd �abcd, abcd is
decomposed into abc, abd, bcd. Their sizes are less than 4, so they are not
qualified for D4. Itemset bcde does not contain acd, so it remains the same and is
included in D4.

Now let us illustrate the complete process for
mining frequent patterns. In Figure 1, we show
how PD is used to find all frequent patterns in a
given dataset. Suppose the original data set is D1
with minimal support of 2. We first count the
support of all items in D1 to determine L1 and ~L1.
In this case, frequent 1-itemset L1 = {{a}, {b}, {c},
{d}, {e}} and infrequent 1-itemset ~L1 = {{f}, {g},
{h}, {k}}. Then we decompose each pattern in D1

using ~L1 to get D2. In the second pass, we
generate and count all 2-item sets contained in D2 to
determine L2 and ~ L2, shown as in the figure. Then
we decompose each pattern in D2 to get D3. This
continues until we determine D5 from D4, which is
the empty set and we terminate. The final result is
the union of all frequent sets L1 through L4.

We notice that there are three ways to reduce the
size of the dataset denoted by �, �, � in Figure 1.
In �, when patterns after decomposition yield the
same itemset, we combine them by summing their
occurrence. Here, abcg and abc reduce to abc.
Since both their occurrences are 1, the final pattern
is abc:2 in D2.
In �, we remove patterns if their sizes are smaller
than the required size of next dataset. Here,
patterns abc and abd with sizes of 3 cannot be in D4
and are deleted.

D1
1: a b c d e f: 1
2: a b c g: 1
3: a b d h: 1
4: b c d e k: 1
5: a b c: 1 �

D2
1: a b c d e: 1
2: a b c: 2
3: a b d: 1
4: b c d e: 1

D3
1: abcd, bcde: 1
2: a b c: 2
3: a b d: 1
4: b c d e: 1

D4
1: b c d e: 2

L1
IS Occ
{a} 4
{b} 5
{c} 4
{d} 3
{e} 2

~L1
IS Occ
{f} 1
{g} 1
{h} 1
{k} 1

g

L2
IS Occ
{ab} 4
{ac} 3
{ad} 2
{bc} 4
{bd} 3
{be} 2
{cd} 2
{ce} 2
{de} 2

~L2
IS Occ
{ae} 1

�

L3
IS Occ
{abc} 3
{abd} 2
{bcd} 2
{bce} 2
{bde} 2
{cde} 2

~L3
IS Occ
{acd} 1

L4
IS Occ
{bcde} 2

~L4
IS Occ

D5=

�

Figure 1. Pattern Decomposition Example

 Page 4 / 13

In �, when a part of a given pattern has the same itemset with another pattern after
decomposition, we combine them by summing their occurrence. Here, bcde is the itemset
of pattern 4 and part of pattern 1’s itemset after decomposition, so the final pattern is
bcde:2 in D4.

Notably, the algorithm differs fundamentally from previous algorithms in that it avoids
candidate set generation and reduces the dataset on each pass. Counting time is thus also
reduced.

3. The PD-decompose Algorithm
The PD-decompose algorithm is shown in Figure 2.
Here, s is an itemset; ~qk is the infrequent k-itemsets
of s in ~Lk. When k=1, PD-decompose simply
removes the infrequent items in ~q1 from itemset s.
When k���������	
���
����
���� �	��
����� �	��� �	���
the itemsets in ~qk. Then in step 5, we call quick-
split to perform a calculation on the tree. The result
is stored in Sbs. In step 6, we map Sbs back to
itemsets. We give details in the following
paragraphs.

One simple way to decompose the itemset s by an infrequent k-item set t, as explained in
[4], is to replace s by k itemsets, each obtained by removing a single item in t from s. For
example, for s = abcdefgh and t = aef, we decompose s by removing a, e, f respectively to
obtain {bcdefgh, abcdfgh, abcdegh}. We call this method simple-split. When the
infrequent sets are large, simple-split is not efficient. The main objective of PD-decompose
is to decompose an itemset s by its infrequent k itemsets. It consists mainly of two parts:
1) building the frequency tree 2) splitting itemsets using the tree via a method called
quick-split and returning the resulting itemsets.

A frequency tree is a tree structure whose nodes on each
level are ordered by the number of occurrences in the
itemset. Nodes that are the most common at each level
are placed first. We construct a frequency tree from the
itemsets in ~qk. The trees from a set t is built by: 1)

identifying the most common item x in t, t ={i-{x}: i t,

x i}, t ={i: i t, x i} 2) building tree r with x as root
and trees from t as its subtrees 3) building trees from t
as r’s brothers. The quick-split technique is then applied
to the tree to return results of the split.

Example Suppose we are given a pattern p∈ D3 where p.IS = abcdefgh. In the third pass,
we find infrequent 3-itemsets {aef, aeg, aeh, afg, afh, agh, abe, abf, abg, abh, ace, acf,
acg, ach, ade, adf, adg, adh}. First, we build up a frequency tree, as shown in Figure 3.

Figure 2. PD-decompose

PD-decompose(itemset s, ~qk)
 1: if(k=1)
 2: t = remove items in ~qk from s
 3: else {
 4: build ordered frequency tree r;
 5: Sbs = Quick-split(r);
 6: t = mapping Sbs to itemsets;
 }
 7: return t

a b
c
d
f
g
h

b
c
d
g
h

b
c
d
h

b
c
d

e

f

g

h

 Figure 3. Frequency Tree

 Page 5 / 13

The first level consists of only a’s. The second level consists of items e, f, g, and h, with
e occurring the most at its level. The third level is constructed in similar fashion.

To speed up calculation, an itemset is represented by a bitset with 0 and 1 specifying the
absence or presence of an item at a corresponding position respectively. In the above
example, we have 8 items a, b, … , h corresponding to positions 0-7 in a 8-bit bitset. So
p.IS = abcdefgh = {11111111}; abcd = {11110000}; bcdefgh = {01111111}.

Quick-split is given in Figure 4. It performs a
calculation on a frequency tree to get an array
of bitsets, which represent a group of
decomposed itemsets. Splitting is
accomplished by calculating bitset results in
a bottom-up fashion in the tree. We illustrate
how it works with the example below.

Note here that newBS() is a function to get a
new bitset with default value of all 1’s. In our
example, newBS() returns {11111111}.
newBS(~x) returns a bitset of 1’s except at

the position of x i.e. newBS(~b) = {10111111}. We now begin to calculate bitsets in a
bottom-up fashion. Since leaf nodes return empty bitsets, we begin at node e and finish
at a.

• Node e
At node e, there are six subtrees, each returning the empty set �since they are leaves
(step 1). In steps 2 and 3, we must determine the bitset subres[x] (subtree-result[x]) for
each subtree x. For subres[b], � union newBS(~b)={10111111} is still {10111111}.
Similary, subres[c]={11011111}, and so on for each subtree.
At step 4, result is initialized to {11111111}.
Let us denote & as bitwise AND. In steps 5 and 6, we must perform this operation for
each subtree. At the first iteration we have {11111111} & {10111111} = {10111111}.
We take this result and perform this operation for each subres[x]. The final result after
step 6 is {10000000}.
At step 7, we notice that the size (number of 1’s) of result={10000000} is less than the
frequent item size of 3. Therefore the resulting bitset is removed, and �is returned.

• Node f
Simlar to node e, is returned.

• Node g
The result at step 7 is {10001110}. Since its size (4) is greater than the frequent item
size, the result is returned.

• Node h
The result {10001111} is returned.

Quick-split(Tree r) // returns an array of BitSet

 1: if(r is leaf) return ;

 2: forall x r.subs do

 3: subres[x] = Quick-cal(x) �newBS�(~x)
 4: result =newBS();

 5: forall x r.subs do
 6: result = result & subres[x];

 7: remove b result, b.size��k
 8: return result;

 Figure 4. Quick-split algorithm

 Page 6 / 13

• Node a
We can finally compute the final resulting bitset since we have results from a’s subtrees.
Steps 2 and 3

subresult[e] = union newBS(~e) = {11110111}
subresult[f] = union newBS(~f) = {11110111}
subresult[g] = {10001110} union newBS(~g) ={10001110, 11111101}
subresult[h] = {10001111} union newBS(~h) ={ 10001111, 11111110}

Steps 5 and 6

result = {11111111} & subresult[e] = {11110111}
result = {11110111} & subresult[f] = {11110011}
result = {11110011} & subresult[g] = {11110011} & {10001110, 11111101}
 = {10000010, 11110001} ={11110001}
result = {11110001} & subresult[h] = {11110001} & {10001111, 11111110}
 = {10000001, 11110000} ={11110000}

At the final iteration, this result is combined with newBS(~a), giving a final result of
{11110000, 01111111} from Quick-split. We map the bitsets back to itemsets by having
1 represent that the item at a certain position is present and 0 if it is not. The quick split
result is {abcd, bcdefgh}.

4. The PD Algorithm
In this section we will show the PD algorithm that uses PD-decompose to find all
frequent patterns in a transaction dataset T.

PD in Figure 5 is the top-level function that does the counting to determine frequent and
infrequent sets. It calls PD-rebuild in Figure 6 to determine Dk+1 at each pass. PD
accepts a transaction dataset as its input and returns the union of all frequent sets as the
result.

PD (transaction-set T)

 1: D1 = {<t, 1>| t T }; k=1;
 2: while (Dk�) do begin

 3: forall p Dk do // counting

 4: forall k-itemset s p.IS do
 5: Sup(s|Dk) += p.Occ;
 6: decide Lk and ~Lk ;
 //build Dk+1

 7: Dk+1= PD-rebuild(Dk, Lk, ~Lk);
 8: k++;
 9: end
 10:Answer = Lk

PD-rebuild (Dk, Lk, ~Lk)
 1: Dk+1 = ; ht = an empty hash table;

 2: forall p Dk do begin
 3: // qk, ~qk can be taken from previous counting

 qk={s|s p.IS Lk }; ~qk={t|t p.IS ~Lk }
 4: u = PD-decompose(p.IS, ~qk);

 5: v ={s �����������	
����

�
�

�	������
 6: add <u-v, p.Occ> to Dk+1;

 7: forall s v do
 8: if s in ht then ht.s.Occ+= p.Occ;
 9: else put <s,p.Occ> to ht;
 10: end
 11: Dk+1 = Dk+1 {p ht};

Figure 5. PD Figure 6. PD-rebuild

 Page 7 / 13

* itemset I1 is k-item independent with I2 if the number of their common items is less than k.
e.g. {1,2,3} and {2,3,4} has a common set of {2,3}, so they are 3(and above)-item independent,
but not 2-item independent. This helps avoiding duplicate counts in the hash table after
decomposition.

5. Performance Comparisons with Apriori
Our experiments were performed on a 330MHz Pentium PC machine with 128 MB main
memory, running on Microsoft Windows 2000. All algorithms were written in Java
JDK1.2.2. The test data sets were generated in the same fashion as the IBM Quest
project [1]. We used three data sets T10.I4.D100K, T20.I6.D100K, and T25.I10.D100K
to compare PD with the Apriori algorithm. In the datasets, the number of items N was set
to 1000. The corruption level [4] for a seed large itemset was fixed, obtained from a
normal distribution with mean 0.5 and variance 0.1. In the first dataset, all items in a
seed large itemset were corruptible while in the latter two datasets half were corruptible.
In the dataset T10.I4.D100K, the average transaction size |T| and average maximal
potentially frequent itemset size |I| are set to 10 and 4, respectively, while the number of
transactions |D| in the dataset is set to 100K. In T20.I6.D100K, |T|=20, |I|=6, |D|=100K.
In T25.I10.D100K, |T|=25, |I|=10, |D|=100K.

5.1 Relative Performance
Figures 7-9 show our test results for datasets T10.I4.D100K, T20.I6.D100K, and
T25.I10.D100K respectively. The left graphs show the execution times for different
minimum support. We can see that PD is about an order of magnitude faster than
Apriori for all given minimal support. The right graphs show execution times for each
pass given minsup=0.25%. Initially, execution times are comparable. In later passes
when frequent sets become numerous and longer, PD clearly outperforms Apriori. The
main reason is that Apriori counts candidates support in the original dataset with 100K
transactions whose average size is |T|; while PD counts in a reduced dataset with about
5K patterns whose average size is much less than |T|.

 Page 8 / 13

Figure 7. Execution times

T10.I4.D100K

0

10

20

30

40

50

60

70

2nd 3rd 4th 5th 6th 7th 8th 9th

Passes (minsup=0.25%)

T
im

e
(s

)

Apriori

PD

1

10

100

1000

2 1.5 1 0.75 0.5 0.33 0.25

 Minimum Support (%)

T
im

e
(s

)
Apriori

PD

T10.I4.D100K

Figure 8. Execution times

0

400

800

1200

1600

2000

2n
d

4t
h

6t
h

8t
h

10
th

12
th

14
th

Passes (minsup=0.25%)

T
im

e
(s

)
Apriori

PD

T20.I6.D100K

10

100

1000

10000

2 1.5 1 0.75 0.5 0.33 0.25

 Minimum Support (%)

T
im

e
(s

)

Apriori

PD

T20.I6.D100K

Figure 9. Execution times

0

500

1000

1500

2000

2500

2n
d

4t
h

6t
h

8t
h

10
th

12
th

14
th

Passes (minsup=0.25%)

T
im

e
(s

)

Apriori

PD

T25.I10.D100K

10

100

1000

10000

2 1.5 1 0.75 0.5 0.33 0.25

 Minimum Support (%)

T
im

e
(s

)

Apriori

PD

T25.I10.D100K

 Page 9 / 13

5.2 Scale-up Experiment
To test the scalability with the number of
transactions, experiments on dataset
T25.I10.D100K are used. The support
threshold is set to 0.75%. The results are
presented in Figure 10. The time for
Apriori algorithm linearly increases with
the number of transactions from 50K to
250K. However, the execution time for
PD doesn’t necessary increase as the
number of transactions increases. To
better understand this point, one can think
of many people buying the same set of
items in a supermarket.
With a larger number of transactions |D|,
there is a greater chance patterns after

decomposition can combine with others. Suppose two datasets D and D have different
numbers of transactions with | D ����� �; it is possible after decomposition to have
|D1 ����1 �� i.e. a much bigger dataset after decomposition may become smaller. This
means increasing the number of transactions may decrease the time for PD to mine all
frequent patterns. For this reason we say PD has better scalability than Apriori.

6. Comparison and Discussion

6.1 Comparison with FP-tree-based mining
FP-tree-based mining is reported in [9] to be faster than other recent techniques in
literature including TreeProjection [18]. It first builds up FP-tree and then recursively
builds conditional FP-trees to mine frequent patterns. It has performance gains since it
uses a compressed data representation and does not need to generate candidate sets. From
[9] however, the performance improvement over Apriori is sensitive to the support
threshold.

The main costs in FP-tree-based mining involve recursively building conditional FP-
trees; the number of conditional FP-trees could be in the same order of magnitude as the
number of frequent itemsets. Secondly, FP-tree is a complicated data structure in terms of
its large number of pointers. In order to build the conditional FP-tree efficiently, each
node needs three pointers. Suppose the item, counter, and pointer is encoded in 4 bytes;
the storage overhead of pointers in a node would be 60%. Moreover, the performance
gain of FP-tree-based mining could be greatly reduced if there exist a large number of
random and short frequent sets since the number of common prefixes are few.

PD, like the FP-tree-based algorithm, uses a compressed data representation to find the
frequent patterns. However, it uses a very simple data structure and dynamically shrinks
the dataset in each pass. As shown in Figure 7-9, performance gains over Apriori are not
very sensitive to support threshold on our three test datasets.

Figure 10. Number of transactions scale-up

0

2

4

6

8

10

50K 100K 150K 200K 250K

Number of transactions (minsup=0.75%)

R
el

at
iv

e
T

im
e

Apriori

PD-Miner

 Page 10 / 13

6.2 Comparison with Pincer-search
The idea of using a newly discovered infrequent set to split its supersets was
independently proposed in Pincer-search [4]. It was reported to have performance
improvements up to several orders of magnitude compared to the best algorithms at that
time. Pincer-search uses both the bottom-up and top-down searches. Its primary search
direction is still bottom-up, but a restricted search is also conducted in the top-down
direction.
However, there are several differences between PD and Pincer-search. First, the quick-
split algorithm is more efficient than the MFCS-gen in [4] which we called simple-split in
section 3. Intuitively in quick-split, using a frequency tree saves much computation on
shared items than using simple split. Second, we use quick-split to decompose a pattern
of the dataset while Pincer-search uses simple-split to split candidate sets. It addition, it
discovers only maximal frequent sets and cannot provide enough information to generate
association rules.

6.3 Further Improvements
First, we note that quick-split is not the only technique we can use for pattern
decomposition. For an itemset s, suppose qk is its frequent k-item sets and ~qk is its
infrequent k-item sets, if | qk | << | ~qk |, one can follow that it would be more efficient to
calculate decomposition results from qk rather than from ~qk. For k=2 when infrequent
sets are often large, we use maximal clique techniques discussed in [4, 10, 11] to get s
decomposition result from q2.

Second, PD is flexible in that it can be extended in various ways or applied with other
algorithms. We can extend PD to output maximal frequent patterns whenever the support
of a pattern in the dataset is bigger than or equal to minimal support.

7. Application
The motivation of our work originates from the problem of finding multi-word
combinations in a group of medical report documents, where sentences can be viewed as
transactions and words can be viewed as items. The problem is to find all multi-word
combinations that occur at least in 2 sentences of a document.

The work in [17] shows multi-word combinations can more accurately index documents
better than using single-word indexing terms because they more precisely delineate the
concepts or content of a domain specific document collection. Note that before mining
multi-word combinations we need to: 1) stem, i.e. delete suffixes from each word; 2)
remove stop words [17].

Figure 11(f) shows a sample medical report. Its topic is “Aspirin greatly underused in
people with heart disease”. After stemming and removing stop words, there are 135
distinct words. The 34 frequent words are shown in Figure 11(a) in decreasing order of
frequency. Frequent 2-word, 3-word, 4-word, 5-word combinations are listed in Figures
11(b)-(e).

 Page 11 / 13

Multi-word combinations have interesting properties. For example, for the frequent 1-
word table in Figure 11(a), we may infer that “heart”, “aspirin”, and “patient” are the
most important concepts in the text since they occur more often than others. When we
study the frequent 2-word table in Figure 11(b), we see a large number of 2-word
combinations with “aspirin”, i.e. “aspirin patient”, “heart aspirin”, “aspirin use”,
“aspirin take”, etc. We may infer that this document emphasizes “aspirin” more than any
other word. Frequent 3-word, 4-word, and 5-word combinations in Figures 11(c)-(e) give
increasingly better impressions of the central idea. We believe that using multi-word
combinations is better than using only single words to cluster and summarize text, but we
are still investigating how to use them effectively.

Using the proposed PD algorithm, we notice a performance improvement of more than
two orders of magnitude over Apriori when mining multi-word combinations with more
than 500 frequent words in the document and a multi-word combination size greater than

heart, aspirin, patient, doct, study, they, risk, prevent, take, diseas,
stafford, use, too, may, thi, we, attack, ther, intern, bia, gener, peopl,
problem, call, know, not, pain, some, reduc, medicat, very, becaus, data,
regul

aspirin patient, heart aspirin, aspirin use, aspirin take, aspirin risk,
aspirin study, patient take, patient study, heart diseas, heart patient,
diseas peopl, prevent too, they not, they ther, they take, doct data, doct
some, doct too, doct use, doct stafford, aspirin regul, aspirin becaus,
aspirin reduc, aspirin some, aspirin pain, aspirin not, aspirin attack,
aspirin too, aspirin diseas, use regul, aspirin they, aspirin doct, stafford
intern, take not, risk reduc, study take, patient becaus, patient some,
patient not, patient too, patient use, patient they, patient doct, heart
regul, heart peopl, heart attack, heart too, heart use, heart stafford, use
some, heart study, heart doct

aspirin patient take, aspirin patient study, heart aspirin patient, aspirin
doct some, aspirin patient some, heart aspirin use, doct use some, aspirin
take not, aspirin they not, aspirin patient not, aspirin they take, aspirin
study take, patient doct use, heart aspirin diseas, heart use regul, heart
aspirin regul, aspirin patient too, heart aspirin attack, aspirin risk reduc,
patient take not, patient they not, heart patient too, heart aspirin too,
patient use some, patient doct some, patient they take, patient study take,
aspirin doct use, heart doct stafford, aspirin patient use, heart diseas
peopl, aspirin use regul, aspirin patient they, heart patient study, heart
aspirin study, aspirin patient becaus, aspirin patient doct, aspirin use
some, they take not

heart aspirin use regul, aspirin they take not, aspirin patient take not,
patient doct use some, aspirin patient study take, patient they take not,
aspirin patient use some, aspirin doct use some, aspirin patient they not,
aspirin patient they take, aspirin patient doct some, heart aspirin patient
too, aspirin patient doct use, heart aspirin patient study

aspirin patient they take not, aspirin patient doct use some

(a) Frequent 1-word table (total 34)

(b) Frequent 2-word table (total 52)

(c) Frequent 3-word table (total 39)

(d) Frequent 4-word table (total 14)

(e) Frequent 5-word table (total 2)

Aspirin greatly underused in people with heart disease

DALLAS (AP) -- Too few heart patients are taking aspirin despite
its widely known ability to prevent heart attacks, according to a
study released Monday.

The study, published in the American Heart Association’s journal
Circulation, found that only 26 percent of patients who had heart
disease and could have benefited from aspirin took the pain
reliever.

"This suggests that there’s a substantial number of patients who are
at higher risk of more problems because they’re not taking aspirin,"
said Dr. Randall Stafford, an internist at Harvard’s Massachusetts
General Hospital who led the study. "As we all know, this is a very
inexpensive medication -- very affordable."

The regular use of aspirin has been shown to reduce the risk of
blood clots that can block an artery and trigger a heart attack.
Experts say aspirin can also reduce the risk of a stroke and angina,
or severe chest pain.

Because regular aspirin use can cause some side effects -- such as
stomach ulcers, internal bleeding and allergic reactions – doctors
are too often reluctant to prescribe it for heart patients, Stafford
said.

"There's a bias in medicine toward treatment and within that bias
we tend to underutilize preventative services -- even if they've
been clearly proven," said Marty Sullivan, a professor of
cardiology at Duke University in Durham, N.C.

Stafford's findings were based on 1996 data from 10,942 doctor
visits by people with heart disease. The study may underestimate
aspirin use; some doctors may not have reported instances in
which they recommended patients take over-the-counter
medications, he said.

He called the data "a wake-up call" to doctors who focus too much
on acute medical problems and ignore general prevention.

(f) A sample medical report

Figure 11. An example of multi-word combination

 Page 12 / 13

10. The reason could be that words in a sentence occur logically and not at random; and
long sentences are effectively decomposed to short patterns.

8. Conclusion
In this paper, we propose a pattern decomposition algorithm to find frequent patterns for
large datasets. The PD algorithm dynamically shrinks the dataset in each pass. It is
efficient because it avoids the costly candidate set generation procedure and greatly saves
counting time by using reduced datasets. Our experiments show that the PD algorithm
has an order of magnitude improvement over the Apriori algorithm on standard test data.
Since PD reduces the dataset, mining time does not necessary increase as the number of
transactions increases, and experiments do show that PD has better scalability than
Apriori. We are successfully using PD to mine multi-word combinations from medical
report documents. Without an efficient technique, we would otherwise need to limit the
length of sentences.

Acknowledgment
Removed for double blind review.

References
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In

VLDB’94, pp. 487-499.
[2] R. J. Bayardo. Efficiently mining long patterns from databases. In SIGMOD’98, pp.

85-93.
[3] Zaki, M. J.; Parthasarathy, S.; Ogihara, M.; and Li, W. 1997. New Algorithms for

Fast Discovery of Association Rules. In Proc. of the Third Int’l Conf. on Knowledge
Discovery in Databases and Data Mining, 283-286.

[4] Lin, D.-I and Kedem, Z. M. 1998. Pincer-Search: A New Algorithm for Discovering
the Maximum Frequent Set. In Proc. of the Sixth European Conf. on Extending
DatabaseTechnology.

[5] Park, J. S.; Chen, M.-S.; and Yu, P. S. 1996. An Effective Hash Based Algorithm for
Mining Association Rules. In Proc. of the 1995 ACM-SIGMOD Conf. on
Management of Data, 175-186.

[6] Brin, S.; Motwani, R.; Ullman, J.; and Tsur, S. 1997. Dynamic Itemset Counting and
Implication Rules for Market Basket Data. In Proc. of the 1997 ACM-SIGMOD
Conf. On Management of Data, 255-264.

[7] J. Pei, J. Han, and R. Mao, `` CLOSET: An Efficient Algorithm for Mining Frequent
Closed Itemsets (PDF) '', Proc. 2000 ACM-SIGMOD Int. Workshop on Data Mining
and Knowledge Discovery (DMKD'00)}, Dallas, TX, May 2000.

[8] K. Wang, Y. He and J. Han, `` Mining Frequent Itemsets Using Support Constraints '',
Proc. Int. Conf. on on Very Large Data Bases (VLDB'00), Cairo, Egypt, Sept. 2000.

[9] J. Han, J. Pei, and Y. Yin, `` Mining Frequent Patterns without Candidate Generation
(PDF)'', (Slides), Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data
(SIGMOD'00), Dallas, TX, May 2000.

[10] Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M.: `The maximum clique
problem', Handbook of Combinatorial Optimization (Supplement Volume A), in D.-
Z. Du and P. M. Pardalos (eds.). Kluwer Academic Publishers, Boston, MA, 1999.

 Page 13 / 13

[11] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph. In
Communications of the ACM, 16(9):575-577, Sept. 1973.

[12] R. Agarwal, C. Aggarwal, and V. V. V. Prasad. Depth-first generation of large
itemsets for association rules. IBM Tech. Report RC21538, July 1999.

[13] R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for
generation of frequent itemsets. In J. Parallel and Distributed Computing, 2000.

[14] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, "The maximum clique
problem", in D.-Z. Du and P. M. Pardalos (Eds.), Handbook of Combinatorial
Optimization (Supplement Volume A), Kluwer Academic Publishers, Boston, MA,
1999.

[15] Removed for double blind review.
[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, The MIT

Press 1993.
[17] Removed for double blind review.
[18] R.Agarwal, C.Aggarwal, and V. V. V. Prasad. A Tree projection algorithm for
generation of frequent itemsets. In J. Parallel and Distributed Computing, 2000

