
Configurable Indexing and Ranking for XML Information
Retrieval

Shaorong Liu, Qinghua Zou and Wesley W. Chu
UCLA Computer Science Department, Los Angeles, CA, USA 90095

{sliu, zou, wwc}@cs.ucla.edu

ABSTRACT
Indexing and ranking are two key factors for efficient and
effective XML information retrieval. Inappropriate indexing may
result in false negatives and false positives, and improper ranking
may lead to low precisions. In this paper, we propose a
configurable XML information retrieval system, in which users
can configure appropriate index types for XML tags and text
contents. Based on users’ index configurations, the system
transforms XML structures into a compact tree representation,
Ctree, and indexes XML text contents. To support XML ranking,
we propose the concepts of “weighted term frequency” and
“inverted element frequency,” where the weight of a term
depends on its frequency and location within an XML element as
well as its popularity among similar elements in an XML dataset.
We evaluate the effectiveness of our system through extensive
experiments on the INEX 03 dataset and 30 content and structure
(CAS) topics. The experimental results reveal that our system has
significantly high precision at low recall regions and achieves the
highest average precision (0.3309) as compared with 38 official
INEX 03 submissions using the strict evaluation metric.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval models – retrieval models.

General Terms
Algorithms, Experimentation, Ranking

Keywords
XML Information Retrieval, XML Indexing, XML Ranking

1. INTRODUCTION
As the World Wide Web (WWW) is becoming a major means of
disseminating and sharing information, there has been an
exponential increase in the amount of data in web-compliant
formats such as HyperText Markup Language (HTML) and
Extensible Markup Language (XML). XML is essentially a
textual representation of the hierarchical (tree-like) data where a
meaningful piece of data is bounded by matching starting and
ending tags, such as <name> and </name>. Due to its simplicity

and expressiveness, XML has become the most popular format for
information representation and data exchange on the web.

To cope with the tree-like structures in the XML data model, a
great deal of research has been conducted to provide flexible and
effective retrieval methods in the Information Retrieval (IR)
community [2-5, 10, 11]. The INitative for the Evaluation of
XML Retrieval (INEX) [13], for example, was established in
April, 2002 and has prompted XML researchers worldwide to
promote the evaluation of effective XML retrieval.

Compared with traditional IR, XML information retrieval has
introduced many new challenges. For example, traditional IR only
focuses on content only (CO) queries, while XML information
retrieval supports both CO queries and content and structure
(CAS) queries. CAS queries enable users to specify queries more
precisely than traditional CO queries, but introduce new
challenges of indexing XML structures for efficient retrieval. In
addition, traditional IR has only one data type, i.e., plain text,
while XML may contain data of various types, such as plain text,
numbers, date and time. Thus we need multiple content
processing methods and indexing types for the heterogeneous
contents in XML documents to support various search predicates.
Further, not all tags in an XML document are semantically
meaningful [1]. Improper indexing of non-semantic tags can
result in false negatives. Thus, we need a user-configurable
framework to differentiate semantic tags from non-semantic tags,
such as tags used for presentation purposes only. Finally, an XML
query result may not always be an entire document. It can be any
deeply nested XML element, i.e., dynamic document [10].
Therefore, the traditional static document ranking method is no
longer sufficient for ranking XML query results. As a result, we
need a new ranking method.

In this paper, we address the above challenges as follows:

First, to support efficient processing of CAS queries, we
transform XML document trees into a compact indexing tree,
Ctree. Ctree provides both path summaries and detailed element-
to-element relationships in the XML document trees. Thus it can
answer most structured queries very efficiently without accessing
the original XML documents.

Second, to support various search predicates over XML
documents with heterogeneous tags and contents, we propose a
configurable XML information retrieval system. In this system,
XML documents are first “scanned” to collect structure and
content statistics for each group of similar elements. These
statistics are then stored in spreadsheets and presented to users.
Users can then select tag index types, content processing
operations and index types for each group of similar elements
based on the statistics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’04, July 25–29, 2004, Sheffield, South Yorkshire, UK.
Copyright 2004 ACM 1-58113-881-4/04/0007…$5.00.

88

Third, to support the dynamic document concept in XML, we
extend the classic Vector Space Model (VSM) [9] in traditional
IR to the XML model and propose the concepts of “weighted term
frequency” and “inverted element frequency,” where the weight
of a term depends on its frequency, popularity and its location in
an XML document.

To empirically evaluate the effectiveness of our system, we have
conducted experiments on the INEX 03 dataset with all the 30
CAS topics. Our experimental results reveal that our system has
significantly high precision at low recall regions and has the
highest average precision (0.3309) compared with all the 38
official INEX submissions using the strict evaluation metric.

The rest of the paper is organized as follows. In section 2 we
introduce the XML data model and Ctree. Section 3 presents the
configurable indexing framework as well as the five value index
types. In sections 4 and 5, we describe our query processing and
ranking methods. Section 6 contains the experimental studies that
evaluate the effectiveness of our system. Section 7 reviews related
work. We conclude our work in section 8.

2. BACKGROUND
2.1 XML data model
We model an XML document as an ordered, labeled tree where
each element (attribute) is represented as a node and each
element-to-subelement (or element-to-attribute) relationship is
represented as an edge between the corresponding nodes. We
assume that each node is a triple (id, label, <value>), where id
uniquely identifies the node, label is the name of the
corresponding element or attribute, and value is the corresponding
element’s text content or attribute’s value. Value is optional
because not every element has a text content. We consider an
attribute as a sub-element of an element and a reference IDREF as
a special type of value.
For example, Figure 1 shows a sample XML document tree with
25 nodes numbered from 0 to 24. Each circle represents a node
with the node id inside the circle and label beside the circle. To
distinguish text contents from element (attribute) nodes, the value
of a node is linked to the node by a dotted line.
We now introduce the definitions for label path and equivalent
nodes which are useful for describing Ctree in Section 2.2.

Definition 1 (Label Path) A label path for a node v in an XML
document tree is a list of dot-separated labels of the nodes on the
path from the root node to v.

For example, node 12 in Figure 1 can be reached from the root
node through the path: node 0 10 11 12. Thus the label path
for node 12 is articles.article.fm.yr.

Definition 2 (Equivalent Nodes) Two nodes in an XML
document tree are equivalent if their label paths are the same.
For example, nodes 3 and 12 in Figure 1 are equivalent because
their label paths are both articles.article.fm.yr.

2.2 Ctree
Indexing the structures of XML documents is very important for
efficient processing of structured XML queries. Many current
indexing methods create indices only on the predefined nodes
(e.g., [4]), such as leaf level nodes. Such approaches are simple
and efficient, but sometimes may not be flexible enough to
support queries with any structure constraint and to retrieve nodes
at any level.
To overcome this problem, we transform an XML document tree
D into a compact indexing tree, Ctree [12], which is a two-level
bidirectional tree: group level and element level. The group level
provides path summaries for D and contains edges from parent
groups to their child groups. The element level provides detailed
element-to-element relationships and has links pointing from
child elements to their corresponding parent elements.
Similar to most path index approaches (e.g., DataGuide [6]), the
first step in Ctree construction is to cluster equivalent nodes in D
into groups. There is an edge linking from group A to group B if
the label path of group A is the longest prefix of that of group B.
For example, the path summary for the XML document tree
(Figure 1) is shown in Figure 2a. Each group is represented as a
dotted box with its label above the box. The numbers inside each
dotted box are the node identifiers from Figure 1. For instance,
nodes 3, 12, and 20 in Figure 1 share the same label path and thus
they are in the same group yr in Figure 2a.
As shown in past research, such path summaries greatly facilitate
the evaluation of simple path expressions (i.e., path expressions
with a single branch and without filters) by searching only
relevant parts of the tree. For example, for a query (Q1) /articles/
article/bdy/sec, the path summary in Figure 2a implies that all the
nodes in group sec are the answers since their label paths match
Q1. Such path summaries, however, are insufficient for answering
non-simple path expressions due to their incompleteness. They do
not preserve the hierarchical relationships among individual nodes
in an XML document tree. For example, with the path summary
in Figure 2a, we cannot determine the hierarchical relationships

…XML…

articles0

1 article 10 article 18 article

2

3 4 yr kwd

fm 5

6 sec

2000 … XML,
information
retrieval…

XML…ranking

8 sec

…ranking…

7

12

11

9 para para 1999

yr

13

14

15

…ranking…

bdy

sec

para

16

17

…XML
information
retrieval…

fm bm

ref

19

20 21 yr kwd

fm

1998 …ranking…

22

23

24

bdy

sec

para

bdy

Figure 1: An example of an XML document tree.

89

between node 19 in group fm and node 21 in group kwd. Such
relationships, however, are important in answering non-simple
path expressions. For example, for a query (Q2): /articles/article
/fm[kwd], the path summaries in Figure 2a indicate that nodes in
group fm are candidate answers. We cannot, however, determine
which node in group fm can answer Q2 unless the hierarchical
relationships between the individual nodes in group fm and those
in group kwd are provided.
Therefore, the second step in Ctree construction is to order the
nodes in a group into a list by their corresponding preorders in D.
We shall call the nodes in a Ctree group as elements for
differentiating them from the nodes on an XML document tree.
The elements in a group list are accessible by their corresponding
indexes. The index for an element e in a group g is its relative
order in g. Instead of storing node identifiers in each group, Ctree
stores the indexes of these elements’ corresponding parent
elements in the parent group of g. Since the root element in the
root group has no parent, we set the value in the root group to -1.
Figure 2b shows the corresponding Ctree for the XML document
tree in Figure 1, where each box represents a group with its id and
label above the box. The numbers inside each box are the values
in the group list. For simplicity, we use the notation g:e to
represent an element in group g with index e. For example, nodes
9 and 8 in the path summaries (Figure 2a) correspond to the
elements g:e = 7:1 and g:e = 6:1 in the Ctree (Figure 2b). The
Ctree in Figure 2b implies that 6:1 is the parent of 7:1 since the
value of 7:1 is 1 and the parent group of group 7 is group 6.
With the Ctree in Figure 2b, we can answer not only simple but
also non-simple path expressions very efficiently without
accessing the original XML document tree. For example, the
values in group kwd imply that elements g:e = 2:0 and g:e = 2:2
are the answers for Q2.

3. INDEX CONFIGURATION

3.1 Motivation
To illustrate the importance of index configurations in supporting
various search predicates over XML documents, we present a
fragment of a sample XML article in Figure 3. The example is
simple as compared with most XML scientific articles, but has
many characteristics of XML in document-processing
applications, including semantic (e.g., <article>) and non-
semantic tags (such as presentation-purpose tags, e.g., <scp>),

and annotations (tags and their embedding text) about notations,
corrections or clarifications (e.g., <note> ...</note>).

To illustrate how matching keyword and phrases interacts with
XML tags and annotations, we consider the following two
examples. Suppose a user is interested in articles about
“knowledge,” the article in Figure 3 is relevant since its title
contains that word. However, if we do not ignore the tags <scp>
and </scp>, the article in Figure 3 will not be returned because
<scp> separates “K” from “NOWLEDGE”. For another example,
suppose that a user wants to find articles with a section containing
the phrase “information integration and exchange,” the article will
be judged as irrelevant if we do not ignore the annotation element
note. Therefore, to support keyword and phrase searching in XML
documents, we should allow users to ignore non-semantic tags
and annotations during the indexing.
Besides tag heterogeneity, XML document contents also contain
data of various types including plain texts, numbers, dates and
times. The heterogeneous contents in an XML document require
diverse value processing operations before indexing and multiple
value index types. Inappropriate processing operations can lead to
undesirable results. For example, removing stop words and
stemming non-stop words are applicable to the text contents of an
article’s title, body or section, but not to the text content of an
article’s author. For example, if we stem the text between
<author> and </author> in Line 2, the element author will be
returned as relevant to a CO query “web, internet” since the stem
of “webb,” which is text content of element author, is “web.” To
avoid such undesirable results, we shall allow users to configure
proper content processing operations before indexing.
Therefore, we propose a configurable index framework that
allows a user to specify tag index types, content processing
operations and content index types.

3.2 Index configuration framework
3.2.1 System architecture
Figure 4 shows the architecture for the configurable XML
information retrieval system, which performs two types of
functions: document indexing and query evaluation.
Indexes for a collection of XML documents can be built in the
following three steps. First, XML documents are sent to a Scan
module to collect statistics about the structure and content
characteristics of the XML documents. These statistics are then
stored in an Excel spreadsheet and presented to a user. Second,
based on the statistics, a user configures index options for each
group of equivalent nodes. Finally, based on the index
configurations, the Index Builder correspondingly constructs a

Figure 2: The path summary and the Ctree for the XML
document tree in Figure 1.

(a) Path summary (b) Ctree

0

1, 10, 18

2, 11, 19 5, 13, 22 16

7, 9, 15, 24

6,8,14,23 17 3,12,20 4,21

fm bdy

 sec

para 0 1 2 3

yr kwd

 bm

 article

articles

0, 0, 0

0, 1, 2 0, 1, 2 1

0, 1, 2, 3

0,0,1,2 0 0,1,2 0, 2

2: fm 5: bdy

6: sec

7: para

3: yr 4: kwd

8: bm

1: article

0: articles -1

9: ref

Indexes

01 <article>
02 <author> Webb </author>
03 <title> A K<scp>NOWLEDGE</scp> Based Web Data
04. Integration and Exchange </title>
05. <year> 2003 </year>
06. <pages> 180 -200 </pages>
07. <body>
08. <sec>The problem of information integration
09. <note>see reference 2</note> and exchange …
10. </sec>
11. </body> </article>

Figure 3: An example XML document.

90

Ctree and builds value indexes. For complex datasets, such as the
INEX dataset, a user may not be familiar with the dataset
characteristics even with the collected statistics. In this case, a
user can either use the default index options or leverage on the
index configurations provided by a domain expert.
The Query Evaluation evaluates the incoming query based on the
indexes, and then ranks the results based on users’ ranking
configurations to obtain a list of ranked results.

3.2.2 Index configuration
Many XML datasets, such as the INEX dataset, do not have
schema with specific data types for each element and attribute. To
facilitate index configurations for such datasets, we use a Scan
module to collect statistics of a dataset while parsing it. Since
equivalent nodes in XML document trees share similar
characteristics, the Scan module collects the structure and content
statistics for each group of equivalent nodes.
With the collected statistics, a user can specify a tag index type, a
set of value processing operations and a value index type for each
group of equivalent nodes, as described in the following:

• Tag Index Type: Index or No Index. The tag index type
allows users to indicate whether to keep or ignore the tag
during indexing.

• Value Processing Operations: 1)TokenType: whether to
select digit, word, mixed or all tokens in the value for
indexing; 2) IsStopping: whether to remove stop words; 3)
IsStemming: whether to use stemming functions; and 4)
IsToLower: whether to transform a text to its lower cases.

• Value Index Type: 1) No Index; 2) Invert; 3) Number; 4)
DTime; 5) List or 6) ID. No Index means that the values
for the nodes in this group will be ignored during indexing.
The latter five value index types will be explained in
Section 3.3.

If an XML dataset contains too many groups of equivalent nodes,
such as the INEX dataset which contains 13262 distinct groups,
then its configuration can be based on each group of nodes with
the same label. For instance, there are only 204 distinct labels in
the INEX dataset.

3.3 Value index types
The heterogeneous contents in XML documents require multiple
value index types. Thus we propose five value index types: Invert,
List, Number, DTime and ID, defined as follows, to support values
of common XML data types, such as xs:string and xs:decimal, as
defined in the XML schema and some special data values such as
values for IDREF attributes.

• Invert Type: treats a value as a bag of tokens and maps a
token to a list of elements.

• List Type: treats a value as a whole without further breaking
it into tokens and maps a value to a list of elements.

• Number Type: maps a numeric value to a list of elements.
Furthermore, a B+-index is created on top of (number,
element) pairs to support numerical range searches.

• DTime Type: maps a value of date or time type to a list of
elements. Similarly, we create a B+-index on (time, element)
pairs to support range searches.

• ID Type: indexes IDREF attribute values and maps a
referring element to a referred element.

Each value index type supports a common search function:
 List search (value, gid?)
That is, given a value predicate and a group identifier, the search
function returns a list of elements satisfying the value predicate in
the group. If the group identifier is not specified, the search
function returns a list of elements in any group that satisfy the
search predicate.

4. QUERY EVALUATION

4.1 Query format & model
We use the INEX 03 query format [7], which is based on a subset
of XPath path expressions [14] with an addition of an about
predicate. A path expression contains a sequence of nodes
connected with axes and some nodes may have value predicates,
i.e., filters. The last node in a path expression is called a target
node and its matches are retuned as query results. The syntax of
an about predicate is about(path, string), which specifies certain
contexts (i.e., path) to be about a specific content (i.e., string).
The string parameter may contain a set of terms separated by
spaces, where a term is either a single word or a phrase in double
quotes. Furthermore, query term modifiers, such as “+” and “-,”
are introduced to facilitate users to specify preferences and
rejections over certain terms. For example, suppose that a user is
interested in articles about XML and information retrieval,
published between 1999 and 2000, and with sections preferred to
be about ranking, the query can be formulated as Q3:
//article[(./fm//yr = '2000' OR ./fm//yr = '1999') AND about(.,
‘XML “Information Retrieval”’)]//sec[about(., ‘+ranking’)].
Similar to the tree
representation of
XML documents,
we also represent
queries as trees:
nodes in path
expressions become
the nodes in trees.
Axes are represented as edges between the corresponding nodes

Figure 4: The XML information retrieval system architecture.

Scan

Index Builder

Index
Configuration

Spreadsheet

Dataset

Ctree Invert

List DTime Number

ID

Ctree-based Index

Query
Evaluation

Query

Sorted
Results

Ranking
Configuration

Index
Manager

Document Indexing Query Processing & Ranking

 1999 - 2000

article

fm sec

Figure 5: The tree representation of Q3.

year

XML,
“information
retrieval” +ranking

91

with a single arrow for a “/” axis and a double arrow for a “//”
axis. Filters are represented as value predicates on the
corresponding nodes. To distinguish about predicates from other
normal XPath value predicates, about predicates are linked to
their corresponding nodes with double dotted lines, while normal
value predicates are linked to their corresponding nodes with
single dotted lines. Finally, a target node is emphasized with a
box. For example, Figure 5 illustrates the tree representation of Q3.

4.2 Query processing
After transforming an XML query into a tree representation, we
can evaluate the query based on Ctree structure and value indexes
in the following three steps as shown in Figure 6.

First, the algorithm locates a set of frames. A frame F is a set of
Ctree groups such that each group in F matches a node in the
query tree TQ and that these groups as a whole match the query’s
tree structure (Line 2). For example, there is one frame consisted
of groups (1, 2, 3, 6) in the Ctree (Figure 2b) for Q3, where (1, 2,
3, 6) matches the query nodes (article, fm, year, sec) respectively.
Second, for each frame F, the algorithm evaluates each value
predicate on the elements in a Ctree group that is assigned to a
query node with the corresponding value predicate (Line 4).
Normal value predicates are processed in a Boolean way. For
example, for the predicate 1999 ≤ //article/fm/year ≤ 2000 in Q3,
the elements in group 3 are either relevant or non-relevant.
Irrelevant elements are pruned directly. An about predicate,
however, is processed in a non-Boolean way and we will discuss
its evaluation in detail in Section 5.
Third, for each frame F, the algorithm combines the evaluation
results for each query node in the query based on the element-to-
element relationships in a Ctree. The results from F are sorted
into a ranked list, denoted as R’ (Line 5).
Finally, the results from each frame are merged and ranked based
on their retrieval status value (RSV) (Line 6). A RSV indicates a
result’s relevancy to the query. Line 7 outputs a ranked result list.

5. RESULT RANKING
In this section, we present how to calculate the RSVs for query
results from a given frame. We first present how to calculate the
RSVs for elements from a single about predicate and then discuss
how to combine the RSVs from multiple about predicates.
Before presenting our ranking scheme, we first define two user
configurable parameters as follows:

()xσ : weight for a label x. ∀x, σ(x) ≥ 0 and the default value is 1.

()mθ : weight for a query term modifier m (“”, “+”, or “-”). θ(“+”)
≥ θ(“”) > 0 and θ(“”) > θ(“-”).

5.1 Weighted term frequency
Due to the hierarchical nature of XML, the content of an element
e is also considered part of the content of any e’s ancestor element.
This introduces the challenge of how to calculate the relevancy of
a given term t within a certain element e, where t could appear in
any element nested within e. For example, for the about(article,
‘XML “information retrieval”’) predicate in Q3, the term ‘XML’
can be in a keyword, paragraph or reference part of an article. The
occurrences of a term t in different sub-elements of e have
different importance. For example,
‘XML’ in a keyword part of an
article is more important than an
“XML” in a paragraph, which in
turn is more important than an
“XML” in a reference part. As a
result, it may be inaccurate if we
simply count the frequency of a
term t within element e without
considering the locations of term t
in element e.
Therefore we introduce the concept of “weighted term
frequency,” which assigns high weights to terms in important
locations and low weights to terms in unimportant locations. For a
given element e, we can identify the location of a specific sub-
element e’ containing a term t by the “relative” label path from e
to e’. For example, in Figure 7, under the element article, the term
‘XML’ appears once, twice and once in the relative paths fm.kwd,
bdy.sec.para and bm.ref respectively.
Since the number of distinct locations in an XML dataset can be
very large, it is laborious to assign weights for all possible
locations. The number of distinct labels, however, is usually small.
Therefore we can estimate the weight (or importance) of a
location (relative label path) l = x1…xs by a function of σ(xi) (1 ≤
i ≤ s), f(σ(x1), σ(x2), …, σ(xs)), with the following properties:

1) f(σ(x1), σ(x2), …, σ(xs)) is a monotone increasing
function with regard to any σ(xi) (1 ≤ i ≤ n).

2) f(σ(x1), σ(x2), …, σ(xs)) = 0 if any σ(xi) = 0 (1 ≤ i ≤ n).
The first property is straightforward and the second property is
due to the semantics of σ(xi) = 0, which implies that a user is not
interested in terms occurring under element xi. Therefore any term
in the text content of either element xi or element xj (i ≤ j ≤ n) is
not relevant.

One straightforward implementation of f(σ(x1), σ(x2), …, σ(xs)) is
to estimate the weight of a relative label path l as the product of
the weights of the labels in l:

() ()
1

s
w l xii

σ∏=
=

, where xi is a label of l

For an element e in a given Ctree group g, where g is assigned to
a query node associated with an about predicate with a term t, let
tf(g, e, li, t) be the term frequency of t in a location li under
element e in group g. We can estimate the weighted term
frequency of term t within element e in a group g, denoted as tfw(g,
e, t), as follows:

Figure 6: The Ctree-based query processing algorithm.

Input: T, a Ctree with value index
 TQ, a query tree
Output: R, a ranked list of elements
1 An empty list R
2 Locate frames: Ctree groups query nodes
3 For each frame F
4 Evaluate value predicates;
5 Combine results for each query node to a ranked list, R’;
6 Merge R’ to R;
7 Return R

Figure 7: A weighted
term frequency example.

1

 XML

fm

kwd 5

 XML

bm

ref

article

 XML… XML

sec

para

bdy 2

1

1

1

0

92

(, ,) () (, , ,)
1

r
f g e t w l tf g e l tw j jj

t ∑= ⋅
=

where r is the number of locations under element e in group g
containing term t.
For example, in Figure 7, the weights for each label are shown
beside the label. For instance, σ(kwd) =5. The weights for the
relative label paths fm.kwd, bdy.sec.para, and bm.ref are 5*1=5,
2*1*1=2 and 0*1=0 respectively; and the frequencies of term
“XML” in fm.kwd, bdy.sec.para, and bm.ref are 1, 2 and 1
respectively. Therefore, the weighted term frequency of ‘XML’ in
element article is 5*1+2*2+0*1=9.

5.2 Inverted element frequency
Terms with different popularities in XML elements have varying
degrees of discriminative power. It is well established in IR that a
term frequency (tf) needs to be adjusted by a factor of inverse
document frequency (idf). A very popular term with a small idf
has less discriminative power than a rare tem with a large idf.
Similarly, we propose the concept of “inverted element
frequency,” i.e., ief, to distinguish query terms in an about
predicate with different discriminative powers. The inverted
element frequency of term t within a specific group g can be
measured as follows:

| |
(,) log()| ()|

Egief g t E tg
=

where |Eg| is the total number of elements in group g assigned to a
query node with an about predicate containing term t. |Eg(t)| is the
number of elements in group g containing t.

5.3 RSV from a single about predicate
Query terms with different modifiers in an about predicate are of
different importance from a user’s point of view. Thus, we
introduce a user-configurable ranking parameter θ(m) that defines
the weight for a query term modifier m. In general, the
relationships among θ(“+”), θ(“”) and θ(“-”) shall satisfy: 1)
θ(“+”) ≥ θ(“”) > 0; and 2) θ(“”) > θ(“”). That is, a term prefixed
with “+” is more important than, or at least as important as, a term
without any prefixing modifier, which in turn is more important
than a term with a “-.” For example, θ(“”) = 1, θ(“+”) = 2, and
θ(“-“) = 0.
With the introduction of weighted term frequency, inverted
element frequency and term modifier weight, we are now ready to
define the RSV of an element e in a group g for an about
predicate α as follows:

(, ,) ((()) (, ,) (,), 0)RSV g e Max m t tf g e t ief g twk k ktk
θ∑α = ⋅ ⋅

∈α

where tk is a term in α and θ(m(tk)) is the weight for the query
term modifier associated with term tk. Since users might assign a
negative value for θ(“-”), which may lead to negative RSVs, we
compare the weighted sum of tfw*ief with 0 and select the max of
the two to ensure that RSV(g, e, α) is always non-negative.

5.4 RSVs from multiple about predicates
Since a query Q may contain multiple about predicates, we need
to merge the RSVs from each about predicate into the elements in

the Ctree group assigned to the target node in Q. For example, Q3
in Figure 5 has two about predicates: α1 (about(article, ‘XML
“information retrieval”’)) and α2 (about(sec, +‘ranking’)). After
processing α1 and α2, the elements in group article and group sec
are associated with a list RSVs as shown in Figure 8a. For
example, the RSV for element 1:0 to α1 is 7, i.e., RSV(1, 0, α1) =7.

Depending on the location of the target node in the query tree,
RSVs are either merged from a descent group to an ancestor
group or from an ancestor group to a descendant group. Thus,
there are two cases to consider:
1) Merging results from a descendant group to an ancestor group
If the results are merged from a descendant group gD containing
elements relevant to an about predicate αi to an ancestor group gA
containing elements relevant to another about predicate αj, the
RSVs of elements in group gA are updated according to:

(, ,) (, ,) (, ,)
1i j j i

n
RSV g e RSV g e RSV g eD DA A A A l l

∑α &α = α + α
=

where eA is an element in gA,
l

eD is an element in group gD and

also a descendant of eA, and n is the number of elements in group
gD that are descendant of eA.
For example, suppose that article is the target node in Q3 instead,
according to the formula above, the updated RSVs for the
elements in group 1 are shown in Figure 8b. For instance, RSV(1,
0, α1&α2) = RSV(1, 0, α2) + RSV(6, 0, α1) + RSV(6, 1, α1) =
7+2+2 = 11 because elements 6:0 and 6:1 are descendants of
element 1:0.
2) Merging results from an ancestor group to a descendant group
If the results are merged from an ancestor group gA containing
elements relevant to an about predicate αj to a descendant group
gD containing elements relevant to another about predicate αi, the
RSVs of elements in group gD are updated according to:

(, ,) (, ,) (, ,)i j i jRSV g e RSV g e RSV g eD D D D A Aα &α = α + α

where element eD in group gD is a descendant of element eA in
group gA.
For example, since sec is the target node in Q3, according to the
formula above, the updated RSVs for the elements in group 6 are
shown in Figure 8c. For instance, RSV(6, 0, α1&α2)= RSV(6, 0,
α1) + RSV(1, 0, α2) = 2+7 = 9 because element 1:0 is an ancestor
of element 6:0.

1: article
0, 0, 0 7 1 0

0, 0, 1, 2 2 2 2 0
0 1 2 3

0 1 2

6: sec

RSVs

RSVs

1: article
0, 0, 0 11 3 0

0 1 2

RSVs

0, 0, 1, 2 9 9 3 0
0 1 2 3

6: sec RSVs

(a) RSVs for each about
predicates before merging. (c) The merged RSVs if

sec is the target node.

(b) The merged RSVs if
article is the target node.

Figure 8: An example of merging multiple RSVs to the
elements in the group assigned to the target query node.

93

6. EXPERIMENTAL STUDIES
We used the INEX 03 dataset and CAS topics to evaluate the
effectiveness of our configurable XML information retrieval
system. For the INEX 03 CAS topics, there are two tasks: strict
CAS (SCAS) and vague CAS (VCAS). A query’s structure must
be strictly matched in SCAS, while it can be vaguely matched in
VCAS. In this paper, we only focus on SCAS task. We
implemented the configurable XML information retrieval system
in C# and ran the experiments on a 2.8GHz PC with 1G of RAM
running Windows XP.

6.1 Runs
We have conducted a set of experiments with the same set of
index configurations but different weight configurations. Due to
space limit, the indexing configurations used for the experiments
can be downloaded from our website [15]. Also we only list two
weight configurations A and B in Table 1. Tags indexed but not
listed below are assigned with the default weight 1. The main
difference between configuration A and B is that the weight for
the tag bm is 0 in B, which prunes articles with only references or
appendixes about topic of interest.

 bm Fm bdy atl abs kwd st
A 1 3 1 3 1 2 3
B 0 5 1 5 1 3 5

We tested three runs with the above two tag weight configurations
and the same set of query term modifier weights: θ(“+”)=1.8 and
θ(“”)=1. Document components containing query terms prefixed
with “-” in a query are judged as irrelevant to the query. All the
precision/recall curves are plotted with the INEX on-line tool.

1. SCAS-65-A: This run evaluated CAS topic 65 with
configuration A and the results are shown in Figure 9a.

2. SCAS-65-B: This run evaluated CAS topic 65 with
configuration B and the results are shown in Figure 9b.

3. SCAS-ALL: This run evaluated all the 30 CAS topics with
configuration B and the results are shown in Figure 10.

6.2 Results evaluation and analysis
To evaluate the relevancy of an XML document component to a
topic, the INEX 03 working group proposed a two-dimension
relevancy metric (exhaustiveness, specificity). Two methods are
proposed to quantize the metric into a single relevancy value
between 0 and 1: strict and generalized quantization [8]. In a strict
quantization, the relevancy metric is quantized to be either 1 or 0.
In a generalized quantization, the relevancy metric is quantized to
be 0, 0.25, 0.5, 0.75 or 1.
The average precision/recall curves for CAS topic 65 with the tag
weight configurations A and B using the strict quantization are
illustrated in Figure 9a and 9b respectively. We notice that the
average precision for CAS topic 65 is quite high either with
configuration A or B. Furthermore, our system has a very high
precision at low recall regions. For example, with configuration A,
the precision is 1 when the recall is less than 0.318; and with
configuration B, the precision stays at 1 until the recall exceeds
0.518. From Figure 9, we can see that properly adjusting ranking
configurations can significantly improve the precision/recall.

Figure 10 illustrates the average precision/recall curves for all the
30 CAS topics. The average precision for all 30 the CAS topics,
0.3309, is notably high and is about 4% improvement over the top
1 (0.3812) of all the 38 official INEX 03 submissions. More
importantly, from Figure 10c, we can see that using the strict
quantization, our system has the highest precision when recall is
less than 0.5 as compared with all the 38 official INEX 03
submissions, which implies that our system is able to return the
most relevant answers sooner than other systems. This is a very
important feature since most users typically have only enough
patience to browse the top few returned answers.

(a) (b)

(c) (d)
Figure 10: The average precision/recall curves of SCAS-ALL

using both strict and generalized quantization.

Figure 9: The precision/recall curves of SCAS-65-A and
SCAS-65-B using strict quantization.

(b) (a)

Table 1 Tag weight configurations A and B.

94

By comparing Figure 10a and 10b, we note that our system
performs better with the strict evaluation metric than with the
generalized evaluation metric. This is because our system returns
only a small number of results for each topic due to the strict
implementation of an “AND” operator. For example, our system
will not judge any article containing only ‘XML’ or only
“information retrieval” as relevant to Q3. Therefore, the number
of our results for most CAS topics is less than 200 and many of
them are even less than 50, while most other systems return about
1500 results for each CAS topic. One way to improve the
precision with the generalized evaluation metric is to increase the
result size by relaxing the strict interpretation of an “AND”
operator.

7. RELATED WORK
There have been a number of studies investigating XML
information retrieval [2-5, 10, 11]. Many of these studies can be
classified into the following three categories: XML retrieval
language, indexing, and ranking. We focus our review of related
work on these three areas.
XML Retrieval Language
XIRQL [4] is the first full-functional XML information retrieval
language proposed. It supports weighting and ranking, relevance-
oriented searches, data types with vague predicates and semantic
relativism. XIRQL is powerful but not simple enough for new
users. To overcome this problem, [3] proposed the concept of
XML fragments as queries. It is much simpler and allows users to
specify term preferences and rejections.
XML Indexing
Most work on XML indexing extend the idea of “inverted index”
for content indexing in traditional IR to support both content and
structure indexing in the XML model. For example, in [4], nodes
of predefined categories are indexed and associated with term
statistics. Users are allowed to search at the level of indexing
nodes or nodes that are of hierarchical combination of indexing
nodes. [5] generalized [4] to support the retrieval of nodes at any
granularity level by combining the statistics of those predefined
nodes at query time. In [3] XML document collections are split
into small “documents” based on the predefined elements. A
vector of (term, context) pairs is extracted from each document.
Indexes are created on these (term, context) pairs associated with
statistics for ranking calculation.
XML Ranking
Many ranking approaches proposed so far leverage on the mature
ranking models developed in traditional IR and extend them to the
XML model. For example, in [4] a novel “augmentation”
technique is proposed to retrieve nodes that are hierarchical
combinations of indexing nodes. During the “augmentation,” the
statistics and inverted lists of indexing nodes are propagated
upward in the document tree with lower term weights. [3] extends
the traditional VSM where each unit is a single term to the XML
model with each pair (term, context) as a basic unit.

8. CONCLUSION AND OUTLOOK
In this paper, we proposed a configurable XML information
retrieval system, which allows users to configure proper index
types for tags in an XML document to avoid false negatives. It
also enables users to select appropriate content processing

operations and index types for the heterogeneous XML text
contents to avoid false positives. Further, we proposed a new
XML ranking methodology based on the concepts of “weighted
term frequency” and “inverted element frequency,” where the
weight of a term depends on its frequency and location in an
XML element as well as its popularity among similar elements.
We evaluated the effectiveness of our system through extensive
experiments on the INEX 03 dataset and all the 30 CAS topics.
Our experimental results reveal that 1) properly setting tag
weights can significantly improve the precision; and 2) our
approach has significantly high precision at low recall regions and
achieves the highest average precision (0.3309) as compared with
all the 38 INEX 03 official submissions using strict evaluation
metric. Our future work includes extending current work to
support CO and VCAS tasks.

ACKNOWLEDGEMENT
This work is supported by NSF Award ITR# 0219442.

9. REFERENCES
[1] S. Amer-Yahia, M. Fernandez, D. Srivastava and Y. Xu.

Phrase Matching in XML. In VLDB 2003, pp. 177-188, 2003.
[2] R. Baeza-Yates, N. Fuhr and Y. Maarek. Second Edition of

the XML and IR Workshop. In SIGIR Forum, Volume 36
Number 2, Fall 2002.

[3] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass and A.
Soffer. Searching XML Documents via XML Fragments. In
Proceedings of SIGIR’03, Toronto, Canada, 2003.

[4] N. Fuhr and K. GrossJohann. XIRQL: A Query Language for
Information Retrieval in XML Documents. In Proceedings of
SIGIR’2001, New Orleans, LA, 2001.

[5] T. Grabs and H. J. Schek. Generating Vector Spaces On-the-
fly for Flexible XML Retrieval. In [1].

[6] R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
In the Proceedings of VLDB 1997, 1997.

[7] G. Kazai, M. Lalmas and S. Malik. INEX’03 Guidelines for
Topic Development.

[8] G. Kazai, M. Lalmas and B. Piwowarski. INEX’03
Relevance Assessment Guide.

[9] G. Salton and M.J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, New York, 1983.

[10] T. Schlieder and H. Meuss H. Querying and Ranking XML
Documents. In Journal of American Society for Information
Science and Technology, Volume 53, Issue 6, pp. 489-503,
2002.

[11] A. Theobald and G. Weikum. Adding relevance to XML. In
the Proceedings of WebDB 2000.

[12] Q. Zou, S. Liu and W. Chu. Ctree: A Compact Two-level
Bidirectional Tree for Indexing XML Data. UCLA-CS
Technical Report #TR040010, 2004.

[13] INitiative for the evaluation of XML Retrieval.
http://qmir.dcs.qmul.ac.uk/INEX

[14] XPATH. http://www.w3.org/TR/xpath.
[15] http://fargo.cs.ucla.edu/inexdemo/inexsearch.aspx.

95

