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ABSTRACT 
Indexing and ranking are two key factors for efficient and 
effective XML information retrieval. Inappropriate indexing may 
result in false negatives and false positives, and improper ranking 
may lead to low precisions. In this paper, we propose a 
configurable XML information retrieval system, in which users 
can configure appropriate index types for XML tags and text 
contents. Based on users’ index configurations, the system 
transforms XML structures into a compact tree representation, 
Ctree, and indexes XML text contents. To support XML ranking, 
we propose the concepts of “weighted term frequency” and 
“inverted element frequency,” where the weight of a term 
depends on its frequency and location within an XML element as 
well as its popularity among similar elements in an XML dataset. 
We evaluate the effectiveness of our system through extensive 
experiments on the INEX 03 dataset and 30 content and structure 
(CAS) topics. The experimental results reveal that our system has 
significantly high precision at low recall regions and achieves the 
highest average precision (0.3309) as compared with 38 official 
INEX 03 submissions using the strict evaluation metric.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval models – retrieval models. 

General Terms 
Algorithms, Experimentation, Ranking 

Keywords 
XML Information Retrieval, XML Indexing, XML Ranking 

1. INTRODUCTION 
As the World Wide Web (WWW) is becoming a major means of 
disseminating and sharing information, there has been an 
exponential increase in the amount of data in web-compliant 
formats such as HyperText Markup Language (HTML) and 
Extensible Markup Language (XML). XML is essentially a 
textual representation of the hierarchical (tree-like) data where a 
meaningful piece of data is bounded by matching starting and 
ending tags, such as <name> and </name>. Due to its simplicity 

and expressiveness, XML has become the most popular format for 
information representation and data exchange on the web. 

To cope with the tree-like structures in the XML data model, a 
great deal of research has been conducted to provide flexible and 
effective retrieval methods in the Information Retrieval (IR) 
community [2-5, 10, 11]. The INitative for the Evaluation of 
XML Retrieval (INEX) [13], for example, was established in 
April, 2002 and has prompted XML researchers worldwide to 
promote the evaluation of effective XML retrieval. 

Compared with traditional IR, XML information retrieval has 
introduced many new challenges. For example, traditional IR only 
focuses on content only (CO) queries, while XML information 
retrieval supports both CO queries and content and structure 
(CAS) queries. CAS queries enable users to specify queries more 
precisely than traditional CO queries, but introduce new 
challenges of indexing XML structures for efficient retrieval. In 
addition, traditional IR has only one data type, i.e., plain text, 
while XML may contain data of various types, such as plain text, 
numbers, date and time. Thus we need multiple content 
processing methods and indexing types for the heterogeneous 
contents in XML documents to support various search predicates. 
Further, not all tags in an XML document are semantically 
meaningful [1]. Improper indexing of non-semantic tags can 
result in false negatives. Thus, we need a user-configurable 
framework to differentiate semantic tags from non-semantic tags, 
such as tags used for presentation purposes only. Finally, an XML 
query result may not always be an entire document. It can be any 
deeply nested XML element, i.e., dynamic document [10]. 
Therefore, the traditional static document ranking method is no 
longer sufficient for ranking XML query results. As a result, we 
need a new ranking method. 

In this paper, we address the above challenges as follows: 

First, to support efficient processing of CAS queries, we 
transform XML document trees into a compact indexing tree, 
Ctree. Ctree provides both path summaries and detailed element-
to-element relationships in the XML document trees. Thus it can 
answer most structured queries very efficiently without accessing 
the original XML documents.  

Second, to support various search predicates over XML 
documents with heterogeneous tags and contents, we propose a 
configurable XML information retrieval system. In this system, 
XML documents are first “scanned” to collect structure and 
content statistics for each group of similar elements. These 
statistics are then stored in spreadsheets and presented to users. 
Users can then select tag index types, content processing 
operations and index types for each group of similar elements 
based on the statistics. 
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Third, to support the dynamic document concept in XML, we 
extend the classic Vector Space Model (VSM) [9] in traditional 
IR to the XML model and propose the concepts of “weighted term 
frequency” and “inverted element frequency,” where the weight 
of a term depends on its frequency, popularity and its location in 
an XML document. 

To empirically evaluate the effectiveness of our system, we have 
conducted experiments on the INEX 03 dataset with all the 30 
CAS topics. Our experimental results reveal that our system has 
significantly high precision at low recall regions and has the 
highest average precision (0.3309) compared with all the 38 
official INEX submissions using the strict evaluation metric. 

The rest of the paper is organized as follows. In section 2 we 
introduce the XML data model and Ctree. Section 3 presents the 
configurable indexing framework as well as the five value index 
types. In sections 4 and 5, we describe our query processing and 
ranking methods. Section 6 contains the experimental studies that 
evaluate the effectiveness of our system. Section 7 reviews related 
work. We conclude our work in section 8. 

2. BACKGROUND 
2.1 XML data model 
We model an XML document as an ordered, labeled tree where 
each element (attribute) is represented as a node and each 
element-to-subelement (or element-to-attribute) relationship is 
represented as an edge between the corresponding nodes. We 
assume that each node is a triple (id, label, <value>), where id 
uniquely identifies the node, label is the name of the 
corresponding element or attribute, and value is the corresponding 
element’s text content or attribute’s value. Value is optional 
because not every element has a text content. We consider an 
attribute as a sub-element of an element and a reference IDREF as 
a special type of value. 
For example, Figure 1 shows a sample XML document tree with 
25 nodes numbered from 0 to 24. Each circle represents a node 
with the node id inside the circle and label beside the circle. To 
distinguish text contents from element (attribute) nodes, the value 
of a node is linked to the node by a dotted line.  
We now introduce the definitions for label path and equivalent 
nodes which are useful for describing Ctree in Section 2.2. 

Definition 1 (Label Path) A label path for a node v in an XML 
document tree is a list of dot-separated labels of the nodes on the 
path from the root node to v.  

For example, node 12 in Figure 1 can be reached from the root 
node through the path: node 0 10 11 12. Thus the label path 
for node 12 is articles.article.fm.yr. 

Definition 2 (Equivalent Nodes) Two nodes in an XML 
document tree are equivalent if their label paths are the same. 
For example, nodes 3 and 12 in Figure 1 are equivalent because 
their label paths are both articles.article.fm.yr. 

2.2 Ctree 
Indexing the structures of XML documents is very important for 
efficient processing of structured XML queries. Many current 
indexing methods create indices only on the predefined nodes 
(e.g., [4]), such as leaf level nodes. Such approaches are simple 
and efficient, but sometimes may not be flexible enough to 
support queries with any structure constraint and to retrieve nodes 
at any level. 
To overcome this problem, we transform an XML document tree 
D into a compact indexing tree, Ctree [12], which is a two-level 
bidirectional tree: group level and element level. The group level 
provides path summaries for D and contains edges from parent 
groups to their child groups. The element level provides detailed 
element-to-element relationships and has links pointing from 
child elements to their corresponding parent elements. 
Similar to most path index approaches (e.g., DataGuide [6]), the 
first step in Ctree construction is to cluster equivalent nodes in D 
into groups. There is an edge linking from group A to group B if 
the label path of group A is the longest prefix of that of group B. 
For example, the path summary for the XML document tree 
(Figure 1) is shown in Figure 2a. Each group is represented as a 
dotted box with its label above the box. The numbers inside each 
dotted box are the node identifiers from Figure 1. For instance, 
nodes 3, 12, and 20 in Figure 1 share the same label path and thus 
they are in the same group yr in Figure 2a. 
As shown in past research, such path summaries greatly facilitate 
the evaluation of simple path expressions (i.e., path expressions 
with a single branch and without filters) by searching only 
relevant parts of the tree. For example, for a query (Q1) /articles/ 
article/bdy/sec, the path summary in Figure 2a implies that all the 
nodes in group sec are the answers since their label paths match 
Q1. Such path summaries, however, are insufficient for answering 
non-simple path expressions due to their incompleteness. They do 
not preserve the hierarchical relationships among individual nodes 
in an XML document tree. For example, with the path summary 
in Figure 2a, we cannot determine the hierarchical relationships 
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between node 19 in group fm and node 21 in group kwd. Such 
relationships, however, are important in answering non-simple 
path expressions. For example, for a query (Q2): /articles/article 
/fm[kwd], the path summaries in Figure 2a indicate that nodes in 
group fm are candidate answers. We cannot, however, determine 
which node in group fm can answer Q2 unless the hierarchical 
relationships between the individual nodes in group fm and those 
in group kwd are provided.  
Therefore, the second step in Ctree construction is to order the 
nodes in a group into a list by their corresponding preorders in D. 
We shall call the nodes in a Ctree group as elements for 
differentiating them from the nodes on an XML document tree. 
The elements in a group list are accessible by their corresponding 
indexes. The index for an element e in a group g is its relative 
order in g. Instead of storing node identifiers in each group, Ctree 
stores the indexes of these elements’ corresponding parent 
elements in the parent group of g.  Since the root element in the 
root group has no parent, we set the value in the root group to -1. 
Figure 2b shows the corresponding Ctree for the XML document 
tree in Figure 1, where each box represents a group with its id and 
label above the box. The numbers inside each box are the values 
in the group list. For simplicity, we use the notation g:e to 
represent an element in group g with index e. For example, nodes 
9 and 8 in the path summaries (Figure 2a) correspond to the 
elements g:e = 7:1 and g:e = 6:1 in the Ctree (Figure 2b). The 
Ctree in Figure 2b implies that 6:1 is the parent of 7:1 since the 
value of 7:1 is 1 and the parent group of group 7 is group 6. 
With the Ctree in Figure 2b, we can answer not only simple but 
also non-simple path expressions very efficiently without 
accessing the original XML document tree. For example, the 
values in group kwd imply that elements g:e = 2:0 and g:e = 2:2 
are the answers for Q2.  

 

3. INDEX CONFIGURATION 

3.1 Motivation  
To illustrate the importance of index configurations in supporting 
various search predicates over XML documents, we present a 
fragment of a sample XML article in Figure 3. The example is 
simple as compared with most XML scientific articles, but has 
many characteristics of XML in document-processing 
applications, including semantic (e.g., <article>) and non-
semantic tags (such as presentation-purpose tags, e.g., <scp>), 

and annotations (tags and their embedding text) about notations, 
corrections or clarifications (e.g., <note> ...</note>). 

 
To illustrate how matching keyword and phrases interacts with 
XML tags and annotations, we consider the following two 
examples. Suppose a user is interested in articles about 
“knowledge,” the article in Figure 3 is relevant since its title 
contains that word. However, if we do not ignore the tags <scp> 
and </scp>, the article in Figure 3 will not be returned because 
<scp> separates “K” from “NOWLEDGE”. For another example, 
suppose that a user wants to find articles with a section containing 
the phrase “information integration and exchange,” the article will 
be judged as irrelevant if we do not ignore the annotation element 
note. Therefore, to support keyword and phrase searching in XML 
documents, we should allow users to ignore non-semantic tags 
and annotations during the indexing. 
Besides tag heterogeneity, XML document contents also contain 
data of various types including plain texts, numbers, dates and 
times. The heterogeneous contents in an XML document require 
diverse value processing operations before indexing and multiple 
value index types. Inappropriate processing operations can lead to 
undesirable results. For example, removing stop words and 
stemming non-stop words are applicable to the text contents of an 
article’s title, body or section, but not to the text content of an 
article’s author. For example, if we stem the text between 
<author> and </author> in Line 2, the element author will be 
returned as relevant to a CO query “web, internet” since the stem 
of “webb,” which is text content of element author, is “web.” To 
avoid such undesirable results, we shall allow users to configure 
proper content processing operations before indexing.  
Therefore, we propose a configurable index framework that 
allows a user to specify tag index types, content processing 
operations and content index types. 

3.2 Index configuration framework 
3.2.1 System architecture 
Figure 4 shows the architecture for the configurable XML 
information retrieval system, which performs two types of 
functions: document indexing and query evaluation. 
Indexes for a collection of XML documents can be built in the 
following three steps. First, XML documents are sent to a Scan 
module to collect statistics about the structure and content 
characteristics of the XML documents. These statistics are then 
stored in an Excel spreadsheet and presented to a user. Second, 
based on the statistics, a user configures index options for each 
group of equivalent nodes. Finally, based on the index 
configurations, the Index Builder correspondingly constructs a 

Figure 2: The path summary and the Ctree for the XML 
document tree in Figure 1. 
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Ctree and builds value indexes. For complex datasets, such as the 
INEX dataset, a user may not be familiar with the dataset 
characteristics even with the collected statistics. In this case, a 
user can either use the default index options or leverage on the 
index configurations provided by a domain expert. 
The Query Evaluation evaluates the incoming query based on the 
indexes, and then ranks the results based on users’ ranking 
configurations to obtain a list of ranked results.  

 

3.2.2 Index configuration 
Many XML datasets, such as the INEX dataset, do not have 
schema with specific data types for each element and attribute. To 
facilitate index configurations for such datasets, we use a Scan 
module to collect statistics of a dataset while parsing it. Since 
equivalent nodes in XML document trees share similar 
characteristics, the Scan module collects the structure and content 
statistics for each group of equivalent nodes. 
With the collected statistics, a user can specify a tag index type, a 
set of value processing operations and a value index type for each 
group of equivalent nodes, as described in the following:  

• Tag Index Type: Index or No Index. The tag index type 
allows users to indicate whether to keep or ignore the tag 
during indexing. 

• Value Processing Operations: 1)TokenType: whether to 
select digit, word, mixed or all tokens in the value for 
indexing; 2) IsStopping: whether to remove stop words; 3) 
IsStemming: whether to use stemming functions; and 4) 
IsToLower: whether to transform a text to its lower cases. 

• Value Index Type: 1) No Index; 2) Invert; 3) Number; 4) 
DTime; 5) List or 6) ID. No Index means that the values 
for the nodes in this group will be ignored during indexing. 
The latter five value index types will be explained in 
Section 3.3. 

If an XML dataset contains too many groups of equivalent nodes, 
such as the INEX dataset which contains 13262 distinct groups, 
then its configuration can be based on each group of nodes with 
the same label. For instance, there are only 204 distinct labels in 
the INEX dataset. 

3.3 Value index types 
The heterogeneous contents in XML documents require multiple 
value index types. Thus we propose five value index types: Invert, 
List, Number, DTime and ID, defined as follows, to support values 
of common XML data types, such as xs:string and xs:decimal, as 
defined in the XML schema and some special data values such as 
values for IDREF attributes.  

• Invert Type: treats a value as a bag of tokens and maps a 
token to a list of elements. 

• List Type: treats a value as a whole without further breaking 
it into tokens and maps a value to a list of elements. 

• Number Type: maps a numeric value to a list of elements. 
Furthermore, a B+-index is created on top of (number, 
element) pairs to support numerical range searches. 

• DTime Type: maps a value of date or time type to a list of 
elements. Similarly, we create a B+-index on (time, element) 
pairs to support range searches. 

• ID Type: indexes IDREF attribute values and maps a 
referring element to a referred element. 

Each value index type supports a common search function: 
 List search (value, gid?) 
That is, given a value predicate and a group identifier, the search 
function returns a list of elements satisfying the value predicate in 
the group. If the group identifier is not specified, the search 
function returns a list of elements in any group that satisfy the 
search predicate. 

4. QUERY EVALUATION 

4.1 Query format & model 
We use the INEX 03 query format [7], which is based on a subset 
of XPath path expressions [14] with an addition of an about 
predicate. A path expression contains a sequence of nodes 
connected with axes and some nodes may have value predicates, 
i.e., filters. The last node in a path expression is called a target 
node and its matches are retuned as query results. The syntax of 
an about predicate is about(path, string), which specifies certain 
contexts (i.e., path) to be about a specific content (i.e., string). 
The string parameter may contain a set of terms separated by 
spaces, where a term is either a single word or a phrase in double 
quotes. Furthermore, query term modifiers, such as “+” and “-,” 
are introduced to facilitate users to specify preferences and 
rejections over certain terms. For example, suppose that a user is 
interested in articles about XML and information retrieval, 
published between 1999 and 2000, and with sections preferred to 
be about ranking, the query can be formulated as Q3: 
//article[(./fm//yr = '2000' OR ./fm//yr = '1999') AND about(., 
‘XML “Information Retrieval”’)]//sec[about(., ‘+ranking’)].   
Similar to the tree 
representation of 
XML documents, 
we also represent 
queries as trees: 
nodes in path 
expressions become 
the nodes in trees. 
Axes are represented as edges between the corresponding nodes 

Figure 4: The XML information retrieval system architecture. 

Scan 

Index Builder 

Index 
Configuration 

Spreadsheet 

 
Dataset

Ctree Invert 

List DTime Number

ID 

Ctree-based Index 

Query 
Evaluation 

Query 

Sorted 
Results 

Ranking 
Configuration 

Index 
Manager 

Document Indexing Query Processing & Ranking  

 1999 - 2000

article

fm sec

Figure 5: The tree representation of Q3. 

year 

XML, 
“information 
retrieval” +ranking 

91



with a single arrow for a “/” axis and a double arrow for a “//” 
axis. Filters are represented as value predicates on the 
corresponding nodes. To distinguish about predicates from other 
normal XPath value predicates, about predicates are linked to 
their corresponding nodes with double dotted lines, while normal 
value predicates are linked to their corresponding nodes with 
single dotted lines. Finally, a target node is emphasized with a 
box. For example, Figure 5 illustrates the tree representation of Q3.  

4.2 Query processing 
After transforming an XML query into a tree representation, we 
can evaluate the query based on Ctree structure and value indexes 
in the following three steps as shown in Figure 6. 

 

 
First, the algorithm locates a set of frames. A frame F is a set of 
Ctree groups such that each group in F matches a node in the 
query tree TQ and that these groups as a whole match the query’s 
tree structure (Line 2). For example, there is one frame consisted 
of groups (1, 2, 3, 6) in the Ctree (Figure 2b) for Q3, where (1, 2, 
3, 6) matches the query nodes (article, fm, year, sec) respectively.  
Second, for each frame F, the algorithm evaluates each value 
predicate on the elements in a Ctree group that is assigned to a 
query node with the corresponding value predicate (Line 4). 
Normal value predicates are processed in a Boolean way. For 
example, for the predicate 1999 ≤ //article/fm/year ≤ 2000 in Q3, 
the elements in group 3 are either relevant or non-relevant. 
Irrelevant elements are pruned directly. An about predicate, 
however, is processed in a non-Boolean way and we will discuss 
its evaluation in detail in Section 5.  
Third, for each frame F, the algorithm combines the evaluation 
results for each query node in the query based on the element-to-
element relationships in a Ctree. The results from F are sorted 
into a ranked list, denoted as R’ (Line 5). 
Finally, the results from each frame are merged and ranked based 
on their retrieval status value (RSV) (Line 6).  A RSV indicates a 
result’s relevancy to the query. Line 7 outputs a ranked result list. 

5. RESULT RANKING  
In this section, we present how to calculate the RSVs for query 
results from a given frame. We first present how to calculate the 
RSVs for elements from a single about predicate and then discuss 
how to combine the RSVs from multiple about predicates. 
Before presenting our ranking scheme, we first define two user 
configurable parameters as follows: 

( )xσ : weight for a label x. ∀x, σ(x) ≥ 0 and the default value is 1. 

( )mθ : weight for a query term modifier m (“”, “+”, or “-”). θ(“+”) 
≥ θ(“”) > 0 and θ(“”) > θ(“-”). 

5.1 Weighted term frequency 
Due to the hierarchical nature of XML, the content of an element 
e is also considered part of the content of any e’s ancestor element. 
This introduces the challenge of how to calculate the relevancy of 
a given term t within a certain element e, where t could appear in 
any element nested within e. For example, for the about(article, 
‘XML “information retrieval”’) predicate in Q3, the term ‘XML’ 
can be in a keyword, paragraph or reference part of an article. The 
occurrences of a term t in different sub-elements of e have 
different importance. For example, 
‘XML’ in a keyword part of an 
article is more important than an 
“XML” in a paragraph, which in 
turn is more important than an 
“XML” in a reference part. As a 
result, it may be inaccurate if we 
simply count the frequency of a 
term t within element e without 
considering the locations of term t 
in element e. 
Therefore we introduce the concept of “weighted term 
frequency,” which assigns high weights to terms in important 
locations and low weights to terms in unimportant locations. For a 
given element e, we can identify the location of a specific sub-
element e’ containing a term t by the “relative” label path from e 
to e’. For example, in Figure 7, under the element article, the term 
‘XML’ appears once, twice and once in the relative paths fm.kwd, 
bdy.sec.para and bm.ref respectively.  
Since the number of distinct locations in an XML dataset can be 
very large, it is laborious to assign weights for all possible 
locations. The number of distinct labels, however, is usually small. 
Therefore we can estimate the weight (or importance) of a 
location (relative label path) l = x1…xs by a function of σ(xi) (1 ≤ 
i ≤ s), f(σ(x1), σ(x2), …, σ(xs)), with the following properties: 

1) f(σ(x1), σ(x2), …, σ(xs)) is a monotone increasing 
function with regard to any σ(xi) (1 ≤ i ≤ n). 

2) f(σ(x1), σ(x2), …, σ(xs)) = 0 if any σ(xi) = 0 (1 ≤ i ≤ n).  
The first property is straightforward and the second property is 
due to the semantics of σ(xi) = 0, which implies that a user is not 
interested in terms occurring under element xi. Therefore any term 
in the text content of either element xi or element xj (i ≤ j ≤ n) is 
not relevant.  

One straightforward implementation of f(σ(x1), σ(x2), …, σ(xs)) is 
to estimate the weight of a relative label path l as the product of 
the weights of the labels in l: 

( ) ( )
1

s
w l xii

σ∏=
=

, where xi is a label of l  

For an element e in a given Ctree group g, where g is assigned to 
a query node associated with an about predicate with a term t, let 
tf(g, e, li, t) be the term frequency of t in a location li under 
element e in group g. We can estimate the weighted term 
frequency of term t within element e in a group g, denoted as tfw(g, 
e, t), as follows: 

Figure 6: The Ctree-based query processing algorithm. 

Input:  T,  a Ctree with value index 
 TQ, a query tree 
Output:  R, a ranked list of elements 
1 An empty list R 
2 Locate frames: Ctree groups query nodes 
3  For each frame F 
4  Evaluate value predicates; 
5  Combine results for each query node to a ranked list, R’; 
6  Merge R’ to R; 
7 Return R 
 

Figure 7: A weighted 
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( , , ) ( ) ( , , , )
1

r
f g e t w l tf g e l tw j jj

t ∑= ⋅
=

 

where r is the number of locations under element e in group g 
containing term t.  
For example, in Figure 7, the weights for each label are shown 
beside the label. For instance, σ(kwd) =5. The weights for the 
relative label paths fm.kwd, bdy.sec.para, and bm.ref are 5*1=5, 
2*1*1=2 and 0*1=0 respectively; and the frequencies of term 
“XML” in fm.kwd, bdy.sec.para, and bm.ref are 1, 2 and 1 
respectively. Therefore, the weighted term frequency of ‘XML’ in 
element article is 5*1+2*2+0*1=9. 

5.2 Inverted element frequency 
Terms with different popularities in XML elements have varying 
degrees of discriminative power. It is well established in IR that a 
term frequency (tf) needs to be adjusted by a factor of inverse 
document frequency (idf). A very popular term with a small idf 
has less discriminative power than a rare tem with a large idf. 
Similarly, we propose the concept of “inverted element 
frequency,” i.e., ief, to distinguish query terms in an about 
predicate with different discriminative powers. The inverted 
element frequency of term t within a specific group g can be 
measured as follows: 

| |
( , ) log( )| ( )|

Egief g t E tg
=  

where |Eg| is the total number of elements in group g assigned to a 
query node with an about predicate containing term t. |Eg(t)| is the 
number of elements in group g containing t. 

5.3 RSV from a single about predicate 
Query terms with different modifiers in an about predicate are of 
different importance from a user’s point of view. Thus, we 
introduce a user-configurable ranking parameter θ(m) that defines 
the weight for a query term modifier m. In general, the 
relationships among θ(“+”), θ(“”) and θ(“-”) shall satisfy: 1) 
θ(“+”) ≥ θ(“”) > 0; and 2) θ(“”) > θ(“”). That is, a term prefixed 
with “+” is more important than, or at least as important as, a term 
without any prefixing modifier, which in turn is more important 
than a term with a “-.” For example, θ(“”) = 1, θ(“+”) = 2, and 
θ(“-“) = 0. 
With the introduction of weighted term frequency, inverted 
element frequency and term modifier weight, we are now ready to 
define the RSV of an element e in a group g for an about 
predicate α as follows: 

( , , ) ( ( ( )) ( , , ) ( , ), 0)RSV g e Max m t tf g e t ief g twk k ktk
θ∑α = ⋅ ⋅

∈α
 

where tk is a term in α and θ(m(tk)) is the weight for the query 
term modifier associated with term tk. Since users might assign a 
negative value for θ(“-”), which may lead to negative RSVs, we 
compare the weighted sum of tfw*ief with 0 and select the max of 
the two to ensure that RSV(g, e, α) is always non-negative. 

5.4 RSVs from multiple about predicates 
Since a query Q may contain multiple about predicates, we need 
to merge the RSVs from each about predicate into the elements in 

the Ctree group assigned to the target node in Q. For example, Q3 
in Figure 5 has two about predicates: α1 (about(article, ‘XML 
“information retrieval”’)) and α2 (about(sec, +‘ranking’)). After 
processing α1 and α2, the elements in group article and group sec 
are associated with a list RSVs as shown in Figure 8a. For 
example, the RSV for element 1:0 to α1 is 7, i.e., RSV(1, 0, α1) =7.  

 
Depending on the location of the target node in the query tree, 
RSVs are either merged from a descent group to an ancestor 
group or from an ancestor group to a descendant group. Thus, 
there are two cases to consider: 
1) Merging results from a descendant group to an ancestor group 
If the results are merged from a descendant group gD containing 
elements relevant to an about predicate αi to an ancestor group gA 
containing elements relevant to another about predicate αj, the 
RSVs of elements in group gA are updated according to: 

( , , ) ( , , ) ( , , )
1i j j i

n
RSV g e RSV g e RSV g eD DA A A A l l

∑α &α = α + α
=

where eA is an element in gA, 
l

eD is an element in group gD and 

also a descendant of eA, and n is the number of elements in group 
gD that are descendant of eA. 
For example, suppose that article is the target node in Q3 instead, 
according to the formula above, the updated RSVs for the 
elements in group 1 are shown in Figure 8b. For instance, RSV(1, 
0, α1&α2) = RSV(1, 0, α2) + RSV(6, 0, α1) + RSV(6, 1, α1) = 
7+2+2 = 11 because elements 6:0 and 6:1 are descendants of 
element 1:0. 
2) Merging results from an ancestor group to a descendant group 
If the results are merged from an ancestor group gA containing 
elements relevant to an about predicate αj to a descendant group 
gD containing elements relevant to another about predicate αi, the 
RSVs of elements in group gD are updated according to: 

( , , ) ( , , ) ( , , )i j i jRSV g e RSV g e RSV g eD D D D A Aα &α = α + α  

where element eD in group gD is a descendant of element eA in 
group gA. 
For example, since sec is the target node in Q3, according to the 
formula above, the updated RSVs for the elements in group 6 are 
shown in Figure 8c. For instance, RSV(6, 0, α1&α2)= RSV(6, 0, 
α1) + RSV(1, 0, α2) = 2+7 = 9 because element 1:0 is an ancestor 
of element 6:0. 

1: article
0, 0, 0 7 1 0

0, 0, 1, 2 2 2 2 0
0 1  2  3

0  1   2 

6: sec

RSVs

RSVs

1: article 
0, 0, 0 11 3 0

0  1   2 

RSVs

0, 0, 1, 2 9 9 3 0
0  1  2  3 

6: sec RSVs

(a) RSVs for each about 
predicates before merging. (c) The merged RSVs if 

sec is the target node. 

(b) The merged RSVs if 
article is the target node. 

Figure 8: An example of merging multiple RSVs to the 
elements in the group assigned to the target query node. 
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6. EXPERIMENTAL STUDIES 
We used the INEX 03 dataset and CAS topics to evaluate the 
effectiveness of our configurable XML information retrieval 
system. For the INEX 03 CAS topics, there are two tasks: strict 
CAS (SCAS) and vague CAS (VCAS). A query’s structure must 
be strictly matched in SCAS, while it can be vaguely matched in 
VCAS. In this paper, we only focus on SCAS task. We 
implemented the configurable XML information retrieval system 
in C# and ran the experiments on a 2.8GHz PC with 1G of RAM 
running Windows XP. 

6.1 Runs 
We have conducted a set of experiments with the same set of 
index configurations but different weight configurations. Due to 
space limit, the indexing configurations used for the experiments 
can be downloaded from our website [15]. Also we only list two 
weight configurations A and B in Table 1. Tags indexed but not 
listed below are assigned with the default weight 1. The main 
difference between configuration A and B is that the weight for 
the tag bm is 0 in B, which prunes articles with only references or 
appendixes about topic of interest. 
 

 bm Fm bdy atl abs kwd st 
A 1 3 1 3 1 2 3 
B 0 5 1 5 1 3 5 

We tested three runs with the above two tag weight configurations 
and the same set of query term modifier weights: θ(“+”)=1.8 and 
θ(“”)=1. Document components containing query terms prefixed 
with “-” in a query are judged as irrelevant to the query. All the 
precision/recall curves are plotted with the INEX on-line tool. 

1. SCAS-65-A: This run evaluated CAS topic 65 with 
configuration A and the results are shown in Figure 9a. 

2. SCAS-65-B: This run evaluated CAS topic 65 with 
configuration B and the results are shown in Figure 9b. 

3. SCAS-ALL: This run evaluated all the 30 CAS topics with 
configuration B and the results are shown in Figure 10. 

6.2 Results evaluation and analysis 
To evaluate the relevancy of an XML document component to a 
topic, the INEX 03 working group proposed a two-dimension 
relevancy metric (exhaustiveness, specificity). Two methods are 
proposed to quantize the metric into a single relevancy value 
between 0 and 1: strict and generalized quantization [8]. In a strict 
quantization, the relevancy metric is quantized to be either 1 or 0. 
In a generalized quantization, the relevancy metric is quantized to 
be 0, 0.25, 0.5, 0.75 or 1. 
The average precision/recall curves for CAS topic 65 with the tag 
weight configurations A and B using the strict quantization are 
illustrated in Figure 9a and 9b respectively. We notice that the 
average precision for CAS topic 65 is quite high either with 
configuration A or B. Furthermore, our system has a very high 
precision at low recall regions. For example, with configuration A, 
the precision is 1 when the recall is less than 0.318; and with 
configuration B, the precision stays at 1 until the recall exceeds 
0.518. From Figure 9, we can see that properly adjusting ranking 
configurations can significantly improve the precision/recall.  

Figure 10 illustrates the average precision/recall curves for all the 
30 CAS topics. The average precision for all 30 the CAS topics, 
0.3309, is notably high and is about 4% improvement over the top 
1 (0.3812) of all the 38 official INEX 03 submissions. More 
importantly, from Figure 10c, we can see that using the strict 
quantization, our system has the highest precision when recall is 
less than 0.5 as compared with all the 38 official INEX 03 
submissions, which implies that our system is able to return the 
most relevant answers sooner than other systems. This is a very 
important feature since most users typically have only enough 
patience to browse the top few returned answers. 

 

(a) (b) 

(c) (d)
Figure 10: The average precision/recall curves of SCAS-ALL 

using both strict and generalized quantization. 

Figure 9: The precision/recall curves of SCAS-65-A and 
SCAS-65-B using strict quantization. 

(b) (a) 

Table 1 Tag weight configurations A and B. 
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By comparing Figure 10a and 10b, we note that our system 
performs better with the strict evaluation metric than with the 
generalized evaluation metric. This is because our system returns 
only a small number of results for each topic due to the strict 
implementation of an “AND” operator. For example, our system 
will not judge any article containing only ‘XML’ or only 
“information retrieval” as relevant to Q3. Therefore, the number 
of our results for most CAS topics is less than 200 and many of 
them are even less than 50, while most other systems return about 
1500 results for each CAS topic. One way to improve the 
precision with the generalized evaluation metric is to increase the 
result size by relaxing the strict interpretation of an “AND” 
operator. 

7. RELATED WORK 
There have been a number of studies investigating XML 
information retrieval [2-5, 10, 11]. Many of these studies can be 
classified into the following three categories: XML retrieval 
language, indexing, and ranking. We focus our review of related 
work on these three areas. 
XML Retrieval Language 
XIRQL [4] is the first full-functional XML information retrieval 
language proposed. It supports weighting and ranking, relevance-
oriented searches, data types with vague predicates and semantic 
relativism. XIRQL is powerful but not simple enough for new 
users. To overcome this problem, [3] proposed the concept of 
XML fragments as queries. It is much simpler and allows users to 
specify term preferences and rejections.  
XML Indexing 
Most work on XML indexing extend the idea of “inverted index” 
for content indexing in traditional IR to support both content and 
structure indexing in the XML model. For example, in [4], nodes 
of predefined categories are indexed and associated with term 
statistics. Users are allowed to search at the level of indexing 
nodes or nodes that are of hierarchical combination of indexing 
nodes. [5] generalized [4] to support the retrieval of nodes at any 
granularity level by combining the statistics of those predefined 
nodes at query time. In [3] XML document collections are split 
into small “documents” based on the predefined elements. A 
vector of (term, context) pairs is extracted from each document. 
Indexes are created on these (term, context) pairs associated with 
statistics for ranking calculation. 
XML Ranking 
Many ranking approaches proposed so far leverage on the mature 
ranking models developed in traditional IR and extend them to the 
XML model. For example, in [4] a novel “augmentation” 
technique is proposed to retrieve nodes that are hierarchical 
combinations of indexing nodes. During the “augmentation,” the 
statistics and inverted lists of indexing nodes are propagated 
upward in the document tree with lower term weights. [3] extends 
the traditional VSM where each unit is a single term to the XML 
model with each pair (term, context) as a basic unit. 

8. CONCLUSION AND OUTLOOK 
In this paper, we proposed a configurable XML information 
retrieval system, which allows users to configure proper index 
types for tags in an XML document to avoid false negatives. It 
also enables users to select appropriate content processing 

operations and index types for the heterogeneous XML text 
contents to avoid false positives. Further, we proposed a new 
XML ranking methodology based on the concepts of “weighted 
term frequency” and “inverted element frequency,” where the 
weight of a term depends on its frequency and location in an 
XML element as well as its popularity among similar elements. 
We evaluated the effectiveness of our system through extensive 
experiments on the INEX 03 dataset and all the 30 CAS topics. 
Our experimental results reveal that 1) properly setting tag 
weights can significantly improve the precision; and 2) our 
approach has significantly high precision at low recall regions and 
achieves the highest average precision (0.3309) as compared with 
all the 38 INEX 03 official submissions using strict evaluation 
metric. Our future work includes extending current work to 
support CO and VCAS tasks. 
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