
CoXML: A Cooperative XML Query Answering System

Shaorong Liu1 and Wesley W. Chu2

1 IBM Silicon Valley Lab, San Jose, CA, 95141, USA
shaorongliu@gmail.com

2 UCLA Computer Science Department, Los Angeles, CA, 90095, USA
wwc@cs.ucla.edu

Abstract. The heterogeneity nature of XML data creates the need for approx-
imate query answering. In this paper, we present an XML system that cooper-
ates with users to provide user-specific approximate query answering. The key
features of the system include: 1) a query language that allows users to specify
approximate conditions and relaxation controls; 2) a relaxation index structure,
XTAH, that enables the system to provide user-desired relaxations as specified in
the queries; and 3) a ranking model that incorporates both content and structure
similarities in evaluating the relevancy of approximate answers. We evaluate our
system with the INEX 05 test collections. The results reveal the expressiveness
of the language, show XTAH’s capability in providing user-desired relaxation
control and demonstrate the effectiveness of the ranking model.

1 Introduction

The growing use of XML in scientific data repositories, digital libraries and Web appli-
cations has increased the need for flexible and effective XML search methods. There are
two types of queries for searching XML data: content-only (CO) queries and content-
and-structure (CAS) queries. CAS queries are more expressive and thus yield more ac-
curate searches than CO queries. XML structures, however, are usually heterogeneous
due to the flexible nature of its data model. It is often difficult and unrealistic for users
to completely grasp the structural properties of data and specify exact query structure
constraints. Thus, XML approximate query answering is desired, which can be achieved
by relaxing query conditions.

Query relaxation is often user-specific. For a given query, different users may have
different specifications about which conditions to relax and how to relax them. Most
existing approaches on XML query relaxation (e.g., [1]) do not provide control during
relaxation, which may yield undesired approximate answers. To provide user-specific
approximate query answering, it is essential for an XML system to have a relaxation
language that allows users to specify their relaxation control requirements and to have
the capability to control the query relaxation process.

Furthermore, query relaxation returns a set of approximate answers. These answers
should be ranked based on their relevancy to both the structure and content conditions of
the posed query. Many existing ranking models (e.g., [2], [3]) only measure the content
similarities between queries and answers, and thus are inadequate for ranking approxi-
mate answers that use structure relaxations. Recently, [4] proposed a family of structure

scoring functions based on the occurrence frequencies of query structures among data
without considering data semantics. Clearly, using the rich semantics provided in XML
data in design scoring functions can improve ranking accuracy.

To remedy these shortcomings, we propose a new paradigm for XML approximate
query answering that places users and their demands in the center of design approach.
Based on this paradigm, we develop a cooperative XML system that provides user-
specific approximate query answering. More specifically:

– First, we develop a relaxation language that allows users to specify approximate
conditions and control requirements in queries (e.g., preferred or unacceptable re-
laxations, non-relaxable conditions and relaxation orders). (Section 3)

– Second, we introduce a relaxation index structure that clusters twigs (as introduced
in Sec 2.1) into multi-level groups based on relaxation types and distances. By
such clustering, the index structure enables a systematic control of the relaxation
processing based on users’ specifications in queries. (Section 4)

– Third, we propose a semantic-based tree editing distance to evaluate XML structure
similarities based on not only the number of relaxations but also relaxation seman-
tics. We also develop a model that combines both structure and content similarities
in evaluating the overall relevancy [5].

– Finally, our experimental studies using the INEX 05 benchmark test collection3

demonstrate the effectiveness of our proposed methodology.

2 XML Query Relaxation Background

2.1 Query Model

A fundamental construct in most existing XML query languages is the tree-pattern
query ortwig, which selects elements and/or attributes with tree-like structures. Thus,
we use twig as the basic query model. Fig. 1(a) illustrates a sample twig, which searches
for articles with a title on “data mining,” a year in2000and a body section about “fre-
quent itemset.” Each twig node is associated with an uniqueid, shown in italic beside
the node. The IDs are not needed when all the node labels are distinct. The text under a
node is the content constraint on the node.

For a twigT , we useT.V andT.E to represent its nodes and edges respectively. For
a twig nodev (v ∈ T.V), we usev.label to denote the node label. We useeu,v to denote
the edge from nodesu to v, either parent-to-child (“/”) or ancestor-to-descendant (“//”).

2.2 Query Relaxation

In the XML model, there are two types of query relaxations: value relaxation and struc-
ture relaxation. Value relaxation, successfully used in relational models (e.g., [6]), is
orthogonal to structure relaxation. In this paper, we focus on structure relaxation. Many
structure relaxation types have been proposed ([7], [8], [1]). We use the following three
structure relaxation types, similar to the ones in [1], which capture most of the relax-
ation types proposed in previous work.

3 http://inex.is.informatik.uni-duisburg.de/

– Node RelabelA node can be relabeled to similar or equivalent labels according
to domain knowledge. For example, the twig in Fig. 1(a) can be relaxed to that in
Fig. 1(b) by relabeling nodesectionto paragraph.

– Edge GeneralizationA parent-to-child edge can be generalized to an ancestor-
to-descendant edge. For example, the twig in Fig. 1(a) can be relaxed to that in
Fig. 1(c) by relaxingbody/sectionto body//section.

– Node DeletionA nodev may be deleted to relax the structure constraint. Ifv is
an internal node, then the children ofv will be connected to the parent ofv with
ancestor-to-descendant edges. For instance, the twig in Fig. 1(a) can be relaxed to
that in Fig. 1(d) by deleting the internal nodebody. We assume that the root node
of a twig cannot be deleted since it represents the search context.

article

title body

section“data
mining”

“frequent
itemset”

$1

year

2000

$3$2 $4

$5

article

title body

section“data
mining”

“frequent
itemset”

$1

year

2000

$3$2 $4

$5

article

title body

paragraph“data
mining”

“frequent
itemset”

year

2000

article

title body

paragraph“data
mining”

“frequent
itemset”

year

2000

article

title body

section“data
mining”

“frequent
itemset”

year

2000

article

title body

section“data
mining”

“frequent
itemset”

year

2000

article

title section

“data
mining”

“frequent
itemset”

year

2000

article

title section

“data
mining”

“frequent
itemset”

year

2000

(a) A sample twig (b) Node relabel (c) Edge generalization (d) Node deletion

Fig. 1. A sample twig and its relaxed twigs

Given a twigT , arelaxed twigcan be generated by applying one or more relaxation
operations toT . Let m be the number of relaxation operations applicable toT , then
there are at most

(
m
1

)
+ ... +

(
m
m

)
= 2m relaxation combinations, i.e.,2m relaxed twigs.

3 XML Query Relaxation Language

A number of XML approximate search languages have been proposed. Most extend
standard query languages with constructs for approximate text search (e.g., XIRQL [3],
TeXQuery [9]). XXL [10] provides users with constructs for users to specify both ap-
proximate structure and content conditions, which however, does not allow users to
control the relaxation process. Users may often want to specify their preferred or re-
jected relaxations, non-relaxable query conditions, or to control the relaxation orders
among multiple relaxable conditions.

To remedy this shortcoming, we propose an XML relaxation language that allows
users to both specify approximate conditions and to control the relaxation process. A
relaxation-enabled queryQ is a tuple (T ,R, C,S), where:

– T is a twig as described as Section 2.1;
– R is a set of relaxation constructs specifying which conditions inT may be ap-

proximated when needed;
– C is a boolean combination of controls stating how the query shall be relaxed;
– S is a stop condition indicating when to terminate the relaxation process.

The execution semantics for a relaxation-enabled query are: we first search for an-
swers exactly matching the twig; we then test the stop condition to check whether relax-
ation is needed. If not, we repeatedly relax the twig based on the relaxation constructs
and control until either the stop condition is met or the twig cannot be further relaxed.

Given a relaxation-enabled queryQ, we useQ.T ,Q.R,Q.C andQ.S to represent
its twig, relaxation constructs, control and stop condition respectively. Note that a twig
is required to specify a query, while relaxation constructs, control and stop condition are
optional. When only a twig is present, we iteratively relax the query based on similarity
metrics until the query cannot be further relaxed.

A relaxation construct for a queryQ is either a specific or a generic relaxation
operation in any of the following forms:

– rel(u,−), whereu ∈ Q.T .V , specifies that nodeu may be relabeled when needed;
– del(u), whereu ∈ Q.T .V , specifies that nodeu may be deleted if necessary;
– gen(eu,v), whereeu,v ∈ Q.T .E, specifies that edgeeu,v may be generalized.

The relaxation control for a queryQ is a conjunction of any of the following forms:

– Non-relaxable condition!r, wherer ∈ {rel(u,−), del(u), gen(eu,v) | u, v ∈
Q.T .V , eu,v ∈ Q.T .E}, specifies that nodeu cannot be relabeled or deleted, or
edgeeu,v cannot be generalized;

– Prefer(u, l1, ..., ln), whereu ∈ Q.T .V andli is a label (1≤ i ≤ n), specifies that
nodeu is preferred to be relabeled to the labels in the order of (l1, ..., ln);

– Reject(u, l1, ..., ln), whereu ∈ Q.T .V , specifies a set of unacceptable labels for
nodeu;

– RelaxOrder(r1, ..., rn), whereri ∈ Q.R (1 ≤ i ≤ n), specifies the relaxation
orders for the constructs inR to be (r1, ...,rn);

– UseRType(rt1, ..., rtk), whererti ∈ {noderelabel, nodedelete, edgegeneralize}
(1≤ i ≤ k≤ 3), specifies the set of relaxation types allowed to be used. By default,
all three relaxation types may be used.

A stop conditionS is either:

– AtLeast(n), wheren is a positive integer, specifies the minimum number of an-
swers to be returned; or

– d(Q.T , T ′) ≤ τ , whereT ′ stands for a relaxed twig andτ a distance threshold,
specifies that the relaxation should be terminated when the distance between the
original twig and a relaxed twig exceeds the threshold.

We now present an example of using our relaxation language to express INEX 05
topic 267 (Fig. 2(a)). The topic consists of three parts:castitle(i.e., the query formu-
lated in an XPath-like syntax),descriptionandnarrative. Thenarrative part contains
the detailed description of a user’s information needs and is used for judging result rel-
evancy. The topic author considers an article’s title, i.e.,atl, non-relaxable and regards
titles about “digital libraries” under the bibliography part, i.e.,bb, irrelevant. Based on
this narrative, we formulate this topic using our relaxation language as in Fig. 2(b).

We have developed a GUI interface for users to specify relaxations. Users may
first input the twig using an XPath-like syntax. Based on the input twig, the interface
automatically generates a set of relaxation candidates. Users can then specify relaxation
constructs and controls by selecting relaxations from the candidate set.

<inex_topic topic_id="267" query_type="CAS" ct_no="113" ><castitle>//article//fm//atl[about(., "digital libraries")]</castitle><description>Articles containing "digital libraries" in their title.</description><narrative>I'm interested in articles discussing Digital Libraries as their main subject. Therefore I require that the title of any relevant article mentions "digital library" explicitly. Documents that mention digital libraries only under the bibliography are not relevant, as well as documents that do not have the phrase "digital library" in their title.</narrative></inex_topic> articlefmatl“digital libraries”$1$2$3 C = !Rel($3, -) ∧ !Del($3) ∧ Reject($2, bb) articlefmatl“digital libraries”$1$2$3 C = !Rel($3, -) ∧ !Del($3) ∧ Reject($2, bb)
(a) (b)

Fig. 2. Topic 267 in INEX 05 (a) & specifying the topic with our relaxation language (b).

4 XML Relaxation Index

4.1 XML Type Abstraction Hierarchy - XTAH

Several approaches for relaxing XML or graph queries have been proposed ([7], [4],
[11], [1], [12]). Most focus on efficient algorithms for deriving top-k approximate an-
swers without relaxation control. To remedy this condition, we propose an XML re-
laxation index structure, XML Type Abstraction Hierarchy (XTAH), that clusters re-
laxed twigs into multi-level groups based on relaxation types and distances. Each group
consists of twigs using similar types of relaxations. Thus, XTAH enables systematic
relaxation control based on users’ specifications. For example,Rejectcan be imple-
mented by pruning groups of twigs with unacceptable relaxations.RelaxOrdercan be
implemented by selecting the relaxed twigs from groups based on the specified order.

An XTAH for a twig structureT , denoted asXTT , is a hierarchical cluster that
represents relaxed twigs ofT at different levels of relaxations based on the types of
operations used by the twigs and the distances between them. More specifically, an
XTAH is a multi-level labeled cluster with two types of nodes: internal and leaf nodes.
A leaf node is a relaxed twig ofT . An internal node represents a cluster of relaxed twigs
that use similar operations and are closer to each other by a given distance metric. The
label of an internal node is the common relaxation operations (or types) used by the
twigs in the cluster. The higher level an internal node in the XTAH, the more general
the label of the node, the less relaxed the twigs in the internal node.

Fig. 3 shows an XTAH for the sample twig in Fig. 1(a).4 For ease of reference, we
associate each node in the XTAH with an unique ID, where the IDs of internal nodes
are prefixed withI and the IDs of leaf nodes are prefixed withT’.

Given a relaxation operationr, let Ir be an internal node with a label{r}. That is,
Ir represents a cluster of relaxed twigs whose common relaxation operation isr. Due
to the tree-like organization of clusters, each relaxed twig belongs to only one cluster,
while the twig may use multiple relaxation operations. Thus, it may be the case that
not all the relaxed twigs that use the relaxation operationr are within the groupIr. For
example, the relaxed twigT ′2, which uses two operationsgen(e$1,$2) andgen(e$4,$5),
is not included in the internal node that represents{gen(e$4,$5)}, I7. This is becauseT ′2
may belong to either groupI4 or groupI7 but is closer to the twigs in groupI4.

To support efficient searching or pruning of relaxed twigs in an XTAH that use an
operationr, we add a virtual link from internal nodeIr to internal nodeIk whereIk is

4 Due to space limitations, we only show part of the XTAH here.

article

body

section

$1

year $3title $2title $2 $4

$5

Twig T

...…

…

relaxI0 relaxI0

{gen(e$4, $5)}I7 {gen(e$4, $5)}I7

{gen(e$1,$2),
gen(e$4,$5)}

I16{gen(e$1,$2),
gen(e$4,$5)}

I16

{del($4)}I15 {del($4)}I15

edge_generalizationI1edge_generalizationI1 node_deleteI3 node_deleteI3

{gen(e$1,$2)}I4 {gen(e$1,$2)}I4 …

…

I2 node_relabel

...

I2 node_relabel

...

Virtual linksVirtual links

…T1
’ article

title body

section

year

T1
’ article

title body

section

year T8
’ article

title body

section

year

T8
’ article

title body

section

year

T25
’ article

title sectionyear

T25
’ article

title sectionyear

…

{del($3)}I11

I35 {del($3),
gen(e$4, $5)}

…

article

title body

section

T15
’

article

title body

section

T16
’

…

{del($3)}I11 {del($3)}I11

I35 {del($3),
gen(e$4, $5)}

…

article

title body

section

T15
’ article

title body

section

T15
’

article

title body

section

T16
’ article

title body

section

T16
’

…

{del($2)}I10

article

year body

section

T10
’ …

{del($2)}I10 {del($2)}I10

article

year body

section

T10
’ article

year body

section

T10
’

T2
’ article

title body

section

year

T2
’ article

title body

section

year

Fig. 3. An example of XML relaxation index structure for the twigT

not a descendant ofIr but all the twigs withinIk use operationr. By doing so, relaxed
twigs that use operationr are either within groupIr or within the groups connected
to Ir by virtual links. For example, internal nodeI7 is connected to internal nodesI16

andI35 via virtual links. Thus, all the relaxed twigs using the operationgen(e$4,$5) are
within the groupsI7, I16 andI35.

XTAH provides several significant advantages: 1) we can efficiently relax a query
based on relaxation constructs by fetching relaxed twigs from internal nodes whose la-
bels satisfy the constructs; 2) we can relax a query at different granularities by traversing
up and down an XTAH; and 3) we can control and schedule query relaxation based on
users’ relaxation control requirements. For example, relaxation control such as non-
relaxable conditions,Rejector UseRTypecan be implemented by pruning XTAH inter-
nal nodes corresponding to unacceptable operations or types.

Due to space limitations, the algorithm for building XTAH is not presented here.
Interested readers should refer to [5] for details.

4.2 XTAH-Guided Query Relaxation Process

Query
Processing

Satisfactory
Answers?

Satisfactory
Answers?

Ranking

Relaxation-
enabled Query

Ranked Answers

XTAHXTAH

YesNo

Relaxed
Queries

Relaxation Control
(Pruning & Scheduling)

Fig. 4. Query relaxation control flow

Fig. 4 presents the control flow of a relaxation process based on XTAH and re-
laxation specifications in a query. TheRelaxation Controlmodule prunes irrelevant
XTAH groups corresponding to unacceptable relaxation operations or types and sched-
ules relaxation operations such asPrefer and RelaxOrder, as specified in the query.

More specifically, the process first searches for exactly matched answers. If there are
enough number of answers available, there is no need for relaxation and the answers are
returned. Otherwise, based on the relaxation control, the algorithm prunes XTAH inter-
nal nodes that correspond to unacceptable operations such as non-relaxable twig nodes
(or edges), unacceptable node relabels and rejected relaxation types. This step can be
efficiently carried out by using internal node labels and virtual links. After pruning dis-
qualified internal groups, based on relaxation constructs and control such asRelaxOrder
andPrefer, theRelaxation Controlmodule schedules and searches for the relaxed query
that best satisfies users’ specifications from the XTAH. This step terminates when either
the stop condition is met or all the constructs have been processed. If further relaxation
is needed, the process then iteratively searches for the relaxed query that is closest to
the original query by distance, which may use relaxation operations in addition to those
specified in the query. This process terminates when either the stop condition holds or
the query cannot be further relaxed. Finally, the process outputs approximate answers.

5 Experimental Evaluations

5.1 Experiment Setup

We have implemented the CoXML system in Java, which consists of a relaxation lan-
guage parser, an XTAH builder, a relaxation controller and a ranking module. The rank-
ing model evaluates the relevancy of an answerA to a queryQ, denoted assim(A,Q),
based on two factors: the structure distance betweenA andQ, struct dist(A,Q), and
the content similarity betweenA andQ, denoted ascont sim(A,Q), as shown in (1).

sim(A,Q) = αstruct dist(A,Q) ∗ cont sim(A,Q) (1)

whereα is a constant between 0 and 1;cont sim(A,Q) is an extended vector
space model for evaluating XML content similarity [2]; andstruct dist(A,Q) is a tree
editing distance metric that evaluates relaxation cost based on its semantics [5].

We use INEX 05 document collection, content-and-structure queries and relevance
assessment (”gold standard”) to study the effectiveness of approximate answers re-
turned by our system. We use the INEX 05 evaluation metric to evaluate experimental
results: normalized extended cumulative gain (nxCG). For a given rank i, the value of
nxCG@i reflects the relative gain an user accumulated up to that rank, compared to the
gain the user could have obtained if the system would have produced the optimum best
ranking. For any rank i, the ideal nxCG@i performance is 1.

5.2 Experimental Results

The first experiment evaluates the effectiveness of our semantic-based tree editing dis-
tance for evaluating structure similarity. We used the 22 single-branch content-and-
structure queries in INEX 05 for the experiment. Table 1 presents the nxCG@10 eval-
uation results (averaged over the 22 queries) with the semantics-based tree editing dis-
tance as compared to that with uniform-cost tree editing distance. The results validate
that differentiating the operation cost improves relaxation performance.

PPPPPPPCost Model
α

0.1 0.3 0.5 0.7 0.9

Uniform 0.25840.26160.28280.28940.2916
Semantic 0.33190.31900.31960.30680.2957

Table 1.The nxCG@10 evaluations of the first experiment
results with semantic vs. uniform tree editing distance.

PPPPPPPControl?
Metric

nxCG@10nxCG@25

Yes 1.0 0.8986
No 0.1013 0.2365

Table 2.The evaluations of the second
experiment results with vs. w/o relax-
ation controls (α = 0.1).

The second experiment tests the effectiveness of relaxation control by comparing
the results with relaxation control against the results without relaxation control for topic
267 in INEX 05 (Fig. 2). The evaluation result in Table 2 demonstrates that relaxation
specifications enable the system to control the relaxation process and thus yield results
with greater relevancy.

6 Conclusion

In this paper, we have developed an XML system that cooperates with users to provide
user-specific approximate query answering. More specifically, we first introduce a re-
laxation language that allows users to specify approximate conditions and relaxation
control requirements in a posed query. We then propose a relaxation index structure,
XTAH, that clusters relaxed twigs into multi-level groups based on relaxation types
and their inter-distances. XTAH enables the system to provide user-desired relaxation
control as specified in the query. Our experimental studies with INEX 05 test collec-
tion reveal the expressiveness of the relaxation language and the effectiveness of using
XTAH for providing user-desired relaxation control.

References

1. S. Amer-Yahia, S. Cho, and D. Srivastava. XML Tree Pattern Relaxation. InEDBT, 2002.
2. S. Liu, Q. Zou, and W.W. Chu. Configurable Indexing and Ranking for XML Information

Retrieval. InSIGIR, 2004.
3. N. Fuhr and K. Großjohann. XIRQL: A Query Language for Information Retrieval in XML

Documents. InSIGIR, 2001.
4. S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman. Structure and Content

Scoring for XML. InVLDB, 2005.
5. W. W. Chu and S. Liu. CoXML: A Cooperative XML Query Answering System. InThe

Encyclopedia of Computer Science and Engineering, Edit by B. Wah. John Wiley & Sons,
Inc, 2007.

6. W.W. Chu, H. Yang, K. Chiang, M. Minock, G. Chow, and C. Larson. CoBase: A Scalable
and Extensible Cooperative Information System.J. Intell. Inform. Syst., 6(11), 1996.

7. Y. Kanza and Y. Sagiv. Flexible Queries Over Semistructured Data. InPODS, 2001.
8. T. Schlieder. Schema-Driven Evaluations of Approximate Tree Pattern Queries. InEDBT,

2002.
9. S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: A Full-Text Search Exten-

sion to XQuery. InWWW, 2004.
10. A. Theobald and G. Weikum. Adding Relevance to XML. InWebDB, 2000.
11. A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivastava. Adaptive Processing of Top-k

Queries in XML. InICDE, 2005.
12. I. Manolescu, D. Florescu, and D. Kossmann. Answering XML Queries on Heterogeneous

Data Sources. InVLDB, 2001.

