
A ScalableBottom-Up Data Mining Algorithm
for Relational Databases

GiovanniGiuffrida
ComputerScienceDept.

UCLA
giovanni@cs.ucla.edu

LeeG. Cooper
AndersonSchool

UCLA
lee.cooper@anderson.ucla.edu

Wesley W. Chu
ComputerScienceDept.

UCLA
wwc@cs.ucla.edu

Abstract

Machinelearninginductionalgorithmsaredifficult to scale
to verylargedatabasesbecauseof their memory-boundna-
ture. Using virtual memoryresultsto a significantperfor-
mancedegradation. To overcomesuch shortcomings,we
developeda classificationrule inductionalgorithmfor rela-
tional databases.Our algorithmusesa bottom-uprule gen-
eration strategy that is more effectivefor miningdatabases
having large cardinality of nominal variables. We have
successfullyusedour algorithm to mine a retail grocery
databasecontainingmore than1.6million recordsin about
5 hourson a dual PentiumprocessorPC.

1. Intr oduction

Machine learning practicehas beenbasedmostly on
memory-boundtechniques. The combinatorialnatureof
the knowledgeinduction processmay rapidly useall the
available(physical)mainmemorywhenmining very large
datasets.As a result,theprocessrelieson thevirtual mem-
ory mechanismavailable in the hostingoperatingsystems
andsignificantlydegradatestheperformances.

In thispaperwepresentKDS (KnowledgeDiscoveryus-
ing SQL), a SQL-basedalgorithmto discoverclassification
rules. KDS hasbeendesignedto work on top of relation
DBMS. The entire learningprocessin KDS is a seriesof
complex SQL queriesexecutedon the relationaldatabase.
Suchqueriesuseoptimizationtechniques(e.g. indexing,
user definedfunctions, etc.) extensively. We have suc-
cessfullyappliedKDS to a real world databasecontaining
1.6 millions records,a size that is usually prohibitive for
memory-boundinductionalgorithms.

1This researchhasbeensupportedby equipmentgrantsfrom Intel Cor-
porationandsoftwaredonationsfrom Microsoft. Thedatawereprovided
by ems,inc. Theassistanceof Penny Baron,WayneLevy, Mike Swisher,
Bill Weissenberg, andParisGogosis gratefullyacknowledged.

2. The KDS algorithm

KDS generatessymbolic “if-then” classificationrules.
Theinput examplesfor KDS aresetsof features. A feature
is a pair

���������	��
���
�����������
��
. Rulesare in the form “if

<condition> then <class-distribution>” in
the styleof CN2 [4]. condition is a conjunctionof se-
lectors. A selectoris an equality testof the form

�����
,

where
�

is anindependentvariableand
�

is oneof its legal
values.class-distribution is a counterdistribution
over thetargetvariable.

KDS was designedto be implementedon top of rela-
tional databasesand is basedon simple conceptsalready
exploitedfor othertypesof learning.As opposedto thema-
jority of memory-boundmachinelearningalgorithms,KDS
is implementedon relationaldatabases.Thus it is disk-
bound. We have implementedKDS in a tightly-coupled
mode[2] with DB2 (acommercialrelationaldatabasefrom
IBM). Optimizationtechniquesavailablein DB2 havebeen
largely exploited (e.g. indexing and User DefinedFunc-
tions). Its integration with DBMS makes KDS more ad-
vantageouswhenvery large numberof records(e.g.: few
millions) areinvolvedin themining processand/orinsuffi-
cientphysicalmemoryis availableto guaranteetraditional
learningsystemsto effectively processsucha largeamount
of data.

Most mining algorithmsarebasedon an eitherdivide-
and-conquer[14] or separate-and-conquer[9] approach.
In both approaches,the input databaseis progressively re-
ducedin sizeateachiteration.Thismakesrulesdiscovered
at the beginning of the processhave a strongerstatistical
supportthan the onesdiscoveredlater. In turn, inducing
rules from small datasetsexacerbatesthe small disjuncts
problem [10]. KDS usesthe conquer-without-separating
approachproposedby Domingos[7] whichovercomessuch
a problem. Thus,all rulesin KDS arealwaysminedfrom
theentiredataset.

Most induction algorithmsusea top-downrule gener-
ation approach. In such an approach,a “for eachpos-

sible selector” loop usually takes place at the time can-
didate rules are generatedand statistically testedon the
mineddataset.This canbe very costly for attributeswith
largecardinality(largevaluesets)whenthousandsof pos-
sible valuesneedto be consideredfor eachattribute. Be-
sidesthe complexity of testingthousandsof selectors,the
methodalso needsto test every possiblecombinationof
selectors. As a result, semanticallymeaninglesscombi-
nations(e.g. “STATUS=pregnant& SEX=male”, “RELI-
GION=catholic& MARITAL-STATUS=married& OCCU-
PATION=priest”) with no coverageon the databaseare
evaluatedanddiscarded.Therefore,top-down rule induc-
tion maybe very costly dueto the statisticaltestof a very
largenumberof meaninglesscombinations.In therealcase
of a retail grocery database,thousandsof manufacturers
would needto be crossed(joined) with hundredsof cat-
egories, which translatesto wasting time for testingnon
existing patternslike: “MANUFACTURER=Coca-Cola&
CATEGORY=Baby-Supplies”. KDS avoids this additional
costby a bottom-uprule generationstrategy.

KDS builds rules incrementallystartingfrom the most
generalrulesto morespecializedones. The processstarts
from themostgeneralpatterns(having only onetermin the
conjunction: 1-term patterns)and thenprogressively spe-
cializesto 2-term, 3-term, and so on. The specialization
is alwaysdrivenby the input database.By doing so, only
combinationsof featuresactuallyexisting in the database
areconsideredasrule specializationselectors.

The KDS algorithmis shown in Figure1. ��� "! repre-
sentsthesetof N-termrules. Theset # containsall theN-
combinationsof the independentvariablesassignedto the
valuesof thecurrentrecord. For instance,considerthe in-
put recordis: $ �%�'&)(*�,+-�.��/102�435�76�/98*�;:

, then the
set # at the seconditeration (N=2) is: $<$ �=�>&)(?�4+@��A/10B:<� $ �"�C&�(*�43B�D6�/98?�;:<� $ +E�F�A/102��3G�H6�/98*�;:<:

. Like-
wise, theset I is constructedfrom the elementsof # . For
instance,for theelement$ ���J&�(*�,+K�L��/10B: of # , I would
be: M �N�O&)(*:<� $ +P�C��/10B:<:

, a setof (N-1)-termpatterns.
Thenotation ��� "!RQTS �<U<UV��WX� specifiesthepopularityof the
pattern

W
in the rule set �Y� "! . W Q 3Z��� S1S is the classvalue

of theinputexample
W

, while �Y� "![Q 3\��� S1S �A]^�,_B� is thefre-
quency of theclass

_
for therule

]
in therule set ��� "! .

2.1. Rule generationand organization

In most induction algorithms,rule generationand rule
rankingphasesaresotightly integratedthat it is difficult to
make a distinction betweenthem. A rule scoringmecha-
nism is usedto generatethe bestrule at eachiteration. In
contrast,in KDS, thereis a distinctseparationbetweenthe
rule generationphaseandthe rule (selectionand) ranking
phase.TheKDS algorithmdoesnot performany rule rank-
ing at therule generationphase.It createsall therulesand

I = inputdatabase;
N = 1;
Flag= True;
While Flag

Flag= False;
R[N] = `)a ;
For eachrecordW in I do

S= ` N-termpatternsfrom W a ;
For eachX in S do

T = ` (N-1)-termpatternsfrom X a ;
If (N=1) or (all elementsin T aresupported)Then

Flag= True;
If X b R[N] then

R[N].supp(X)= R[N].supp(X)+ 1;
Else

R[N] = R[N] cd` X a ;
R[N].supp(X)= 1;

EndIf
R[N].class(X,X.class)++;

EndIf
EndFor

; Pruningbyminimumsupport
For eachY in R[N] do

If R[N].supp(Y) e min-suppThen
R[N] = R[N] - Y;

EndIf
EndFor
N = N + 1;

EndWhile

Figure 1. The KDS Algorithm

arrangesthemin a convenientstructure.Therule selection
andrankingtaskis postponeduntil classificationtime. This
approachis also justified by the KDS goal of supporting
incrementalknowledgediscovery. Ruleshave to be stored
even if poorly scored;successive mining of new incoming
input canupdaterule scoresandreadjustthe global rank2.
Additional studyneedsto be doneto make KDS learn in-
crementally.

KDS typically generatesa largesetof discoveredrules.
Theserulesarestoredin the DBMS in a properstructure
called pattern network. This structureoptimizesrule re-
trieval andspeedsup theclassificationtask.An exampleof
a fragmentof a patternnetwork is shown in Figure2. The
lowestlevelsof thepatternnetwork containthe1-termpat-
terns.Onelevel up arethe2-termpatterns,andsoon. Each
link betweenlower andupperlevels representsa pattern-
specializationoperator. Rulesaremoregeneralin thelower

2KDS performsarulepruningbasedon theminimumsupportconcept.
So,not all rulesarelaterupdateable.Valueof the minimum supportis a
trade-off betweenspeedof execution,storagespaceand the level of in-
crementalitysupported. Furtherstudy needsto be doneto supportfull
incrementality.

Me=7
Mfr=381370
Tpr=None

Me=7
Mfr=381370

f ghhhhhhhhh
Me=7

Tpr=None

i j

Mfr=381370
Tpr=None

klm m m m m m m m m

Me=7

i j n oppppppppppp
Mfr=381370

qrs s s s s s s s s s s
n oppppppppppp

Tpr=None

qrs s s s s s s s s s
i j

Figure 2. A fragment of a Pattern-Netw ork

levels andbecomemorespecificin the upperlevels. The
specializationoperatoris a partial orderon the setof dis-
covered rules. In Figure 2 the 2-term rule “if Me=7 &
Mfr=381370then. . . ” is aspecializationof its two children
“if Me=7 then. . . ” and“if Mfr=381370then. . . ”. This ar-
chitectureeasestheprocessof selectingall rulescontaining
a specificpattern.They aresimply identifiedby all thean-
cestorsof thenodecontainingthepatternof interest.Each
nodeof thepatternnetwork containsthespecificationof the
patternitself andtheclassdistributionvector3.

2.2. Classificationof newobservations

Oncethepatternnetwork hasbeencreated,classification
of new previouslyunseenobservationscantakeplace.Clas-
sificationin KDS is performedthroughthefollowing steps:

1. Rule selection:find all therulescoveringtheobserva-
tion to beclassified.

2. Rule ranking: selectthebestrule(s)accordingto the
rankingcriterion.

3. Classification: assignthe classof the chosenrule(s)
to theinput observation.

Theselectionalgorithmstartsfromthebottomof thepattern
network by activatingthe1-termrulescorrespondingto the
selectorsof theinputexample.Theactivationis thenpropa-
gatedupward,andeachintermediatenodeis activatedonly
if all its childrenareactive aswell. The activation travels
to the highestnodesof thenetwork. At this point all rules
coveringtheinput examplesareselected.All selectedrules
arethenrankedandthebestoneis chosen.Thebestclassof
thechosenrule is thepredictedclassfor theinput example.

The patternnetwork structureprovidesa flexible struc-
ture for developing different ad-hoc rule ranking criteria.
Domain knowledgecan be easily modeledin the ranking
method.

3In theimplementationof KDS otherdata(entropy, rulecoverage,etc.)
areassociatedto theclassdistribution vector.

2.3. CostAnalysis

KDS worksbasedonaprogressivebreadth-firstrulespe-
cialization.Thenth iterationcreatesall then-termrulesex-
isting in theinputdatabase.Therulespecializationfunction
is a monotonicoperator, decreasinguponeachapplication
from moregeneralto morespecificpatterns.The process
is haltedassoonasfurtherspecializationleadsto coverage
below thespecifiedminimumsupportfor all new generated
rules. As alreadymentioned,KDS makesa cleardistinc-
tion betweentherule generationandrule selection/ranking
phase.Therule generationperformsa total of t iterations,
wheret is themaximumnumberof termsin thepatternsbe-
fore thecoveragedropsbelow theminimumsupportvalue
(for all the new rules.) Actually, a maximumvalue of t
is set. By doingso,we allow only a maximumnumberof
termsin therule antecedents:conjunctionswith largenum-
ber of termstendto be moredifficult to be interpretedby
users.Therefore,the while loop in the algorithmhascostu � twv
�� where

is thenumberof input examples.Thenth

iteration is baseduponthe resultsof the (n-1)th iteration.
For instance,it is necessary(but not sufficient) for adding
the new pattern“a&b&c” at the 3rd iteration that “a&b”,
“a&c”, “b&c” areall supported.The cardinality S of the
set # in the algorithmshown above at the nth iteration is�yx{z � �|x}����~����Zx ! , where

�
is thetotalnumberof independent

variables. The set # containsthe candidatesfor new pat-
ternsto beaddedto therule set.For eachelementof # the
setof sub-patternsis generatedandstoredin theset I . For
eachelementof I a lookup(with logarithmiccost)is exe-
cuteduntil oneelementis not supportedor all theelements
have beenverified to be supported.In the worst case � IG�
lookupshave to be performedfor eachelementof # . The
total costbecomes:

u � t2v
 v9� #��\v�� IG�\v ��/������A��� where
�
is the

sizeof the ��� �B~�& ! setat thenth iteration.Furthermore,for
eachiterationa pruningloop is executedto removeall new
rulesthatarenot supported.This hasa minor costthatcan
beomittedin thecomputation.

2.4. KDS Application Domain

The absenceof a “for eachselector” loop and its lin-
ear time cost with respectto the numberof input exam-
plesmakesKDS well suitedfor mining datasetswith large
valuesetsandlargenumberof tuples.However, KDS does
not scalewell to datasetswith a large numberof indepen-
dentvariables.Thus,KDS applieswell to datasetswith (1)
a large numberof records,(2) large value setsand (3) a
small numberof independentvariables. Conversely, top-
down separate-and-conqueralgorithmshave a betterfit for
datasetswith (1) asmallnumberof records,(2) smallvalue
setsand(3) a largenumberof independentvariables.

TheSQLbasednatureof KDS is beneficialwhenthesize

of a problemis too big to fit in physicalmemory. Smaller
datasetscan be betterprocessedby other memory-bound
inductionalgorithms[13].

The executionof KDS on a real world large database
(1.6millions records,6 independentvariablesfor a total of
4,334differentvalues)requiredatotalof about5 hoursona
dualPentiumProsystemwith 128Mbof physicalmemory
andover30Gbof diskstorage.For thesakeof performance
comparison,the samedatabasewasalsousedas input for
Ripper[5]. The latter ran on the samedatasetfor 21 days
(no otherprocessrunningat the sametime) without com-
pleting the task(we hadto kill the process).OnceRipper
exhaustedthe physicalmemoryit resortedto usingvirtual
memory(setup to 1 Gb), resultingin a tremendousperfor-
mancedecrease.

3. RelatedWork

Recently, integrationof datamining algorithmswith re-
lational databaseshas beenreceiving attention. Provost
andKolluri [13] mentionthe problemof mining relational
databases(insteadof asingleflat file) andtheintegrationof
KDD with DBMS asa directionin scalingup to very large
datasets(whennotenoughmainmemoryis available.)John
andLent [11] proposea middle layerbetweendatamining
algorithmsandSQL systems.They outlineanimplementa-
tion of C4.5[14] andaBayesianclassifierby usingtheirSIP
methodology. Agrawal andShim[2] describea methodol-
ogyfor developingdataminingapplicationstightly coupled
with relationalsystems.In theirpaperthey describetheim-
plementationof theApriori algorithm[1] for miningassoci-
ationrules.Apriori is basedonabottom-uprulegeneration
approachsimilar to KDS.

SLIQ [12], a classifierfor disk-residentdatasets,builds
classificationtrees. SLIQ is basedon the “divide-and-
conquer”strategy followedby thetreeinductionalgorithms.
As reportedin thepaper, SLIQ scalesalmostlinearly with
the numberof training examplesand the numberof at-
tributes. However, no scalability reportwasdiscussedfor
increasingcardinality of nominal variables(the problem
was however recognizedby the authorsas a difficult one
for largevaluesets).

Numerous“separate-and-conquer”strategy basedalgo-
rithms have beenproposedin the past. Furnkranz[9] lists
and classifies40 of them. The “divide-and-conquer”ap-
proachis basicallyusedby all thetreeinductionalgorithms
rootedin the work of Quinlan [14]. Domingosproposes
a “conquer-without-separation”approachfor his CWSand
RISEsystems[7, 8]. His “without-separation”approachis
orientedto solve theproblemof progressive fragmentation
of theinput dataset.Domingos[6] shows how sucha tech-
niqueachievessubstantialimprovementsin accuracy when
mining databaseswith largenumberof disjuncts(eachone

covering few training records). Aronis and Provost [3]
tacklethe inefficiency of inductionalgorithmswhenwork-
ing with largevaluesetsin theinputdatabase.They propose
a generalpre-processingtechniqueto speedup the subse-
quentmining task.

4. Conclusions

We presentedKDS, a (classification)rule inductional-
gorithm for relationaldatabases.KDS usesa bottom-up
strategy during rule specialization. This saves computa-
tion timeby testingonly combinationsof featuresthatexist
in the mineddataset.This strategy is effective for mining
largedatabasescontainingattributeswith largecardinality.
KDS scaleslinearlywith thenumberof trainingrecordsand
the cardinalityof nominalvariables.However, it doesnot
scalewell with thenumberof attributes.We have success-
fully appliedKDS to discover classificationrules from a
real world grocery retailer databasecontainingabout1.6
millions records. The processingtime wasabout5 hours
on a DualPentiumProPCsystem.

References

[1] R. Agrawal, H. Mannila,R. Srikant,H. Toivonen,andV. A.
I. Fastdiscoveryof associationrules.In Advancesin Knowl-
edge DiscoveryandDataMining, 1996.

[2] R. Agrawal andK. Shim. Developingtightly-coupleddata
mining applicationson a relationaldatabasesystem.KDD-
96, 1996.

[3] J. M. Aronis andF. J. Provost. Increasingtheefficiency of
datamining algorithmswith breadth-firstmarker propaga-
tion. KDD-97, 1997.

[4] P. Clark andT. Niblett. Thecn2 inductionalgorithm. Ma-
chineLearning, 1(3),1989.

[5] W. W. Cohen. Fasteffective rule induction. Procsof 12th
Int.l Conf. onMachineLearning, 1995.

[6] P. Domingos.Therisesystem:Conqueringwithoutseparat-
ing. Procs.of the6th IEEEIntern.Conf. onToolswith Artif.
Intelligence, 1994.

[7] P. Domingos.Linear-timerule induction.KDD-96, 1996.
[8] P. Domingos. Unifying instance-basedand rule-basedin-

duction.MachineLearning, 24:141–168,1996.
[9] J. Furkranz.Separate-and-conquerrule learning.Technical

ReportOEFAI-TR-96-25, 1996.
[10] R. Holte, L. E. Acker, andB. Porter. Conceptlearningand

the problemof small disjuncts. Procsof 11th Intern. Joint
Conferenceon Artificial Intelligence, 1989.

[11] G. H. Johnand B. Lent. Sipping from the datafirehose.
KDD-97, 1997.

[12] M. Metha,R.Agrawal, andJ.Rissanen.Sliq: A fastscalable
classifierfor datamining. Proc. of the Fifth Int’l Conf. on
ExtendingDatabaseTechnology, 1996.

[13] F. ProvostandV. Kolluri. Scalingup inductive algorithms:
An overview. KDD-97, 1997.

[14] J.R. Quinlan.C4.5: Programsfor MachineLearning. Mor-
ganKaufmann,1993.

