A ScalableBottom-Up Data Mining Algorithm
for Relational Databases

GiovanniGiuffrida LeeG. Cooper Wesley W. Chu
ComputerScienceDept. AndesonSdool ComputerScienceDept.
UCLA UCLA UCLA

giovanni@cs.ucla.edu

Abstract

Machinelearninginductionalgorithmsare difficult to scale
to verylarge database®ecausf their memory-bounaa-
ture. Usingvirtual memoryresultsto a significantperfor-
mancedegradation. To overcomesud shortcomingswe
developedh classificatiorrule inductionalgorithmfor rela-
tional databasesOur algorithmusesa bottom-uprule gen-
eration strategy thatis more effectivefor mining databases
having large cardinality of nominal variables. We have
successfullyusedour algorithm to mine a retail grocery
databasecontainingmore than 1.6 million recodsin about
5 hours on a dual PentiumprocessoPC.

1. Intr oduction

Machine learning practice has been basedmostly on
memory-boundechniques. The combinatorialnature of
the knowledge induction processmay rapidly use all the
available (physical)main memorywhenmining very large
datasetsAs aresult,the procesgelieson the virtual mem-
ory mechanismavailablein the hostingoperatingsystems
andsignificantlydegradateshe performances.

In this papemwe presenKDS (KnowledgeDiscovery us-
ing SQL), a SQL-basedlgorithmto discover classification
rules. KDS hasbeendesignedo work on top of relation
DBMS. The entirelearningprocessn KDS is a seriesof

complex SQL queriesexecutedon the relationaldatabase.

Suchqueriesuse optimizationtechniquege.g. indexing,
user definedfunctions, etc.) extensvely. We have suc-
cessfullyappliedKDS to a real world databaseontaining
1.6 millions records,a size that is usually prohibitive for
memory-boundnductionalgorithms.

1This researcthasbeensupportedy equipmengrantsfrom Intel Cor-
porationandsoftware donationsrom Microsoft. The datawere provided
by ems,inc. Theassistancef Penty Baron,WayneLevy, Mike Swisher
Bill Weissenbey, andParis Gogosis gratefullyacknavledged.

leecooper@andeson.ucla.edu

wwc@cs.ucla.edu

2. The KDS algorithm

KDS generatesymbolic “if-then” classificationrules.
Theinputexamplesfor KDS aresetsof featues A feature
is a pair (argument, value). Rulesarein the form “i f
<condi tion> then <class-distribution>"in
the styleof CN2[4]. condi ti on is a conjunctionof se-
lectors. A selectoris an equalitytestof theforma = A,
whereq is anindependenvariableand A is oneof its legal
values.cl ass-di stri buti on is acounterdistribution
overthetargetvariable.

KDS was designedto be implementedon top of rela-
tional databasesind is basedon simple conceptsalready
exploitedfor othertypesof learning.As opposedo thema-
jority of memory-boundnachindearningalgorithms KDS
is implementedon relational databases.Thus it is disk-
bound We have implementedKDS in a tightly-coupled
mode[2] with DB2 (acommerciakelationaldatabasérom
IBM). Optimizationtechniquesvailablein DB2 have been
largely exploited (e.g. indexing and User Defined Func-
tions). lIts integration with DBMS makes KDS more ad-
vantageousvhenvery large numberof records(e.g.: few
millions) areinvolvedin the mining processand/orinsuffi-
cientphysicalmemoryis availableto guarantedraditional
learningsystemgo effectively processucha largeamount
of data.

Most mining algorithmsare basedon an eitherdivide-
and-conquer[14] or sepaate-and-conquef9] approach.
In both approachesthe input databasés progressiely re-
ducedin sizeateachiteration. This makesrulesdiscovered
at the beginning of the processhave a strongerstatistical
supportthan the onesdiscoveredlater. In turn, inducing
rules from small datasetsxacerbateghe small disjuncts
problem[10]. KDS usesthe conquerwithout-sepaating
approactproposedy Domingog 7] which overcomesuch
a problem. Thus,all rulesin KDS arealwaysminedfrom
theentiredataset.

Most induction algorithmsuse a top-downrule gener
ation approach. In suchan approach,a “for eachpos-

sible selector”loop usually takes place at the time can-
didate rules are generatedand statistically testedon the
mined dataset. This canbe very costly for attributeswith
large cardinality (large value sets)whenthousand®f pos-
sible valuesneedto be consideredor eachattribute. Be-
sidesthe compleity of testingthousandof selectorsthe
methodalso needsto test every possiblecombinationof
selectors. As a result, semanticallymeaninglesssombi-
nations(e.g. “STATUS=pmgnant& SEX=male”, “RELI-
GION=catholic& MARITAL-STATUS=married& OCCU-
PATION=priest”) with no coverageon the databaseare
evaluatedanddiscarded. Therefore,top-dowvn rule induc-
tion may be very costly dueto the statisticaltestof a very
largenumberof meaninglessombinationsin therealcase
of a retail grocery databasethousandsof manugcturers
would needto be crossed(joined) with hundredsof cat-
egories, which translatesto wastingtime for testingnon
existing patternslike: “MANUFACTURER=Coca-Cola&
CATEGORY=Baby-Supplies’ KDS avoids this additional
costby abottom-uprule generatiorstrateyy.

KDS builds rulesincrementallystartingfrom the most
generalrulesto more specializedbnes. The processstarts
from the mostgenerapatternghaving only onetermin the
conjunction: 1-term patterns)and then progressiely spe-
cializesto 2-term 3-term andso on. The specialization
is alwaysdriven by the input database By doing so, only
combinationsof featuresactually existing in the database
areconsideredsrule specializatiorselectors.

The KDS algorithmis shovn in Figurel. R[N] repre-
sentsthe setof N-termrules. The setS containsall the N-
combinationsof the independentariablesassignedo the
valuesof the currentrecord. For instance considerthe in-
put recordis: {a = 10,b = low,c = john}, thenthe
set S at the seconditeration (N=2) is: {{a = 10,b =
low}, {a = 10,c = john},{b = low,c = john}}. Like-
wise, thesetT is constructedrom the elementf S. For
instancefor theelement{a = 10, b = low} of S, T would
be: {{a = 10}, {b = low}}, asetof (N-1)-termpatterns.
ThenotationR[N].supp(X) specifieghe popularityof the
patternX in therule setR[N]. X.class is the classvalue
of theinputexampleX, while R[N].class(Y, C) is thefre-
queng of theclassC for theruleY in therule setR[NV].

2.1 Rule generationand organization

In mostinduction algorithms, rule generationand rule
rankingphasesresotightly integratedthatit is difficult to
male a distinction betweenthem. A rule scoringmecha-
nismis usedto generatehe bestrule at eachiteration. In
contrastjn KDS, thereis a distinct separatiorbetweerthe
rule generatiorphaseandthe rule (selectionand) ranking
phase TheKDS algorithmdoesnot performary rule rank-
ing attherule generatiorphase.lt createsall therulesand

| =inputdatabase;
N=1,
Flag= True;
While Flag
Flag= False;
RIN] ={};
For eachrecordW in | do
S= {N-termpatterndrom W},
ForeachX in Sdo
T = {(N-1)-termpatternsrom X};
If (N=1) or (all elementsn T aresupported)hen
Flag= True;
If X € R[N] then
RIN].supp(X)= R[N].supp(X)+ 1;
Else
RIN] = RIN] U {X};
RIN].supp(X)= 1;
EndIf
R[N].class(X,X.class)++;
EndIf
EndFor

; Pruning by minimumsupport
For eachY in R[N] do
If R[N].supp(Y) < min-suppThen
R[N] =R[N] - Y;
EndIf
EndFor
N=N+1;
EndWhile

Figure 1. The KDS Algorithm

arrangegshemin a corvenientstructure.Therule selection
andrankingtaskis postponedintil classificatiortime. This
approachis also justified by the KDS goal of supporting
incrementaknowledgediscovery. Ruleshave to be stored
evenif poorly scored;successie mining of new incoming
input canupdaterule scoresandreadjustthe global ranke.
Additional study needsto be doneto make KDS learnin-
crementally

KDS typically generates large setof discoveredrules.
Theserulesare storedin the DBMS in a properstructure
called pattern network This structureoptimizesrule re-
trieval andspeedsaup the classificatiortask. An exampleof
afragmentof a patternnetwork is shovn in Figure2. The
lowestlevels of the patternnetwork containthe 1-termpat-
terns.Onelevel up arethe 2-termpatternsandsoon. Each
link betweenlower and upperlevels represents pattern-
specializatioroperator Rulesaremoregeneralin thelower

2KDS performsarule pruningbasecn the minimumsupportconcept.
So, not all rulesarelater updateable Value of the minimum supportis a
trade-of betweenspeedof execution,storagespaceand the level of in-
crementalitysupported. Further study needsto be doneto supportfull
incrementality

Me=7
Mfr=381370
Tpr=None
Me=7 Me=7 Mfr=381370
Mfr=381370 Tpr=None Tpr=None
Me=7 Mfr=381370 Tpr=None

Figure 2. A fragment of a Pattern-Netw ork

levels and becomemore specificin the upperlevels. The
specializationoperatoris a partial orderon the setof dis-
coveredrules. In Figure 2 the 2-termrule “if Me=7 &

Mfr=381370then...” is aspecializatiorof its two children
“if Me=7then...” and“if Mfr=381370then...”. Thisar

chitectureeasesheprocesof selectingall rulescontaining
a specificpattern. They aresimply identifiedby all the an-
cestorsof the nodecontainingthe patternof interest.Each
nodeof the patternnetwork containghespecificatiorof the
patternitself andthe classdistribution vectoP.

2.2 Classificationof new obsewations

Oncethepatternnetwork hasbeencreatedglassification
of new previously unseerobsenationscantake place.Clas-
sificationin KDS is performedhroughthefollowing steps:

1. Rule selection:find all therulescoveringtheobsena-
tion to beclassified.

2. Ruleranking: selectthe bestrule(s)accordingto the
rankingcriterion.

3. Classification: assignthe classof the chosenrule(s)
to theinput obsenation.

Theselectioralgorithmstartsfrom thebottomof thepattern
network by activatingthe 1-termrulescorrespondingo the
selector®f theinputexample.Theactiationis thenpropa-
gatedupward,andeachintermediatenodeis activatedonly
if all its childrenareactive aswell. The activationtravels
to the highestnodesof the network. At this pointall rules
coveringtheinputexamplesareselectedAll selectedules
arethenrankedandthebestoneis chosenThebestclassof
thechoserruleis the predictedclassfor theinput example.

The patternnetwork structureprovidesa flexible struc-
ture for developing differentad-hocrule ranking criteria.
Domain knowledgecan be easily modeledin the ranking
method.

3In theimplementatiorof KDS otherdata(entroy, rule coveragegtc.)
areassociatedo the classdistribution vector

2.3 CostAnalysis

KDS worksbasednaprogressiebreadth-fistrule spe-
cialization. Thenth iterationcreatesll the n-termrulesex-
istingin theinputdatabaseTherule specializatiorfunction
is a monotonicoperatoy decreasingipon eachapplication
from more generalto more specificpatterns. The process
is haltedassoonasfurther specializatiorleadsto coverage
below the specifiedminimumsupportfor all new generated
rules. As alreadymentioned KDS makesa clear distinc-
tion betweertherule generatiorandrule selection/ranking
phase.Therule generatiorperformsa total of & iterations,
wherek is themaximumnumberof termsin thepatternde-
fore the coveragedropsbelov the minimum supportvalue
(for all the new rules.) Actually, a maximumyvalue of &
is set. By doing so, we allow only a maximumnumberof
termsin therule antecedentsconjunctionswith large num-
ber of termstendto be more difficult to be interpretedby
users. Therefore the while loop in the algorithmhascost
O(k - e) wheree is the numberof input examples.The nth
iterationis baseduponthe resultsof the (n-1)th iteration.
For instancejt is necessarybut not sufiicient) for adding
the new pattern“a&b&c” at the 3rd iteration that “a&b”,
“a&c”, “b&c” areall supported. The cardinality s of the
setS in the algorithm shovn above at the nth iterationis
al/[n!(a — n)!], wherea is thetotal numberof independent
variables. The setS containsthe candidatedor new pat-
ternsto be addedto therule set. For eachelementof S the
setof sub-patternss generateéndstoredin the setT'. For
eachelementof T' a lookup (with logarithmiccost)is exe-
cuteduntil oneelements not supportecdr all the elements
have beenverified to be supported.In the worst case|T|
lookupshave to be performedfor eachelementof S. The
total costbecomesO(k - e - |S| - |T| - log(l)) wherel is the
sizeof the R[n — 1] setatthenth iteration. Furthermorefor
eachiterationapruningloop is executedto remove all new
rulesthatarenot supported.This hasa minor costthatcan
be omittedin the computation.

2.4. KDS Application Domain

The absenceof a “for eachselector’loop andits lin-
ear time costwith respectto the numberof input exam-
plesmakesKDS well suitedfor mining datasetsvith large
valuesetsandlarge numberof tuples.However, KDS does
not scalewell to datasetwith a large numberof indepen-
dentvariables.Thus,KDS applieswell to datasetsvith (1)
a large numberof records,(2) large value setsand (3) a
small numberof independenvariables. Corversely top-
down separate-and-conqualgorithmshave a betterfit for
datasetsvith (1) asmallnumberof records(2) smallvalue
setsand(3) alargenumberof independentariables.

TheSQLbasechatureof KDS is beneficialwhenthesize

of a problemis too big to fit in physicalmemory Smaller
datasetscan be better processedy other memory-bound
inductionalgorithmg[13].

The executionof KDS on a real world large database
(1.6 millions records 6 independentariablesfor a total of
4,334differentvalues)equiredatotal of about5 hoursona
dual PentiumPro systemwith 128Mb of physicalmemory
andover 30Gbof disk storage For the sale of performance
comparisonthe samedatabasevas also usedasinput for
Ripper[5]. The latter ran on the samedatasefor 21 days
(no otherprocessunning at the sametime) without com-
pleting the task (we hadto kill the process).OnceRipper
exhaustedhe physicalmemoryit resortedto usingvirtual
memory(setup to 1 Gb), resultingin atremendougperfor
mancedecrease.

3. RelatedWork

Recently integrationof datamining algorithmswith re-
lational database$as beenreceving attention. Provost
andKolluri [13] mentionthe problemof mining relational
databaseg@nsteadof a singleflat file) andtheintegrationof
KDD with DBMS asa directionin scalingup to very large
dataset$whennotenoughmainmemoryis available.)John
andLent[11] proposea middle layer betweendatamining
algorithmsandSQL systemsThey outlineanimplementa-
tion of C4.5[14] andaBayesiarclassifietby usingtheir SIP
methodology Agrawal and Shim [2] describea methodol-
ogy for developingdatamining applicationgightly coupled
with relationalsystemsin their paperthey describeheim-
plementatiorof the Apriori algorithm[1] for mining associ-
ationrules. Apriori is basedn abottom-uprule generation
approactsimilarto KDS.

SLIQ [12], aclassifierfor disk-residentatasetsbuilds
classificationtrees. SLIQ is basedon the “divide-and-
conquer’strategy followedby thetreeinductionalgorithms.
As reportedin the paper SLIQ scalesalmostlinearly with
the number of training examplesand the numberof at-
tributes. However, no scalability reportwas discussedor
increasingcardinality of nominal variables(the problem
was however recognizedby the authorsas a difficult one
for largevaluesets).

Numerous‘separate-and-conquestratgy basedalgo-
rithms have beenproposedn the past. Furnkranz[9] lists
and classifies40 of them. The “divide-and-conquerap-
proachis basicallyusedby all thetreeinductionalgorithms
rootedin the work of Quinlan[14]. Domingosproposes
a “conquerwithout-separationapproacHor his CWSand
RISE systemd7, 8]. His “without-separation’approachs
orientedto solve the problemof progressie fragmentation
of theinput dataset Domingos[6] shavs how suchatech-
nigueachiezessubstantialmprovementsn accurag when
mining databasewith large numberof disjuncts(eachone

covering few training records). Aronis and Provost [3]
tackletheinefficiency of inductionalgorithmswhenwork-
ing with largevaluesetsin theinputdatabaseThey propose
a generalpre-processingechniqueto speedup the subse-
guentmining task.

4. Conclusions

We presentedKDS, a (classification)rule induction al-
gorithm for relationaldatabases.KDS usesa bottom-up
stratgyy during rule specialization. This saves computa-
tion time by testingonly combinationf featureshatexist
in the mined dataset.This strat@y is effective for mining
large databasesontainingattributeswith large cardinality
KDS scaledinearlywith thenumberof trainingrecordsand
the cardinality of nominalvariables. However, it doesnot
scalewell with the numberof attributes. We have success-
fully appliedKDS to discover classificationrules from a
real world groceryretailer databasecontainingabout 1.6
millions records. The processingime was about5 hours
onaDual PentiumProPCsystem.

References

[1] R.Agrawal, H. Mannila,R. Srikant,H. Toivonen,andV. A.
I. Fastdiscovery of associatiomules.In Advancesn Knowl-
edee Discoveryand Data Mining, 1996.

[2] R. Agrawal andK. Shim. Developingtightly-coupleddata
mining applicationson a relationaldatabasesystem.KDD-
96, 1996.

[3] J.M. Aronis andF. J. Provost. Increasingthe efficiengy of
datamining algorithmswith breadth-firstmarker propaga-
tion. KDD-97, 1997.

[4] P. ClarkandT. Niblett. The cn2inductionalgorithm. Ma-
chineLearning 1(3),1989.

[5] W. W. Cohen. Fasteffective rule induction. Procsof 12th
Int.I Conf onMachineLearning 1995.

[6] P. Domingos.Therisesystem:Conqueringvithoutseparat-
ing. Procs.of the 6th IEEE Intern. Conf on Toolswith Artif.
Intelligence 1994.

[7] P. Domingos.Lineartime rule induction. KDD-96, 1996.

[8] P. Domingos. Unifying instance-basednd rule-basedn-
duction. Machine Learning 24:141-1681996.

[9] J.Furkranz.Separate-and-conqueile learning. Technical
ReportOEFAI-TR-96-251996.

[10] R.Holte,L. E. Acker, andB. Porter Conceptlearningand
the problemof small disjuncts. Procsof 11th Intern. Joint
Confeenceon Artificial Intelligence 1989.

[11] G. H. JohnandB. Lent. Sipping from the datafirehose.
KDD-97, 1997.

[12] M. Metha,R. Agrawal, andJ.RissanenSlig: A fastscalable
classifierfor datamining. Proc. of the Fifth Int’l Conf on
ExtendingDatabaseTecnolagy, 1996.

[13] F ProvostandV. Kolluri. Scalingup inductive algorithms:
An overvien. KDD-97, 1997.

[14] J.R.Quinlan.C4.5: Programsfor Machine Learning Mor-
ganKaufmann,1993.

