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Abstract

A new query formulation system based on a seman-
tic graph model is presented. The graph provides a
semantic model for the data in the database with user-
de�ned relationships. The query formulator allows
users to specify their requests and constraints in high-
level concepts. The query candidates are formulated
based on the user input by a graph search algorithm
and ranked according to a probabilistic information
measure. English-like query descriptions can also be
provided for users to resolve ambiguity when multiple
queries are formulated from a user input. For complex
queries, we introduce an incremental approach, which
assists users to achieve a complex query goal by formu-
lating a series of simple queries. A prototype system
with a multimodal interface using the high-level query
formulation techniques has been implemented on top of
a cooperative database system (CoBase) at UCLA.

1 Introduction

Many database applications require users to for-

mulate ad-hoc queries instead of invocation of pre-

compiled and stored queries. Thus there is a need to

develop an intelligent query interface to allow users to

specify queries by high-level concepts and constraints.

There are various techniques for formulating sim-

ple SELECT-PROJECT-JOIN (or SPJ) queries, such

as universal relation model [1, 2] and Steiner tree ap-

proach [3]. The universal relation model [1, 2] based on

the uniqueness assumption of relationships attempts

to relieve users of the burden of specifying joins. How-

ever, it does not allow arbitrary user-de�ned concepts

in a model, thus limiting its applicability [4]. Tree

schemas derived from a cyclic schema by its maximal

object theory may limit the queries that can be for-

mulated.

Wald and Sorenson [3] formalized the query comple-

tion as a Steiner tree problem, and presented a search

algorithm for partial 2-tree graphs. They used a de-

terministic directed cost for the edges, such as the car-
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dinality of relationships, to measure the complexity of

queries. Ioannidis and Lashkari [5] considered path ex-

pression completion in object-oriented queries with a

partial order relationship between di�erent paths for

ranking. All these query formulation methods can only

generate simple queries.

In [6], three high-level interfaces to database sys-

tems are discussed. These interfaces are concerned

with browsing the database, retrieving neighborhood

answers (similar-to) and providing a exible interface

where no query is rejected and explanations are given

for null answers. The use of database contexts for

disambiguating queries is developed in [7]. Dialogue is

carried out with the user using a dialogue tree to deter-

mine what additional attributes the user is interested

in.

It has been a di�cult problem to formulate complex

queries. In SQL, complex queries contain subqueries

or the \HAVING" clause. Only when the query tools

can support complex queries, will they be practical

for end-users to solve real-world tasks.

There are some existing approaches to complex

queries with limited success. Natural language in-

terfaces to databases [8, 9] usually use pattern-based

methods or parsing to translate a natural language

input into a logical form and then to a query, which

sometime is complex. The obstable is that it is usually

di�cult to understand an input for complex queries

expressed in a natural language. Some other systems

use visual languages with object-oriented techniques

to compose complex queries by using high-level ob-

jects representing complex functions. [10] presents a

methodology for using icons to query a database called

Query By Icon (QBI). Each icon represents an object

and provides a view of the database from the point of

view of the object. A Binary Graph Model is used as

the underlying semantic model. A progressive query-

ing interface is presented in [11] in the visual program-

ming paradigm with limited capabilities. We have

developed a general graph search approach to formu-

lating SPJ queries from incomplete user input. Our

query formulator can formulate SPJ queries with ag-

gregate functions and certain cyclic queries. Further,



we present an incremental approach that uses multiple

SPJ queries to solve a complex query.

In our approach, a semantic graph, which mod-

els the objects in the database and user-de�ned re-

lationships, can be semi-automatically generated from

a database schema. Based on a graph search method,

queries can be formulated by �nding a set of paths in

the semantic graph which encompasses the user input.

Since it is possible to have multiple path sets for a

given input, the system ranks the candidates based on

the amount of information present in the nodes and

links of the paths.

In an incremental query session, a subsequent query

may use the results of the preceding queries (called de-
rived relations) in addition to relations in the database.
At each step, the user decides the next query step

based on the intermediate results obtained. The sys-

tem can also compose a complex query from the SPJ

queries without executing them at each step if the user

is not interested in knowing the intermediate result.

Solving complex queries in such a manner mimics the

human cognitive process and also provides a new way

to formulate complex queries from a series of simple

queries.

Our query formulation technique has several unique

features. First, it does not have speci�c limitations

on the graph structure, as required in [3], and it al-

lows user-de�ned relationships incorporated into the

graph. Therefore, it can be applied to most relational

databases. Furthermore, some cyclic queries can be

formulated, while previous systems were limited to tree

queries only. Second, a probabilistic information mea-

sure is used for query ranking, which is adaptive to

user feedback. Third, The search algorithm combines

heuristics and exhaustive search with pruning, and is

e�cient and scalable. Finally, incremental query for-

mulation provides a promising technique to extend the

formulation capability beyond simple SPJ queries.

The rest of the paper is organized as follows. A

discussion of the semantic graph is given in section 2.

Section 3 describes query formulation from high-level

concepts. Section 4 presents incremental query formu-

lation for complex queries. Implementation and expe-

rience are presented in Section 5. Finally, a conclusion

is given in section 6.

2 The Semantic Graph Model

In our semantic graph model for relational

databases, nodes are used to represent relations and

links are used to represent joins. Together they rep-

resent the following semantic constructs: (1) strong

and weak entity types; (2) ISA relationship between

entities; (3) HAS relationship between a strong and a
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Figure 1: Semantic graph for the transportation

database.

weak entity; (4) simple link between entities without

its own properties; (5) complex association between

entities with its own properteis; and (6) user-de�ned

relationships between entities. In addition, our seman-

tic graph model contains more information to support

user query interfaces and query formulation mecha-

nisms.

Formally, a semantic graph for a relational database
is a weighted undirected graph G = (V;E), where each

node in the set of nodes V corresponds to a relation,

and each link in the set of links E corresponds to a

join between relations of the link's two end nodes.

The joins can be natural or user-de�ned. Associated

with each node and link is a conceptual term that can

be used by the user to refer to the corresponding ele-

ments in the graph. Weights are assigned to the nodes

and links in accordance with their relative importance,

which are used in the query formulation. Lexical infor-

mation is used to support English-like query descrip-

tions.

As an example, part of the transportation database

semantic graph is shown in Figure 1. It contains in-

formation about airports, aircrafts, seaports, chan-

nels, ships, etc. The link (AIRPORTS) HAVE (RUNWAYS)

is an example of a natural join link, while the

link (AIRCRAFTS with AIRFIELD CHARS) CAN LAND (on

RUNWAYS) is an example of a user-de�ned link. There

are no self-join links in this graph. Note that the

weight of each link is shown along the link, which gives

a relative measure of the speci�city of the link.

2.1 Semantics of Subgraphs and Queries

A link in a semantic graph represents a join. For
example, in the transportation semantic graph, \CAN
LAND" is a user-de�ned link between
AIRCRAFT AIRFIELD CHARS and RUNWAYS. It corre-
sponds to a complex join condition:
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Figure 2: A query topic for \aircraft can land on air-

ports at geographical locations of countries".

AIRCRAFT_AIRFIELD_CHARS.WT_MIN_AVG_LAND_DIST_FT

<= RUNWAYS.RUNWAY_LENGTH_FT AND

AIRCRAFT_AIRFIELD_CHARS.WT_MIN_RUNWAY_WIDTH_FT

<= RUNWAYS.RUNWAY_WIDTH_FT

In general, a connected subgraph represents a rela-

tional algebraic expression consisting of a set of joins

represented by the links. We call a connected subgraph

a query topic, as shown in Figure 2.

The algebraic query expression corresponding to the

query topic in Figure 2 contains four joins. When it is

evaluated against the database, each of the resulting

tuples will contain information about the air�eld char-

acteristics of an aircraft type, a runway, its airport, its

geographical location information, and its country in-

formation, such that an aircraft of the aircraft type can

land on the runway of the airport at the geographical

location of the country.

Users are usually only interested in a subset of the

tuples generated from the evaluation of a query topic

by imposing selection conditions (i.e. constraints) on

the topic. For example, the user can specify the

aircraft type to be \C-5", and the country to be

\Tunisia". We call these query constraints on the

query topic.

A query aspect of a query topic is a list of attributes
(and their expressions) that are contained in the nodes

of the query topic. A query aspect corresponds to the

select list of an SQL query or the projection part of

an algebraic expression. The query topic, constraints,

and aspect together can be converted into an algebraic

query expression.

2.2 Semi-automatic Generation of Se-
mantic Graph

In current database systems, after a semantic model

is converted into relations, it is no longer stored in

the data model (i.e. the schema). Thus we have to

use reverse engineering[12] to reconstruct the semantic

model from a database schema. However, the mapping

from a relational model to a semantic model, such as

the extended entity-relationship (EER) model [13], is

not one-to-one. Therefore, in general human interven-

tion is needed to construct the semantic model from

the corresponding database schema.

An initial semantic graph model can be automati-

cally generated based on all the natural join links be-

tween relations. User-de�ned links can then be added.

Other information, such as conceptual terms, can be

assigned to the nodes and links.

A natural join between two relations usually repre-

sents a relationship through a key and a foreign key1.

If the same names are used for attributes referring to

the same domain, natural join links between relations

in a database schema can be automatically generated

based on the corresponding key attribute names. How-

ever, the same attribute name may refer to di�erent

domains, and two di�erent attributes may refer to the

same domain. To accommodate this situation, when

checking if a key of a relation appears in another re-

lation as a foreign key, we use domain names instead

of attribute names. The domain names have to be

provided by the designers.

To generate all the links with natural joins as their

conditions, we �nd all the natural joins between pairs

of nodes for a given array of relation nodes. The time

complexity of the algorithm is O(kmn2), where k is

the maximum number of keys in a relation, m is the

maximum number of attributes in a relation, and n is

the number of relations, including the duplicates.

For example, consider the following three relations:

AIRPORTS( APORT_NM, ELEV_FT, GEOLOC_TYPE,

GLC_CD, HARDSTANDS, HNS_SORTIES,

MAX_SORTIES, MILITARY_CIVILIAN_FLAG,

PARKING_SQ_FT, POL_BBLS,

SECONDARY_NM, STATUS_FLAG ),

KEY( APORT_NM )

RUNWAYS( APORT_NM, GLC_CD,

RUNWAY_LENGTH_FT, RUNWAY_NM,

RUNWAY_WIDTH_FT, SURFACE_FLAG ),

KEY( APORT_NM, RUNWAY_NM )

GEOLOC( CIVIL_AVIATION_CD, CY_CD,

GLC_CD, GLC_LNCN, GLC_LOG_RGN_CD,

GLC_LTCN, GLC_NM, GSA_CITY_CD,

GSA_COUNTY_CD, GSA_STATE_CD,

INSTLN_TYP_CD, LATITUDE, LONGITUDE,

PRIME_GLC_CD,PROVINCE_CD,RECORD_OWNER_UIC),

KEY ( GLC_CD )

According to the key and foreign key relationships, we

can �nd the following three natural join links:

(1) AIRPORTS and RUNWAYS, linked by APORT NM;

(2) AIRPORTS and GEOLOC, linked by GLC CD; and

(3) RUNWAYS and GEOLOC, linked by GLC CD.

Since GLC CD is a foreign key in both AIRPORTS and

RUNWAYS, a link between these two relations by GLC CD

is not generated.

1To avoid an excessive number of links being generated, the

links are limited to natural joins between a key and a foreign

key and a link is not generated for a join between two foreign

keys.



2.3 Information Measure of Nodes and
Links

In the query formulation, multiple queries may be

formed for a given user input. The information [14] of

nodes and links is used for selecting and ranking query

candidates.

The information measure for an element a (a node or

a link) in a semantic graph measures the information
content of a; that is,

I(a) = � logP (a)

where log denotes the base 2 logarithm, and P (a) is

the probability of using a in queries.

The de�nition is consistent with that used in in-

formation theory which represents the number of bits

needed to encode a node or link. The measure reects

the information content of a node or link. A smaller

value of I(a) means a larger P (a), thus a will more

likely appear in queries.

For simplicity in computing the information of a

subgraph, we assume that all the nodes and links are

independent. For a subgraph with a set of elements

(nodes and links) A = faiji = 1; : : : ; ng, the indepen-

dence assumption implies that the information mea-

sure is additive, that is,

P (A) = P (faiji = 1; : : : ; ng) =

nY

i=1

P (ai):

Thus

I(A) = � logP (A) = � log(

nY

i=1

P (ai)) =

nX

i=1

I(ai)

(1)

Information Measure Update The information

measure for nodes and links can be computed from

their relative frequency. Let ci be the number of times

that ai is used in queries, and c be the total number

for all the elements used in a set of queries, then

P (ai) =
ci

c
(2)

The information measure of element ai can be updated

by the de�nition.

Initial Information Measure Assignment If a

large collection of queries are available at the begin-

ning, initial counting can be performed. But if the

query set is not available or is too small to be sta-

tistically signi�cant, we can assign an equal initial

information measure to all the nodes and assign in-

formation measures to links based on the link types

and their speci�city. An example of link types and

their sample information measures is shown in Ta-

ble 1. Based on the semantics of the links, in general,

the relationships among the information measures are

0 < I1 � I2 � I3 � I4 � I5 � I6.

Link Type Information

speci�c-entity ISA I1 = 1

generic-entity

strong-entity HAS (PROPERTY) I2 = 2

weak-entity

entity ROLEOF association I3 = 2

entity LINK entity I4 = 3

entity USER-DEFINED-ROLEOF I5 = 3

association

entity USER-DEFINED-LINK I6 = 4

entity

Table 1: Link types and their corresponding informa-

tion measures in a semantic graph. The numbers are

the sample information measures.

Once the initial information measures are assigned,

they are normalized according to the probability prop-

erty (summed to 1), and then converted into initial

counts.

3 Formulation of Simple Queries from

High-level Concepts

To formulate simple queries our query formulator

only requires users to specify concepts, attributes, and

values about a query. Based on these input, the system

constructs the query via the semantic graph.

The query topic is the major source of complexity in

formulating a query. The user input contains uncon-

nected nodes and links. To formulate a query, we need

to add links and nodes to connect the input subgraph

into a query topic.

When the graph is cyclic, multiple links can be con-

nected for the same set of nodes which can cause query

ambiguity. We resolve this problem by (1) ranking the

candidate queries based on their information measure,

generating English-like query descriptions for the can-

didate queries to allow the user to select the desired

one.

3.1 An Example

The user input consists of three parts: the query

aspect which corresponds to the SELECT clause

of an SQL query, the constraints, and special link

requirements expressed in conceptual terms. The user

interface then converts the user input into relations,

attributes, and links. Consider the formulation of

the query \Find airports in Tunisia that can land a



C-5 cargo plane." The input to the formulator is as

follows:

(1) query aspect: AIRPORTS.APORT NM;

(2) constraints:

AIRCRAFT AIRFIELD CHARS.AC TYPE NAME = 'C-5'

and

COUNTRY STATE.CY NM = 'TUNISIA';

(3) links: \CAN LAND".

The query formulator searches the transportation

semantic graph (Figure 1) and adds missing links and

nodes to complete a subgraph. A list of query can-

didates can be formulated. The following is the �rst

query candidate:

SELECT R3.APORT_NM

FROM AIRCRAFT_AIRFIELD_CHARS R0,

AIRPORTS R3, COUNTRY_STATE R10,

GEOLOC R11, RUNWAYS R16

WHERE R0.AC_TYPE_NAME = 'C-5'

AND R10.CY_NM = 'TUNISIA'

AND R0.WT_MIN_AVG_LAND_DIST_FT

<= R16.RUNWAY_LENGTH_FT

AND R0.WT_MIN_RUNWAY_WIDTH_FT

<= R16.RUNWAY_WIDTH_FT

AND R11.GLC_CD = R3.GLC_CD

AND R3.APORT_NM = R16.APORT_NM

AND R10.CY_CD = R11.CY_CD

3.2 Query Formulation as a Graph Search
Problem

Given a user input for query formulation, we can

process it into an incomplete query topic TI , an as-

pect A, and a constraint set S. TI contains the links

speci�ed in the user input, the nodes involved in the

links, and the nodes in A and S.

Since TI is usually not a connected subgraph, we

need to choose additional links and relevant nodes

from the semantic graph to extend TI to form a con-

nected subgraph for the query topic. We call these

links and nodes a query completion candidate for TI .
Property of a query completion candidate Given
a semantic graph G = (V;E), to formulate a query
from an incomplete input query topic TI = (VI ; EI),
where VI � V and EI � E, is to �nd a query comple-
tion candidate TC = (VC ; EC) for TI such that query
topic T = TI [TC = (VI [VC ; EI [EC) is a connected
subgraph of G, where VC � V , EC � E, VC \ VI = ;,
and EC \ EI = ;.
That is, VC is a set of nodes and EC is a set of links

needed to complete a connected subgraph to formulate

a query. If the semantic graph is cyclic, there can ex-

ist more than one query completion candidate for the

same input. We use the following minimum missing

information principle for ranking the candidates.

Minimum Missing Information (MMI) Princi-

ple The query completion candidate TC (the missing
links and nodes) for an incomplete input topic TI con-
tains the minimum information; i.e. min I(TC).

Based on equation 1, I(TC) can be computed from

the information of the nodes and links as follows.

I(TC) =
X

v2VC

I(v) +
X

e2EC

I(e) (3)

Thus the MMI principle provides us the measure for

ranking the query completion candidates.

The smaller the I(TC), the more likely the comple-

tion candidate will meet the user's query intention.

Links and nodes of smaller information have a higher

probability of being used in queries, thus are more

likely to be in the intended query. Due to the in-

dependence assumption, the probability value used in

the ranking is an approximation. Therefore, we �nd

a set of completion candidates and let the user select

one.

Based on the MMI principle, the end points in the

completed subgraph must be from the user input, since

otherwise, deleting any end node that is not in the

input will reduce the information of the completion

candidate without a�ecting the connectivity. Thus,

our MMI principle is consistent with the formulation

of the query completion as the minimum Steiner tree

problem [3]. According to [3, 15], query completion as

a graph search problem is NP-complete.

3.3 Algorithm for Searching Query Com-
pletion Candidates

A user input contains a query aspect, a constraint

set, and a link set. The required pre-processing on the

input is to extract all the nodes that appear in the

aspect and constraints. The nodes together with links

from the input form the incomplete input query topic

TI for searching the query completion candidate TC .

The incomplete input topic is decomposed into a

set of connected components. The process of �nding

a completion candidate is to repeatedly connect two

components via a path and form into a larger compo-

nent. This merging process terminates when only a

single component remains. We use the following two

methods to limit the search scope:

(1) L-step-bound paths: paths that connect two com-

ponents with at most l links. This con�nes the search

to a small area surrounding the input subgraph.

(2) K-minimum completion candidates: only a maxi-

mum of k candidates with minimum weights are kept

in the search process. This further trims the search

within the set of candidate paths.



L-step-bound Paths L-step-bound paths are used

to limit the search within the neighborhood of the in-

put subgraph. This is based on the observation that

each query topic will only span a small region of the se-

mantic graph. L-step-bound paths eliminate the long

paths for connecting components. L-step-bound paths

are found through a breadth-�rst search. Paths with l

links that have not yet reached a destination node are

dropped.

The worst-case time complexity for �nding l-step-

bound paths with n components is O(n2mdl), where

m is the maximum number of nodes in a component

and d is the maximum number of links connected to a

node.

K-minimum Completion Candidates During

the search for completion candidates, �-� pruning is

applied to trim the search branches. If a partial com-

pletion has a larger weight than the maximum weight

of the current k-minimum completion candidates, this

partial completion is excluded from further search.

For the current component list, the algorithm re-

peats the following process until no more paths can be

tested:

1. Find l-step-bound paths for the current compo-

nent list

2. For each path, merge the two components con-

nected by the path

3. Check if only one component remains in the list

4. If yes, a completion candidate is found, and go

test the next path

5. Otherwise, check if the current partial completion

candidate is acceptable for the k-minimum com-

pletions;

6. If yes, go forward with the resultant component

list;

7. If not, test the next path. If no more paths left, go

back use previous component list (backtracking).

A larger l will be used if a completion candidate cannot

be found for the current l.

The search problem is NP-complete. The worst-case

time complexity can grow exponentially with the size

of the graph (assuming P 6= NP ). In most cases, how-

ever, the search will only traverse limited part of the

graph due to the l-step-bound path heuristics, no mat-

ter how large the semantic graph is. Moreover, typical

semantic graphs are sparse. Therefore, our formula-

tion search algorithm is scalable.

For the example query in Section 3.1, we have the

initial components and 2-step-bound paths as in Fig-

ure 3. We found 2-minimum completion candidates

airfield_chars airports
repair(1)

2

airfield_chars aircrafts airports
have authorize

1 2
(2)airfield_chars runways

can land

airports

country

runways geoloc airports
at isa

1 1

runways geoloc country
at located

1 1

airports geoloc country
isa located

1 1

runways airports
have

1
(3)

(4)

(5)

(6)

(a) Initial components (b) 2-step-bound paths

Figure 3: Initial components and 2-step-bound paths

for the \CAN LAND" query.

based on the 2-step-bound paths. The �rst contains

paths (3) and (6) with an additional node GEOLOC, and

the second contains paths (3) and (5) with the same

additional node GEOLOC. After converting to SQL, the

�rst completion condidate yields the query as shown

in Section 3.1.

Correctness of the Query Completion Algo-

rithm The k-minimum completion algorithm per-

forms an exhaustive search with �-� pruning, which

is equivalent to the exhaustive search. The query

completion algorithm will �nd k-minimum completion

candidates, as long as the algorithm for l-step-bound

paths does not miss any paths that qualify in the k-

minimum completion candidates.

Using l-minimum weight paths requires a depth-

�rst search in the semantic graph which is not lo-

cally bounded. Therefore, l-step-bound paths are used

which requires only a breadth-�rst search with a def-

inite bound. For a reasonably large l, l-step-bound

paths yield all possibly qualifying paths and ensure

obtaining k-minimum completion candidates.

3.4 Generating English-like Query De-
scriptions for Disambiguation

Although sometimes some of the query candidates

are equivalent, usually they yield di�erent answers.

Thus our system provides English-like query descrip-

tions for the user to select one of the candidate queries

that satis�es his query goal.

English-like query descriptions cannot be easily gen-

erated from SQL queries because of the lack of se-

mantic information. However, the query representa-

tion based on the semantic graph can be used to pro-

vide such semantics. Entity nodes are translated into

nouns, and links are translated into verbs. Nodes

for complex associations including links can also be

translated into verbs. Selection conditions on entity
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Figure 4: The semantic graph for the transportation

domain.

nodes are translated into adjective phrases (modi�ers

on nouns), whereas conditions on association nodes are

translated into adverbial phrases [16].

3.5 Capabilities of the Query Formulator

In addition to simple SPJ queries, queries containing

aggregate functions can be formulated by generating a

default GROUP BY clause which consists of all the non-

aggregate function expressions in the SELECT list.

Some of the cyclic queries can also be formulated by

treating some special join conditions as selection con-

ditions, although the query completion algorithm only

searches for trees for query topics, which usually re-

sults in tree queries.

CoBase is a knowledge-based cooperative database

system interface that run on top of relational

databases. CoBase supports query relaxation to pro-

vide approximate query answers if an exact answer

is not available [17]. The query formulator also sup-

ports cooperative operators, such as SIMILAR-TO and

NEAR-TO, and relaxation control in the query language

CoSQL [17, 18]. Using the above query formulation

technique, we are able to formulate SPJ queries, with

or without aggregate functions, as well as CoSQL

queries.

4 Incremental Query Formulation for

Complex Queries

Due to the di�culty in formulating complex queries

directly, incremental formuation is introduced. The

main issue in incremental querying is how to formu-

late a query at each step when derived relations are

involved. To allow subsequent queries to use the re-

sults of preceding queries, the derived relations have

to be incorporated into the semantic graph. In cases

where a query yields an isolated node which is used in

a later query, the system should be able to assist the

user to �nd missing attributes for the query and link

the result to other nodes. In the following, we �rst

present the techniques to link derived relations into

the graph and to �nd missing attributes for a query

yielding an isolated node. Then, we give an example of

incremental formulation in the transportation domain.

4.1 Support for Incremental Query For-
mulation

A base relation is a relation in the database schema

and in the semantic graph at the beginning of a query

session. A derived relation is a relation generated from

a query during a query session. A relation used in a

query whose attributes appear in a derived relation

is called a source relation for the derived relation. A

source relation for a derived relation may be a base

relation or a derived relation. And there can be more

than one source relation for a derived relation.

Incorporating A Derived Relation into the Se-

mantic Graph For a derived relation to be used in

subsequent queries, it has to be included into the se-

mantic graph. As was done in the generation of the

semantic graph, to link a derived relation to other rela-

tions, we need to distinguish key attributes from other

attributes. Since an attribute in a derived relation is

ultimately from some base relation except for complex

expressions, it inherits the property in its base rela-

tion. We can di�erentiate a key from other attributes

by the role it plays in the base relation, that is, if it is

a key in the base relation.

The keys of a source relation included in a derived

relation are the foreign keys for the derived relation.

A derived relation Rd becomes a derived node in the

semantic graph. For each source relation Rs, if its

key attribute ai is contained in Rs, a link with the

key attribute as the equijoin attribute is generated to

link Rd to its source relation Rs. A link between a

derived relation and a source relation through the key

attribute is called deriving link.

A derived relation may contain keys from several

source relations, thus may have multiple deriving links

to its source nodes. The deriving link has the seman-

tics of ISA, so its information measure will be the same

as the ISA links initially assigned. For the di�erentia-

tion purpose, the links in the original semantic graph

are called base links.

The deriving links found through key attributes suf-

�ce for the derived relation to be used in subsequent

queries through the natural join. However, using these

links to query other relations requires to navigate

through the source relations from the derived relations.

This may introduce unnecessary joins. To overcome

this shortcoming, a derived relation can inherit links

from its source relations, if the attributes involved in

the links are contained in the derived relations. A link

that is inherited from a source relations by a derived

relation is called an inherited link. Inherited links will

allow the derived relation to join with other relations

directly. Weights on these links are also inherited from



their corresponding links.

The algorithm of �nding inherited links �rst extracts

source relation nodes for the derived relation. For each

source node, it then checks each link related to the

source node to see if it can be inherited by checking if

the attributes involved in the link are also contained in

the derived relation. Note that the attributes involved

in the inherited links are not necessarily keys. Links

with non-key attributes, usually user-de�ned links, can

also be inherited.

Suggesting Key Attributes for a Query Since

users cannot foresee all the attributes/expressions and

conditions they need for a future query, a query formu-

lation attempt may fail when an isolated derived node

is involved. This happens because the derived relation

does not contain a key attribute, thus cannot be linked

to its source nodes, and it has no necessary attributes

to inherit other links. The query tool can detect an

isolated node and suggest possible key attributes to

include in the corresponding query, and then connect

its node to one of its source nodes.

The suggestion is based on the information returned

from a failed query formulation that includes the max-

imal components the formulator has reached. For an

isolated node, if any of its source nodes appears in one

of the components, the corresponding key is a candi-

date to be included in the query for the isolated node.

Otherwise (no source nodes in components), the candi-

date can be obtained by searching for a closest source

node to the nodes in the components.

For some derived relations, there are no key at-

tributes from their source relations, and no key at-

tributes can be added into the query due to seman-

tic restriction, such as aggregate functions. For such

cases, the user has to specify certain attributes to act

as keys (called acting keys) if the derived relations have
to be linked to other relations.

4.2 Capability of Incremental Query For-
mulation

In addition to the SPJ queries at each step, set op-

erations can be easily supported, which do not require

the query formulator. The HAVING clause of an SQL

query can also be simulated by separate queries. Com-

posite queries can be generated for most query sessions

without execution of the simple queries. The expres-

siveness of incremental query answering is beyond re-

lational completeness. Because we allow iterations in

a session, transitive closures can be computed.

4.3 An Example for Incremental Query
Formulation

We illustrate the incremental query formulation

process by the following example with a series of

three queries in a transportation domain, which shows

queries whose answers depend on the answer set of

the query from the previous step. The queries are pre-

sented in English as the following:

1. \Find airports in Tunisia."

2. \Which of these airports can land a C-5?"

3. \What is the weather at these airports?"

The user input for the �rst step is

// select list:

AIRPORTS.APORT_NM

// constraints:

COUNTRY.COUNTRY_NM = 'Tunisia'

// links: none

// relation name:

AIRPORTTUNISIA

The �rst query candidate generated by the formulator

listed below is correct. The resultant derived relation

is named AIRPORTTUNISIA, and is added to the seman-

tic graph.

SELECT R3.APORT_NM

FROM AIRPORTS R3, GEOLOC R11, COUNTRY R10

WHERE R10.COUNTRY_NM = 'Tunisia'

AND R11.CY_CD = R10.CY_CD

AND R3.GLC_CD = R11.GLC_CD

The user input for the second step is given as follows:

// select list:

AIRPORTTUNISIA.APORT_NM

// constraints:

AIRFIELD_CHARS.AC_TYPE_NAME = 'C-5'

// links:

CAN LAND

// relation name:

AIRPORTTUNISIACANLAND

The formulator will generate the following query and

the answers to this query will be used when creating

the derived node AIRPORTTUNISIACANLAND:

SELECT R3.APORT_NM

FROM RUNWAYS R16, AIRFIELD_CHARS R0,

AIRPORTTUNISIA R20

WHERE R0.AC_TYPE_NAME = 'C-5'

AND R0.WT_MIN_AVG_LAND_DIST_FT <=

R16.RUNWAY_LENGTH_FT

AND R0.WT_MIN_RUNWAY_WIDTH_FT <=

R16.RUNWAY_WIDTH_FT

AND R16.APORT_NM = R20.APORT_NM

The third user input is as follows:
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Figure 5: Extended semantic graph showing derived

nodes, derived links and inherited links.

// select list:

WEATHER.CONDITION

// constraints: none

// links: none

// relation name:

AIRPORTTUNISIACANLANDWEATHER

The resulting formulated query is given below.

The system will also add the derived node

AIRPORTTUNISIACANLANDWEATHER to the semantic

graph.

SELECT R15.CONDITION

FROM WEATHER R15,

AIRPORTTUNISIACANLAND R21

WHERE R15.APORT_NM = R21.APORT_NM

This example shows that the incremental query for-

mulation provides a feasible and e�ective way to for-

mulate complex queries. A semantic link was used

in the second step of the incremental session and was

translated into a set of conditions.

Figure 5 shows the semantic graph of �gure 4 with

the three derived nodes from the example. Notice

that AIRPORTS has links to RUNWAYS and WEATHER

with the link attribute APORT NM, which is con-

tained in the derived relation AIRPORTTUNISIA. There-

fore, AIRPORTTUNISIA inherits these two links from

the source node AIRPORTS. The inherited link from

AIRPORTTUNISIA to RUNWAYS is used in the second

step. The inherited links are shown in Figure 5 as

dashed lines. To avoid clutter, only the inherited links

for the derived node AIRPORTTUNISIA are shown.

5 Implementation and Experience

A database interface system using the above high-

level query formulation techniques has been imple-

Figure 6: Concept and Attribute Speci�cation Inter-

face

Figure 7: Query Constraint Speci�cation

mented at UCLA. The user chooses the set of seman-

tic graph nodes, links and attributes as an incomplete

query topic. The select list and the query constraints

are also speci�ed by the user. This information is used

in the query formulation process, which uses the graph

search techniques described in this paper to �nd a path

through the semantic graph. The formulated query is

given to CoBase for processing and the answers re-

turned are displayed to the user.

Figures 6 to 9 show the user input for formulating

the query, \Find an airport in Tunisia that can land

a C-5.". Figures 6 and 9 allow the user to specify the

concepts, attributes and constraints and Figure 7 al-

lows the user to choose a high-level action (e.g. \CAN

LAND" was chosen as the action). Figure 8 shows

the formulated query and an English-like description

of the query.

The query formulator was implemented in Java with

three packages for the graph model, the query repre-



Figure 8: Action Speci�cation

sentation, and the formulator, with a total of about

50 classes and 7,000 lines of code. The incremen-

tal support adds about 20 classes and 3,000 lines of

code. The system was tested on both the Windows

NT and Solaris platform using an Oracle database.

The query formulator is JDBC compliant, therefore it

can be ported to multiple platforms and databases.

The query formulator was tested on a transporta-

tion database provided by DARPA. There are about

300 relations and the largest relation has more than

50,000 tuples. The semantic graph was automatically

generated from the database schema and a domain

expert labelled some of the links with high-level con-

cepts (e.g. 'CAN LAND'). Queries that involve up

to 7 relations and contain multiple query constraints

have been successfully formulated by the query for-

mulator. CoSQL queries that involve coopertive oper-

ators like SIMILAR-TO, APPROXIMATE, RELAX-

ORDER and NOT-RELAXABLE were also correctly

formulated. To test its extensibility and portability,

we also tested the query formulator on a di�erent do-

main, a logistics database. The only e�ort required to

port the query formulator to the logistics domain is the

generation of the semantic graph and the labelling of

the links by a domain expert. It is worth noting that

information measures update provides good ranking

result and adaptive behavior for the system. In many

cases, the correct query will appear at the top among

initially equally-ranked query candidates after a right

user feedback.

Performance tests of accuracy and search time were

conducted on the transportation database schema on

a Sun Ultrasparc II machine. The semantic graph for

part of the transportation database contains 50 nodes

and 105 links. For 30 random query samples, all the

query candidates ranked �rst are correct. The search

time required to formulate the query ranges from 84

milliseconds to 871 milliseconds, with an average time

of 323 milliseconds, which is well below the query ex-

Figure 9: English-like Query Description and the For-

mulated Query

ecution time.

The query formulator provides a set of APIs that

allow other applications to easily interface with it. We

have integrated the query formulator with a point-and-

click user interface, a map interface and a voice input

interface [19]. We have implemented an interface with

IBM's ViaVoice and which is capable of formulating,

from voice input, a test set of simple SQL queries in

the transportation domain. The system is currently

operating on top of a cooperative database (CoBase)

at UCLA to formulate SQL queries.

6 Conclusion

A new query formulation system based on a se-

mantic graph model is presented. Query formulation

as a graph search uses probabilistic information mea-

sure in the search process and to rank query candi-

dates. When multiple queries are formulated from

a user input, the user can resolve such query am-

biguity based on ranking and English-like query de-

scriptions. To limit the search scope in �nding the

subgraph from the semantic graph, a heuristic algo-

rithm was employed to reduce the search complexi-

ties. The query formulator algorithm can formulate

the SELECT-PROJECT-JOIN queries with aggregate

functions as well as CoSQL queries.

To formulate complex queries, a new incremental

approach is presented. A derived relation as the re-

sult of a query is linked to its source nodes by the key

attributes from the corresponding source relations. A

derived relation can also be linked to other nodes by

inherited links from its source relations. If there are

no linking attributes present, the system should pro-

vide information for the user to add the link. The user

can formulate queries based on the results of preceding



queries, or compose a complex query without execut-

ing query steps. Experiments show the technique is

e�ective in formulating complex queries.

We have constructed a prototype system using the

above technique with point-and-click interface. We

have also developed a method to extract and disam-

biguate keywords (relations, attributes, constraints)

from English-like sentences. Thus, keywords can be

input to the high-level query formulator to generate

the underlying SQL query. Our experience has shown

that the technology is also very suitable for formulat-

ing SQL queries from English-like query input.
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