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Abstract

In retrieving medical free text, users are often interested in answers pertinent to cer-
tain scenarios that correspond to common tasks performed in medical practice, e.g.,
treatment or diagnosis of a disease. A major challenge in handling such queries
is that scenario terms in the query (e.g. treatment) are often too general to match
specialized terms in relevant documents (e.g. chemotherapy). In this paper, we
propose a knowledge-based query expansion method that exploits the UMLS knowl-
edge source to append the original query with additional terms that are specifically
relevant to the query’s scenario(s). We compared the proposed method with tradi-
tional statistical expansion that expands terms which are statistically correlated but
not necessarily scenario specific. Our study on two standard testbeds shows that the
knowledge-based method, by providing scenario-specific expansion, yields notable im-
provements over the statistical method in terms of average precision-recall. On the
OHSUMED testbed, for example, the improvement is more than 5% averaging over all
scenario-specific queries studied and about 10% for queries that mention certain sce-
narios, such as treatment of a disease and differential diagnosis
of a symptom/disease.

1 Introduction

There has been a phenomenal growth of online medical document collections in re-
cent years. Collections such as PubMed2 and MedlinePlus3 provide comprehensive
coverage of medical literature and teaching materials. In searching these collections,

1This research is supported in part by NIC/NIH Grant #4442511-33780
2http://www.pubmed.gov/
3 http://www.medlineplus.com
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it is often desirable to retrieve only those documents pertaining to a specific med-
ical “scenario,” where a scenario is defined as a frequently-reappearing medical task.
For example, in treating a lung cancer patient, a physician may pose the query lung
cancer treatment in order to find the latest treatment techniques for this disease.
Here, treatment is the medical task that marks the scenario of this query. Re-
cent studies [Haynes et al.(1990), Hersh et al.(1996), Ely et al.(1999), Ely et al.(2000),
Wilczynski et al.(2001)] reveal that in clinical practice, as many as 60% of physicians’
queries center on a limited number of scenarios, e.g. treatment, diagnosis,
etiology, etc. While the contextual information in such queries (e.g., the particular
disease of a patient such as lung cancer, the age group of that patient, etc.) varies
from case to case, the set of frequently-asked medical scenarios remains unchanged.
Retrieving documents that are specifically related to the query’s scenario is referred to
as scenario-specific retrieval.

Scenario-specific retrieval is not adequately addressed by traditional text retrieval
systems (e.g. SMART [Salton and McGill(1983)] or INQUIRY [Callan et al.(1992)]).
Such systems suffer from the fundamental problem of query-document mis-
match [Efthimiadis(1996)] when handling scenario-specific queries. Scenario terms
in these queries are represented using general terms, e.g., the term treatment in
the query lung cancer treatment. On the contrary, in full-text medical doc-
uments, more specialized terms such as lung excision or chemotherapy are
used to express the same topic. Such mismatch of terms leads to poor retrieval perfor-
mance [Zeng et al.(2002), Tse and Soergel(2003)].

There has been a substantial amount of research on query ex-
pansion [Qiu and Frei(1993), Jing and Croft(1994), Buckley et al.(1994),
Robertson et al.(1994), Buckley et al.(1995), Xu and Croft(1996), Srinivasan(1996),
Mitra et al.(1998)] that ameliorates the query-document mismatch problem. However,
such techniques also have difficulties handling scenario-specific queries. Query
expansion appends the original query with specialized terms that have a statistical
co-occurrence relationship with original query terms in medical literature. Although
appending such specialized terms makes the expanded query a better match with
relevant documents, the expansion is not scenario-specific. For example, in handling
the query lung cancer treatment, existing query expansion techniques will
append not only terms such as lung excision or chemotherapy that are
relevant to the treatment scenario, but also irrelevant terms like smoking and
lymph node, simply because the latter terms co-occur with lung cancer in
medical literature. Appending non-scenario-specific terms leads to the retrieval of
documents that are irrelevant to the original query’s scenario, diverging from our goal
of scenario-specific retrieval.

In the domain of medical text retrieval, researcher have recently proposed to
exploit the Unified Medical Language System (UMLS), a full-fledged knowledge
source in the medical domain, to expand the original query with related terms
and to improve retrieval performance. Current approaches either explore the syn-
onym relationships defined in UMLS and expands synonyms of the original query
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terms [Aronson and Rindflesch(1997), Plovnick and Zeng(2004), Guo et al.(2004)]
or explore the hypernym/hyponym relationships and expands terms that have
wider/narrower meaning than the original query terms [Hersh et al.(2000)]. Unfor-
tunately, when handling scenario-specific queries, such solutions still generally suf-
fer from the query-document mismatch problem. For example, the synonyms, hyper-
nyms or hyponyms for the terms in query lung cancer treatment, as defined
by the knowledge source, are lung carcinoma, cancer, therapy, medical
procedure, etc. With such terms expanded, the query will still have difficulty match-
ing documents that extensively use specialized terms such as chemotherapy and
lung excision.

In this paper, we propose a knowledge-based query expansion technique to support
scenario-specific retrieval. Our technique exploits domain knowledge to restrict query
expansion to scenario-specific terms and yields better retrieval performance than that
of traditional query expansion approaches. The following are challenges in developing
such a knowledge-based technique:

• Using domain knowledge to automatically identify scenario-specific terms.
It is impractical to ask users or domain experts to manually identify scenario-
specific terms for every query and all possible scenarios. Therefore, an automatic
approach is highly desirable. However, the distinction between scenario-specific
expansion terms and non-scenario-specific ones may seem apparent to a human
expert, but can be very difficult for a program. To treat this distinction, we
propose to exploit a domain-specific knowledge source.

• Incompleteness of knowledge sources. Knowledge sources are usually not
specifically designed for the purpose of scenario-specific retrieval. As a re-
sult, scenarios frequently appearing in medical queries may not be adequately
supported by those knowledge sources. We propose a knowledge-acquisition
methodology to supplement the existing knowledge sources with additional
knowledge that supports undefined scenarios.

The rest of this paper is organized as follows. We first present a framework for
knowledge-based query expansion in Section 2. We then describe the detailed method
in this framework in Section 3. We experimentally evaluate the method and report the
results in Section 4. In Section 5, we address the issue of supplementing a knowledge
source via knowledge acquisition. We further discuss the relevancy of expansion terms
judged by domain experts in Section 6.

2 A Framework for Knowledge-Based Query Expan-
sion

Figure 1 depicts the components in a knowledge-based query expansion and retrieval
framework. For a given query, Statistical Query Expansion (whose scope is marked by
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Figure 1: A knowledge-based query expansion and retrieval framework

the inner dotted rectangle) will first derive candidate expansion concepts 4 that are sta-
tistically co-occurring with the given query concepts (Section 3.1) and assign weights
to each candidate concept according to the statistical co-occurrence. Such weights will
be carried through the framework.

Based on the candidate concepts derived by statistical expansion, Knowledge-based
Query Expansion (whose scope is marked by the outer dotted rectangle) further derives
the scenario-specific expansion concepts, with the aid of a domain knowledge source
such as UMLS [of Medicine(2001)] (Section 3.2). Such knowledge may be incomplete
and fail to include all possible query scenarios. Therefore, in an off-line process, we
apply a Knowledge Acquisition and Supplementation module to supplement the incom-
plete knowledge (Section 5).

After the query is expanded with scenario-specific concepts, we employ a Vector
Space Model (VSM) to compare the similarity between the expanded query and each
document. Top-ranked documents with the highest similarity measures are output to
the user.

4In the rest of this paper, a concept is referred to as a word or a word phrase that has a concrete meaning in a
particular application domain. In the medical domain, concepts in free text can be extracted using existing tools, e.g.
MetaMap [Aronson(2001)], IndexFinder [Zou et al.(2003)], etc.
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3 Method

Formally, the problem for knowledge-based query expansion can be stated as fol-
lows: Given a scenario-specific query with a key concept denoted as c key (e.g., lung
cancer or keratoconus5) and a set of scenario concepts denoted as cs (e.g.,
treatment or diagnosis), we need to derive specialized concepts that are related
to ckey and the relations should be specific to the scenarios defined by c s.

In this section, we describe how to derive such scenario-specific concepts first by
presenting existing statistical query expansion methods which generate candidates for
such scenario-specific concepts. We then propose a knowledge-based method that se-
lects scenario-specific concepts from this candidate set with the aid of a domain knowl-
edge source.

3.1 Deriving Statistically-Related Expansion Concepts

Statistical expansion is also referred to as automatic query expan-
sion [Efthimiadis(1996), Mitra et al.(1998)]. The basic idea is to derive concepts that
are statistically related to the given query concepts, where the statistical correlation
is derived from a document collection (e.g., OHSUMED [Hersh et al.(1994)]).
Appending such concepts to the original query makes the query expression more
specialized and helps the query better match relevant documents. Depending on how
such statistically-related concepts are derived, statistical expansion methods fall into
two major categories:

• Co-occurrence-thesaurus-based expansion [Qiu and Frei(1993),
Jing and Croft(1994), Xu and Croft(1996)]. In this method, a concept co-
occurrence thesaurus is first constructed automatically offline. Given a
vocabulary of M concepts, the thesaurus is an M × M matrix, where the
〈i, j〉 element quantifies the co-occurrence between concept i and concept
j. When a query is posed, we look up the thesaurus to find all concepts that
statistically co-occur with concepts in the given query and assign weights to
those co-occurring concepts according to the values in the co-occurrence matrix.
A detailed procedure for computing the co-occurrence matrix and for assigning
weights to expansion concepts can be found in [Qiu and Frei(1993)].

• Pseudo-relevance-feedback-based expansion [Efthimiadis and Biron(1993),
Buckley et al.(1994), Robertson et al.(1994), Buckley et al.(1995),
Mitra et al.(1998)]. In pseudo relevance feedback, the original query is
used to perform an initial retrieval. Concepts extracted from top-ranked docu-
ments in the initial retrieval are considered statistically related and are appended
to the original query. This approach resembles the well-known relevance
feedback approach except that, instead of asking users to identify relevant
documents as feedback, top-ranked (e.g. top-10) documents are automatically

5An eye disease
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# Concepts that statistically 
correlate to keratoconus

1 fuchs dystrophy 

2 penetrating keratoplasty 

3 epikeratoplasty 

4 corneal ectasia 

5 acute hydrops 

6 keratometry 

7 corneal topography 

8 corneal 

9 aphakic corneal edema 

10 epikeratophakia 

11 granular dystrophy corneal 

12 keratoplasty 

13 central cornea 

14 contact lens 

15 ghost vessels 

Table 1: Concepts that statisti-
cally correlate to keratoconus

# Concepts that treat
keratoconus

 Concepts that diag-
nose keratoconus

1 penetrating keratoplasty  keratometry 

2 epikeratoplasty  corneal topography 

3 epikeratophakia  slit lamp examination 

4 keratoplasty  topical corticosteroid 

5 contact lens  echocardiography 2 d 

6 thermokeratoplasty  tem 

7 button  interferon 

8 secondary lens implant  alferon 

9 fittings adapters  analysis 

10 esthesiometer  microscopy 

11 griffonia  bleb 

12 trephine  tetanus toxoid 

13 slit lamps  antineoplastic 

14 fistulization  heart auscultation 

15 soft contact lens  chlorbutin 

  (a)   (b) 

Table 2: Concepts that treat or diagnose
keratoconus

treated as “pseudo” relevant documents and are inserted into the feedback
loop. Weight assignment in pseudo relevance feedback [Buckley et al.(1994)]
typically follows the same weighting scheme (〈α, β, γ〉) for conventional
relevance feedback techniques [Rocchio(1971)].

We note that the choice of statistical expansion method is orthogonal to the design
of the knowledge-based expansion framework (Figure 1). In our current experimental
evaluation, we used the co-occurrence-thesaurus-based method to derive statistically-
related concepts. For convenience of discussion, we use co(c i, cj) to denote the co-
occurrence between concept ci and cj , a value that appears as the 〈i, j〉 element in the
M × M co-occurrence matrix. Table 1 lists the top-15 concepts that are statistically-
related to keratoconus using the co-occurrence measure. Here, the co-occurrence
measure is computed from the OHSUMED corpus which will be described in detail in
Section 4.1.

3.2 Deriving Scenario-Specific Expansion Concepts

Using a statistical expansion method, we can derive a set of concepts that are
statistically-related to the key concept, ckey , of the given query. Only a subset of these
concepts are relevant to the given query’s scenario, e.g., treatment. For example,
the 5th and 8th concepts in Table 1, which are acute hydrops and corneal, are
not related to the treatment of keratoconus. Therefore, in terms of deriving ex-
pansion concepts for query keratoconus treatment, these concepts should be
filtered out. In this section, we will first describe the type of knowledge structure that
enables us to perform this filtering and then present the filtering procedure.

UMLS - The Knowledge Source. Unified Medical Language System (UMLS) is a
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standard medical knowledge source developed by the National Library of Medicine.
It consists of the Metathesaurus, the Semantic Network, and the SPECIALIST lexi-
con. The Semantic Network provides the essential knowledge structures for deriving
scenario-specific expansion concepts, and is the primary focus of the following discus-
sion. The Metathesaurus, which defines over 800K medical concepts and the hyper-
nym/hyponym relationships among them, is used in our study for two purposes: 1) de-
tecting concepts in both queries and document and 2) expanding hypernyms/hyponyms
of a query’s key concept. The second purpose will be further illustrated in Section 3.3.
The lexicon is mainly used for unifying lexical features in medical-text-related natural
language processing (NLP) and is not used in our study.

The Semantic Network defines about one hundred semantic types such as
Disease or Syndrome, Body Part, etc. Each semantic type corresponds to a
class/category of concepts. The semantic type of Disease or Syndrome, for in-
stance, corresponds to 44,000 concepts in the Metathesaurus such as keratoconus,
lung cancer, diabetes, etc. Besides the list of semantic types, the Semantic
Network also defines the relations among various semantic types, such as treats
and diagnoses. Such relations link isolated semantic types into a graph/network
structure. The top half of Figure 2 presents a fragment of this network, which includes
all semantic types that have a treats relation with the semantic type Disease
or Syndrome. Relations such as treats in Figure 2 should be interpreted as fol-
lows: Any concepts that belong to semantic type Therapeutic or Preventive
Procedure, e.g., penetrating keratoplasty or chemotherapy, have
the potential to treat concepts that belong to the semantic type Disease or
Syndrome, e.g., keratoconus or lung cancer. However, it is not indicated
whether such relations concretely exist between two concepts, e.g., a treats relation
between penetrating keratoplasty and lung cancer.

A Knowledge-Based Method to Derive Scenario-Specific Expansion Concepts.
Given the knowledge structure in the Semantic Network, the basic idea in identify-
ing scenario-specific expansion concept is to use this knowledge structure to filter
out statistically-correlated concepts which do not belong to the “desirable” semantic
types. Let us illustrate this idea through Figure 2, using the treatment scenario
as an example: In this figure, we start with the set of concepts that are statistically-
related to keratoconus. Our goal in applying the knowledge structure is to identify
that: 1) concepts such as penetrating keratoplasty, contact lens and
griffonia have the scenario-specific relation, i.e., treats, with keratoconus
and should be kept during expansion; 2) concepts such as acute hydrops and
corneal do not have the scenario-specific relation with keratoconus and should
be filtered out.

In this figure, each solid circle represents one concept, and the solid lines connect-
ing these solid circles indicate strong statistical correlations computed for a pair of
concepts, e.g., the solid line between keratoconus and contact lens. A dot-
ted circle represents a class of concepts, and a dotted line links that class of concepts
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Semantic Network 

Figure 2: Using knowledge to identify scenario-specific concept relationships

to a corresponding semantic type. For example, concepts keratoconus and lung
cancer are in the class that links to Disease or Syndrome.

We identified scenario-specific expansion concepts using the following process:
Given a key concept ckey of the given query, we first identified the semantic type that
ckey belongs to. For example, we identified Disease or Syndrome given the key
concept keratoconus. Starting from that semantic type, we further followed the
relations marked by the query’s scenario and reached a set of relevant semantic types.
For the previous example, given the query’s scenario, treatment, we followed the
treats relation to reach the three other semantic types as shown in Figure 2. Finally,
we identified those statistically-related concepts that belong to the relevant semantic
types as scenario specific. We further filtered out other statistically-related concepts
which do not satisfy this criteria. From the previous example, this final step identified
penetrating keratoplasty, contact lens and griffonia as scenario-
specific expansion concepts and filtered out non-scenario-specific ones such as acute
hydrops and corneal.

Table 2(a) and Table 2(b) show the lists of the concepts that treat anddiagnose
keratoconus, respectively. We derived these concepts based on the process
described above and show the top-15 concepts in terms of their correlation with
keratoconus. To highlight the effectiveness in applying the knowledge-based fil-
tering process, we can compare the concepts in Table 2 with those in Table 1 that are
statistically correlated with keratoconus. 5 out of these 15 statistically-correlated
concepts are kept in Table 2(a), whereas 2 are kept in Table 2(b). This comparison
suggests that the knowledge structure is effective in filtering out concepts that are not
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Figure 3: The direct parents, direct children and siblings for keratoconus

closely related to the scenarios of treatment or diagnosis.

3.3 Hypernym/Hyponym Expansion

The goal of knowledge-based query expansion is to append specialized terms that ap-
pear in relevant documents but not in the original query. Scenario-specific concepts
derived from the previous subsection represent a subset of such specialized terms. An-
other set of highly relevant terms contains hypernym/hyponyms of the key concept
ckey .6 For example, corneal estasia, a hypernym of keratoconus, is fre-
quently mentioned by documents regarding keratoconus, treatment. There-
fore, our technique should also expand those concepts that are close to c key in the
hypernym/hyponym hierarchy.

To expand hypernyms/hyponyms of the key concept to the original query, we again
refer to the UMLS knowledge source. The Metathesaurus component defines not only
the concepts but also the hypernym/hyponym relationships among these concepts. For
example, Figure 3 shows the hypernyms (parents), hyponyms (children) and siblings
of concept keratoconus. Here we define a concept’s siblings as those concepts that
share the same parents with the given concept. Through empirical study (which will
be discussed later), we have found that expanding the direct parents, direct children
and siblings to the original query generates the best retrieval performance. This is in
comparison to expanding parents/children that are two or more levels away from the
key concept. Therefore, in the rest of our discussion, we will focus on expanding only
the direct parents/children and siblings.

3.4 Weight Adjustment for Expansion Terms

To match a query and a document using the Vector Space Model (VSM), we repre-
sent both the query and the document as vectors. Each term in the query becomes a
dimension in the query vector, and receives a weight that quantifies the importance of
this term in the entire query. Under this model, any additional term appended to the

6A hypernym of concept c is a concept with a broader meaning than c, whereas a hyponym is one with a
narrower meaning.
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Concepts that statistically correlate 
to keratoconus

Weight Concepts that treat keratoconus Weight

fuchs dystrophy 0.289 penetrating keratoplasty 0.247

penetrating keratoplasty 0.247 epikeratoplasty 0.230

epikeratoplasty 0.230 epikeratophakia 0.119

corneal ectasia 0.168 keratoplasty 0.103

acute hydrops 0.165 contact lens 0.101

keratometry 0.133 thermokeratoplasty 0.092

corneal topography 0.132 button 0.067

corneal 0.130 secondary lens implant 0.057

aphakic corneal edema 0.122 fittings adapters 0.048

epikeratophakia 0.119 esthesiometer 0.043

granular dystrophy corneal 0.109 griffonia 0.035

keratoplasty 0.103 trephine 0.033

central cornea 0.103 slit lamps 0.032

contact lens 0.101 fistulization 0.030

ghost vessels 0.095 soft contact lens 0.026

(a) (b)

Table 3: Weights for sample expansion concepts

original query needs to be assigned a weight. An appropriate weight scheme for these
additional terms is important because “under-weighting” will make the additional terms
insignificant compared to the original query and lead to minor changes in the ranking of
the retrieval results. On the contrary, “over-weighting” will make the additional terms
improperly significant and cause a “topic drift” for the original query.

In the past, researchers have proposed weighting schemes for these additional terms
based on the following intuition: The weight for an additional term c a should be pro-
portional to its correlation with the original query terms. In our problem the weight for
ca, wa, is proportional to its correlation with the key concept ckey , i.e.:

wa = co(ca, ckey) · wkey (1)

In Eq.(1), the correlation between ca and ckey , co(ca, ckey), is derived using methods
described in Section 3.1. wkey denotes the weight assigned to the key concept ckey .
In Section 4.1 we will further explain how wkey is decided according to a common
weighting scheme. Given that co(ca, ckey) lies in [0, 1], the weight that ca receives will
not exceed that of ckey . Using this equation, we compute the weights for the terms
that statistically correlate with keratoconus (Table 1) and the weights for those that
treat keratoconus (Table 2(a)). We list the weights for these terms in Table 3(a)
and Table 3(b), respectively. These weights are computed by assuming the weight of
the key concept (i.e., wkey ) keratoconus is 1.

Weight Boosting. In our experiments we will compare the retrieval effectiveness
of knowledge-based query expansion with that of statistical expansion. Since the
knowledge-based method applies a filtering step to derive a subset of all statistically-
related terms, the impact created by this subset on retrieval effectiveness will be
less than the entire set of statistically-related terms. Therefore, weight adjust-
ments are needed to compensate for the filtering. For instance, in our example of
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keratoconus, treatment, the “cumulative weight” for all terms in Table 3(b)
is obviously smaller than the “cumulative weight” of those in Table 3(a). To increase
the impact of the terms derived by the knowledge-based method, we can “boost” their
weights by multiplying a linear factor β, so that the cumulative weight of those terms
is comparable to those of the statistical-related terms. We refer to β as the boosting
factor. With this factor, we alter Eq.(1) which assigns the weight for any additional
term ca as follows:

wa = β · co(ca, ckey) · wkey (2)

We derive β based on the following intuition. We quantify the cumulative weight
for both the statistical expansion terms (e.g., those in Table 3(a)) and the knowledge-
based expansion terms (e.g., those in Table 3(b)). The former cumulative weight will
be larger than the latter. We define β to be the former divided by the latter. In this way,
the cumulative weight for the knowledge-based expansion terms equals to that of the
statistical expansion terms after boosting.

More specifically, we quantify the cumulative weight of a set of expansion terms
using the length of the “expansion vector” composed by these terms. Here we de-
fine the vector length according to the standard vector space notation: Let V KB =
〈wKB

1 , ..., wKB
k 〉 be the augmenting vector consisting solely of terms derived by the

knowledge-based method, where wKB
i (1 ≤ i ≤ k) denotes the weight for the ith term

in knowledge-based expansion (Eq.(1)). Likewise, let V stat = 〈wstat
1 , ..., wstkat

l 〉
be the augmenting vector consisting of all statistically related terms. The process
of deriving {wKB

1 , ..., wKB
k } yields k < l. Consequently, {wKB

1 , ..., wKB
k } ⊂

{wstat
1 , ..., wstat

l }. Let |V KB| be the length of the vector V KB , i.e.,

|VKB| =
√

(wKB
1 )2 + (wKB

2 )2 + · · · + (wKB
k )2 (3)

Likewise, let |V stat| represent the length of vector V stat which can be computed sim-
ilarly as Eq.(3). Further, we define the boosting factor for VKB to be:

β =
|Vstat|
|VKB | (4)

In our experiments, we will experimentally study the effects of boosting by compar-
ing the retrieval results with and without using boosting. Furthermore, we are interested
in studying the effects of different levels of boosting to gain insight on the “optimal”
boosting level. This motivates us to introduce a boosting-level-controlling factor α to
refine Eq.(4):

βr = 1 + α · ( |Vstat|
|VKB | − 1) (5)

where βr is the refined boosting factor. The parameter α, ranging within [0, 1], can
be used to control the boosting scale. From Eq.(5), we note that β r = 1 when we set
α = 0, which represents no boosting. βr increases as α increases. As α increases to
1, βr becomes |Vstat|

|VKB | . (In our experiments, we have actually evaluated cases by setting
α > 1. As the results will show later, the retrieval effectiveness is usually suboptimal
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compared to an α value within [0, 1].) Thus, we can use α to experimentally study the
sensitivity of retrieval results with regard to boosting.

4 Experimental Results

In this section, we experimentally evaluate the effectiveness of the knowledge-based
query expansion for two standard medical corpuses. Our main focus is to compare the
results of our technique with that of statistical expansion. We start with the experiment
setup and then present the results under selective settings.

4.1 Experiment Setup

4.1.1 Testbeds

A testbed for a retrieval experiment consists of three components: 1) a corpus (or
a document collection), 2) a set of benchmark queries and 3) relevance judgements
indicating which documents are relevant for each query. Our experiment is based on
the following two testbeds:

OHSUMED [Hersh et al.(1994)]. This testbed has been widely used in medical infor-
mation retrieval research. OHSUMED consists of 1) a corpus, 2) a query set, and 3)
relevance judgments for each query.

• Corpus. The corpus consists of the abstracts of 348,000 MEDLINE articles from
1988 to 1992. Each document contains a title, the abstract, a set of MeSH head-
ings, author information, publication type, source, a MEDLINE identifier, and
a document ID. The MeSH headings are expert-assigned indexing terms drawn
from a subset of UMLS concepts. In our experiment, we only keep the title
and the abstract in representing each document. We discard the MeSH headings
in order to simulate a typical information retrieval setting in which no expert-
assigned indexing terms are available.

• Query set. The query set consists of 106 queries. Each query contains a patient
description, an information request and a query ID. We are interested in short
and general queries. Thus, we use the information-request sub-portion to repre-
sent each query. Among the 106 queries, we have identified a total number of
57 queries that are scenario-specific. In Table 4, we categorize these 57 queries
based on the scenario(s) each query mentions. The corresponding ID of each
query is listed in this table, whereas the full text of each query is shown in Ap-
pendix A. Note that a query mentioning multiple distinct scenarios will appear
multiple times in this table corresponding to its scenarios.

• Relevance judgements. For a given OHSUMED query, a document is either
judged by experts as definitely-relevant (DR), partially-relevant (PR), irrelevant
or not judged at all. In our experiments, we restrict the retrieval to the 14,430

12



Scenario Query IDs

treatment of a disease 2, 13, 15, 16, 27, 29, 30, 31, 32, 35, 37, 38, 39, 40,
42, 43, 45, 53, 56, 57, 58, 62, 67, 69, 72, 74, 75,
76, 77, 79, 81, 85, 93, 98, 102

diagnosis of a disease 15, 21, 37, 53, 57, 58, 72, 80, 81, 82, 97
prevention of a disease 64, 85
differential diagnosis of a symptom/disease 14, 23, 41, 43, 47, 51, 65, 69, 70, 74, 76, 103
pathophysiology of a disease 2, 3, 26, 64, 77
complications of a disease/medication 3, 30, 52, 61, 62, 66, 79
etiology of a disease 14, 26, 29
risk factors of a disease 35, 64, 85
prognosis of a disease 45
epidemiology of a disease 3
research of a disease 75
organisms of a disease 81
criteria of medication 49, 52, 94
when to perform a medication 33
preventive health care for a type of patients 96

Table 4: IDs of OHSUMED queries mentioning each scenario

judged documents only and count both the DR and the PR documents as relevant
answers as we measure the precision-recall of a particular retrieval method. 7

The McMaster Clinical HEDGES Database [Wilczynski et al.(2001),
Wong et al.(2003), Wilczynski and Haynes(2003), Montori et al.(2003)]. This
testbed was originally constructed for the task of medical document classification
instead of free-text query answering. As a result, adaptation is needed for our study.
We will first describe the original dataset, and then explain how we adapted it to make
it a usable testbed for our experimental evaluation.

• Original dataset. The McMaster Clinical HEDGES Database contains 48,000
PubMed8 articles published in 2000. Each article was classified into the fol-
lowing scenario categories: treatment, diagnosis, etiology, prognosis, clinical
prediction guide of a disease, economics of a healthcare issue, or review of a
healthcare topic. Consensus about the classification was drawn among six hu-
man experts. When the experts classified each article, they had access to the
hardcopies of the full text. However, to construct a testbed for our retrieval sys-
tem, we were only able to download the title and abstract of each article from the
PubMed system. (The full text of each article is typically unavailable through
PubMed.)

• Construction of Scenario-Specific Queries. Since the McMaster Clinical
HEDGES Database is constructed to test document classification, it does not
contain a query set. Using the following procedure, we constructed a set

7Treating both the DR and the PR documents as relevant documents is consistent with the settings in existing stud-
ies [Hersh et al.(1994), Hersh et al.(2000)]

8http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
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of 55 scenario-specific queries, and determined the relevance judgements for
these queries based on the document classification that can be adapted for these
queries:

Step 1. We identified all the disease/symptom concepts in the OHSUMED query
set. We identified such concepts based on their semantic type information (de-
fined by UMLS). We used these concepts as the key concepts in constructing our
scenario-specific queries for the McMaster testbed. In selecting these concepts,
we manually filtered out eight concepts (out of an original number of 90 con-
cepts) that we considered as too general to make a scenario-specific query, e.g.,
infection, lesion and carcinoma. After this step, we obtained 82 such
key concepts.

Step 2. For each key concept identified in Step 1, we constructed four
scenario-specific queries, namely the treatment, diagnosis, etiology
and prognosis of a disease/symptom. For example, for the concept breast
cancer, we constructed the queries breast cancer treatment,
breast cancer diagnosis, breast cancer etiology, and
breast cancer prognosis. We restricted our study to these four
scenarios because our current knowledge source only covers these four
scenarios.

Step 3. For each query generated in Step 2, we generated its relevance judge-
ments by applying the following simple criterion: A document is considered
to be relevant to a given query if 1) experts have classified the document to
the category of the query’s scenario and 2) the document mentions the query’s
key concept. This criterion has been our best choice to automate the process
of generating relevance judgements on a relatively large scale; however, it may
misidentify irrelevant documents as relevant. After we identified the relevant
documents for each query, we further filtered out certain queries based on the
intuition that a query with too few relevance judgements will lead to less reli-
able retrieval results (especially in terms of precision/recall). For example, for a
query with only one relevant document, two similar retrieval systems may obtain
completely different precision/recall results if one ranks the relevant document
on top, and another accidentally ranks it out of top-10. To implement this intu-
ition, we filtered out queries that have less than 5 relevant documents. After this
filtering step, we were left with 55 queries.

In Appendix B we list the 55 McMaster queries together with the scenarios iden-
tified for each query.

4.1.2 VSM and Indexing

In Information Retrieval studies, indexing typically refers to the step of con-
verting free-text documents and queries to their respective vector representa-
tions [Salton and McGill(1983)]. The query and document vectors are then matched
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based on the Vector Space Model (VSM). In the following discussion, we focus on
experimental results generated using the stem-based VSM [Salton and McGill(1983)]
(a VSM that has been the primary platform for query-document matching in previous
studies).

Using a stem-based VSM, both a query and a document are represented as vectors
of word stems. Given a piece of free text, we first removed common stop words such
as “a,” “the,” etc., and then derived word stems from the text using the Lovins stem-
mer [Lovins(1968)]. We further applied the tf · idf weighting scheme (more specif-
ically the atc · atc scheme [Salton and Buckley(1988)]) to assign weights to stems in
documents and the query before expansion. (This weighting process yields the weight
for the key concept in Eq.(1.)

Under the stem-based VSM, all terms expanded to a given query need to be in
the word-stem format. Thus, for expansion concepts derived from procedures in Sec-
tion 3.2 and Section 3.3, we applied the following procedure to identify the corre-
sponding word stems: For each expansion concept, we first looked up its string forms
in UMLS. We further removed stop words and used the Lovins stemmer to convert the
string forms into word stems. Lastly, we assigned weights to these expansion word
stems using the method described in Section 3.4.

4.2 Retrieval Performance

Let us now study the performance improvement of knowledge-based expansion com-
pared to that of statistical expansion. We first study the improvements for selected
expansion sizes, then study the sensitivity of boosting for selected query scenarios.

The retrieval performance is measured using the following three different metrics:
avgp - 11-point precision average (precision averaged over the 11 standard recall

points [Salton and McGill(1983)])
p@10 - precision in top-10 retrieved documents
p@20 - precision in top-20 retrieved documents

Expansion Sizes. For a given expansion size s, we used both knowledge-based expan-
sion and statistical expansion to expand the top-s stems that have the heaviest weights.
For knowledge-based expansion, no weight boosting was applied at this stage.

We compute the three metrics for both methods on the OHSUMED and McMaster
testbeds. We further average the results over the queries in these two testbeds. Table 5
shows the performance comparison of the two methods on both testbeds, under various
metrics. The first row in each subtable shows the performance of statistical expansion,
whereas the second row shows that of knowledge-based expansion and its percentage
of improvement over statistical expansion.

In these figures, “s=All” means appending all possible expansion terms that have a
non-zero weight (Eq.(2)) into the original query. Using the knowledge-based method,
setting “s=All” led to expanding 1717 terms to each query on average, with standard
deviation as 1755; using the statistical method, it led to an average of 50317 terms and
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s 10 20 30 40 50 100 200 300 All 

Statistical Expansion 0.417 0.424 0.428 0.43 0.429 0.432 0.429 0.43 0.425 

Knowledge-Based Expan-
sion (% of improvement) 

0.422 
(1.2%) 

0.431 
(1.7%) 

0.430 
(0.5%) 

0.432 
(0.5%) 

0.434 
(1.2%) 

0.438 
(1.4%) 

0.442 
(3.0%) 

0.443 
(3.0%) 

0.445 
(4.7%) 

(a) Performance comparison using the avgp metric for the OHSUMED testbed 

s 10 20 30 40 50 100 200 300 All 

Statistical Expansion 0.535 0.546 0.549 0.553 0.551 0.567 0.581 0.574 0.567 

Knowledge-Based Expan-
sion (% of improvement) 

0.544 
(1.7%) 

0.547 
(0.2%) 

0.554 
(1.0%) 

0.551 
(-0.4%) 

0.553 
(0.4%) 

0.572 
(0.9%) 

0.572 
(-1.5%) 

0.577 
(0.5%) 

0.588 
(3.7%) 

(b) Performance comparison using the p@10 metric for the OHSUMED testbed 

s 10 20 30 40 50 100 200 300 All 

Statistical Expansion 0.482 0.491 0.493 0.491 0.492 0.496 0.497 0.493 0.496 

Knowledge-Based Expan-
sion (% of improvement) 

0.483 
(0.2%) 

0.491 
(0%) 

0.494 
(0.2%) 

0.496 
(1%) 

0.493 
(0.2%) 

0.498 
(0.4%) 

0.496 
(-0.2%) 

0.497 
(0.8%) 

0.498 
(0.4%) 

(c) Performance comparison using the p@20 metric for the OHSUMED testbed 

s 10 20 30 40 50 100 200 300 All 

Statistical Expansion 0.326 0.328 0.325 0.324 0.323 0.319 0.311 0.309 0.295 

Knowledge-Based Expan-
sion (% of improvement) 

0.325  
(-0.1%) 

0.328 
(0.1%) 

0.324  
(-0.3%) 

0.326 
(0.8%) 

0.325 
(0.4%) 

0.324 
(1.4%) 

0.321 
(3.3%) 

0.32 
(3.4%) 

0.321 
(9%) 

(d) Performance comparison using the avgp metric for the McMaster testbed 

s 10 20 30 40 50 100 200 300 All 

Statistical Expansion 0.316 0.324 0.324 0.318 0.324 0.311 0.295 0.3 0.293 

Knowledge-Based Expan-
sion (% of improvement) 

0.322 
(1.7%) 

0.324 
(0%) 

0.322 
(-0.6%) 

0.325 
(2.3%) 

0.322 
(-0.6%) 

0.318 
(2.3%) 

0.315 
(6.8%) 

0.32 
(6.7%) 

0.335 
(14.3%) 

(e) Performance comparison using the p@10 metric for the McMaster testbed 

s 10 20 30 40 50 100 200 300 All 

Statistical Expansion 0.285 0.285 0.285 0.283 0.283 0.281 0.279 0.278 0.279 

Knowledge-Based Expan-
sion (% of improvement) 

0.285 
(0.3%) 

0.287 
(0.6%) 

0.287 
(1%) 

0.291 
(2.9%) 

0.29 
(2.6%) 

0.293 
(4.2%) 

0.286 
(2.6%) 

0.291 
(4.6%) 

0.292 
(4.6%) 

(f) Performance comparison using the p@20 metric for the McMaster testbed 

Table 5: Performance comparison of the two expansion methods under various expan-
sion sizes

15243 being the standard deviation.
From these experimental results, we observe the following: The performance for

knowledge-based expansion generally increases as s increases and usually reaches the
peak when s=All. (The only exception is in the case of using the avgp metric on the
McMaster testbed, in which the performance of the knowledge-based method roughly
remains stabilized as s increases.) On the other hand, the performance of the statistical
method degrades as s becomes larger. On the OHSUMED testbed, its performance de-
grades after s=100 (Table 5(a)) or s=200 (Table 5(b) and Table 5(c)); on the McMaster
testbed, the performance starts degrading almost immediately after s becomes greater
than 20. This is due to the fact that statistical expansion does not distinguish between
expansion terms that are scenario-specific and those that are not. As a result, as more
terms are appended to the original query, the negative effect of including those non-
scenario-specific terms begins to accumulate and after a certain point, the performance
drops. In contrast, the knowledge-based method appends scenario-specific terms only,
and consequently, the performance of the knowledge-based method keeps increasing
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α s 10 20 30 40 50 100 200 300 All

0 (no
boosting)

0.422
(1.2%)

0.431
(1.7%)

0.430
(0.5%)

0.432
(0.5%)

0.434
(1.2%)

0.438
(1.4%)

0.442
(3.0%)

0.443
(3.0%)

0.445
(4.7%)

0.25 0.425
(1.9%)

0.436
(2.8%)

0.435
(1.6%)

0.436
(1.4%)

0.439
(2.3%)

0.443
(2.5%)

0.445
(3.7%)

0.448
(4.2%)

0.450
(5.9%)

0.5 0.426
(2.2%)

0.435
(2.6%)

0.438
(2.3%)

0.439
(2.1%)

0.440
(2.6%)

0.444
(2.8%)

0.447
(4.2%)

0.450
(4.7%)

0.451
(6.1%)

0.75 0.428
(2.6%)

0.436
(2.8%)

0.437
(2.1%)

0.439
(2.1%)

0.440
(2.6%)

0.444
(2.8%)

0.447
(4.2%)

0.450
(4.7%)

0.450
(5.9%)

1 0.428
(2.6%)

0.436
(2.8%)

0.437
(2.1%)

0.437
(1.6%)

0.439
(2.3%)

0.443
(2.5%)

0.446
(4%)

0.450
(4.7%)

0.452
(6.4%)

1.25 0.426
(2.2%)

0.436
(2.8%)

0.435
(1.6%)

0.437
(1.6%)

0.439
(2.3%)

0.442
(2.3%)

0.445
(3.7%)

0.449
(4.4%)

0.450
(5.9%)

1.5 0.425
(1.9%)

0.435
(2.6%)

0.434
(1.4%)

0.436
(1.4%)

0.439
(2.3%)

0.439
(1.6%)

0.443
(3.3%)

0.445
(3.5%)

0.447
(5.2%)

Table 6: Weight boosting for the OHSUMED testbed, measured by avgp

as more “useful” terms are appended.
We have also compared the statistical expansion method with no expansion, to un-

derstand the general effectiveness of query expansion on the scenario-specific queries
we chose. Due to space limit, we have not included the result of this comparison.
In general, statistical expansion consistently outperforms the no-expansion method by
more than 5%, which represents a significant improvement. In other words, the method
of statistical expansion that we are comparing against already generates reasonably
good retrieval results.)

The Effectiveness of Weight Boosting. In the next experiments, we multiplied a
boosting factor to the weights of knowledge-based expansion terms (Eq.(2)). The
boosting factor β is computed using Eq.(5), under the different settings of α =
0.25, 0.5, 0.75, 1, 1.25, 1.5. Table 6 to Table 11 show the effects of different boosting
amounts on the performance for knowledge-based query expansion, under the three
metrics and for the two testbeds. Each cell in these tables shows 1) the performance
of knowledge-based expansion and 2) the percentage of improvement of knowledge-
based expansion over statistical expansion under the same expansion size. In these
tables, the thick-bordered cells represent the best performance for that column (i.e. un-
der the same setting of expansion size); shaded cells represent the best performance for
that row (i.e. under the same setting of boosting factor). The best performance in the
entire table is highlighted in the shaded and thick-bordered cell.

The following observations can be made from these results:

• For the OHSUMED testbed, the best performance within each column (the thick-
bordered cells) generally falls in the range from α = 0.5 to α = 1.25. This
indicates that boosting helps improve the performance of knowledge-based ex-
pansion. Particularly, boosting introduces significant improvements under the
metrics of p@10 and p@20. We note that setting α = 0.5 or = 0.75 generally
yields the best boosting effect for the avgp metric; setting α = 1 or = 1.25 yields
better performances for the p@10 and p@20 metrics.
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α s 10 20 30 40 50 100 200 300 All

0 (no
boosting)

0.544
(1.7%)

0.547
(0.2%)

0.554
(1.0%)

0.551
(-0.4%)

0.553
(0.4%)

0.572
(0.9%)

0.572
(-1.5%)

0.577
(0.5%)

0.588
(3.7%)

0.25 0.549
(2.6%)

0.556
(1.8%)

0.556
(1.3%)

0.558
(0.9%)

0.567
(2.9%)

0.572
(0.9%)

0.577
(-0.7%)

0.588
(2.4%)

0.595
(4.9%)

0.5 0.549
(2.6%)

0.561
(2.7%)

0.563
(2.6%)

0.565
(2.2%)

0.570
(3.4%)

0.584
(3%)

0.586
(0.9%)

0.593
(3.3%)

0.6
(5.8%)

0.75 0.546
(2.1%)

0.565
(3.5%)

0.561
(2.2%)

0.568
(2.7%)

0.568
(3.1%)

0.589
(3.9%)

0.584
(0.5%)

0.595
(3.7%)

0.596
(5.1%)

1 0.552
(3.2%)

0.567
(3.8%)

0.568
(3.5%)

0.577
(4.3%)

0.577
(4.7%)

0.595
(4.9%)

0.586
(0.9%)

0.595
(3.7%)

0.6
(5.8%)

1.25 0.554
(3.6%)

0.560
(2.6%)

0.567
(3.3%)

0.567
(2.5%)

0.572
(3.8%)

0.582
(2.6%)

0.579
(-0.3%)

0.591
(3%)

0.593
(4.6%)

1.5 0.558
(4.3%)

0.558
(2.2%)

0.570
(3.8%)

0.570
(3.1%)

0.574
(4.2%)

0.581
(2.5%)

0.577
(-0.7%)

0.588
(2.4%)

0.584
(3%)

Table 7: Weight boosting for the OHSUMED testbed, measured by p@10

α s 10 20 30 40 50 100 200 300 All

0 (no
boosting)

0.483
(0.2%)

0.491
(0%)

0.494
(0.2%)

0.496
(1%)

0.493
(0.2%)

0.498
(0.4%)

0.496
(-0.2%)

0.497
(0.8%)

0.498
(0.4%)

0.25 0.486
(0.8%)

0.496
(1%)

0.494
(0.2%)

0.499
(1.6%)

0.496
(0.8%)

0.503
(1.4%)

0.502
(1%)

0.503
(2%)

0.502
(1.2%)

0.5 0.486
(0.8%)

0.499
(1.6%)

0.499
(1.2%)

0.503
(2.4%)

0.502
(2%)

0.509
(2.6%)

0.509
(2.4%)

0.511
(3.7%)

0.511
(3%)

0.75 0.487
(1%)

0.496
(1%)

0.499
(1.2%)

0.509
(3.7%)

0.507
(3%)

0.510
(2.8%)

0.512
(3%)

0.510
(3.4%)

0.511
(3%)

1 0.483
(0.2%)

0.498
(1.4%)

0.501
(1.6%)

0.509
(3.7%)

0.507
(3%)

0.511
(3%)

0.517
(4%)

0.512
(3.9%)

0.510
(2.8%)

1.25 0.482
(0%)

0.496
(1%)

0.498
(1%)

0.510
(3.9%)

0.509
(3.5%)

0.514
(3.6%)

0.514
(3.4%)

0.513
(4.1%)

0.511
(3%)

1.5 0.487
(1%)

0.492
(0.2%)

0.498
(1%)

0.508
(3.5%)

0.504
(3.4%)

0.513
(3.4%)

0.513
(3.2%)

0.511
(3.7%)

0.507
(2.2%)

Table 8: Weight boosting for the OHSUMED testbed, measured by p@20

• For the McMaster testbed, however, boosting seems to be less effective: The best
performance within each column falls in the range from α = 0 to α = 0.75.

• For both testbeds, if we fix the boosting factor, the best performance within each
row (the shaded cells) is generally achieved by having an expansion size s as
large as possible (with the exception case of the avgp metric measured on Mc-
Master). This is consistent with the reported results in the previous experiments.

We believe that the different outcomes of weight boosting on the two testbeds re-
sulted from the different ways in which the relevance judgements for these two testbeds
were derived. For the OHSUMED testbed, human experts manually inspect the con-
tent of each document and decide its relevancy to the query. Certain documents that
mention the expanded concepts extensively without mentioning the key concept may
be considered as relevant by human experts. Boosting the weight of expanded concepts
helps rank such documents higher, thus improving the overall retrieval precision. For
the McMaster testbed, however, we applied a simplified criterion in order to automate
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α s 10 20 30 40 50 100 200 300 All

0 (no
boosting)

0.325
(-0.1%)

0.328
(0.1%)

0.324
(-0.3%)

0.326
(0.8%)

0.325
(0.4%)

0.324
(1.4%)

0.321
(3.3%)

0.32
(3.4%)

0.321
(9%)

0.25 0.325
(-0.3%)

0.326
(-0.5%)

0.324
(-0.5%)

0.325
(0.3%)

0.323
(-0.2%)

0.322
(1%)

0.32
(2.7%)

0.315
(1.9%)

0.318
(8%)

0.5 0.324
(-0.5%)

0.326
(-0.8%)

0.321
(-1.2%)

0.323
(-0.3%)

0.319
(-1.3%)

0.321
(0.5%)

0.316
(1.7%)

0.313
(1.2%)

0.314
(6.5%)

0.75 0.326
(0.1%)

0.321
(-2.1%)

0.321
(-1.5%)

0.321
(-0.7%)

0.319
(-1.4%)

0.318
(-0.4%)

0.315
(1.2%)

0.311
(0.8%)

0.311
(5.5%)

1 0.323
(-0.7%)

0.32
(-2.6%)

0.317
(-2.6%)

0.317
(-2%)

0.317
(-1.9%)

0.315
(-1.4%)

0.312
(0.4%)

0.311
(0.6%)

0.31
(5.2%)

1.25 0.321
(-1.3%)

0.318
(-3%)

0.316
(-2.8%)

0.318
(-1.8%)

0.315
(-2.5%)

0.313
(-2%)

0.311
(0%)

0.309
(0%)

0.309
(5%)

1.5 0.317
(-2.5%)

0.315
(-3.9%)

0.314
(-3.5%)

0.316
(-2.5%)

0.313
(-3.3%)

0.311
(-2.6%)

0.308
(-0.9%)

0.307
(-0.6%)

0.306
(3.8%)

Table 9: Weight boosting for the McMaster testbed, measured by avgp

α s 10 20 30 40 50 100 200 300 All

0 (no
boosting)

0.322
(1.7%)

0.324
(0%)

0.322
(-0.6%)

0.325
(2.3%)

0.322
(-0.6%)

0.318
(2.3%)

0.315
(6.8%)

0.32
(6.7%)

0.335
(14.3%)

0.25 0.32
(1.1%)

0.322
(-0.6%)

0.318
(-1.7%)

0.322
(1.1%)

0.32
(-1.1%)

0.315
(1.2%)

0.316
(7.4%)

0.313
(4.2%)

0.324
(10.6%)

0.5 0.322
(1.7%)

0.329
(1.7%)

0.32
(-1.1%)

0.32
(0.6%)

0.318
(-1.7%)

0.318
(2.3%)

0.313
(6.2%)

0.311
(3.6%)

0.318
(8.7%)

0.75 0.318
(0.6%)

0.324
(0%)

0.316
(-2.2%)

0.307
(-3.4%)

0.313
(-3.4%)

0.313
(0.6%)

0.307
(4.3%)

0.315
(4.8%)

0.32
(9.3%)

1 0.318
(0.6%)

0.322
(-0.6%)

0.311
(-3.9%)

0.305
(-4%)

0.313
(-3.4%)

0.315
(1.2%)

0.316
(7.4%)

0.32
(6.7%)

0.32
(9.3%)

1.25 0.316
(0%)

0.32
(-1.1%)

0.313
(-3.4%)

0.311
(-2.3%)

0.315
(-2.8%)

0.315
(1.2%)

0.311
(5.6%)

0.315
(4.8%)

0.322
(9.9%)

1.5 0.318
(0.6%)

0.318
(-1.7%)

0.305
(-5.6%)

0.311
(-2.3%)

0.315
(-2.8%)

0.311
(0%)

0.313
(6.2%)

0.315
(4.8%)

0.325
(11.2%)

Table 10: Weight boosting for the McMaster testbed, measured by p@10

the process of building relevance judgements based on the existing document classi-
fication 4.1. The type of documents we have just described are considered irrelevant
by this criterion because they do not mention the key concepts. As a result, weight
boosting increases the ranking of such “irrelevant” documents. Apparently, ranking
“irrelevant” documents higher in the retrieval results will not lead to much improve-
ment in retrieval precision.

Sensitivity of Performance Improvements with Query Scenarios. We now study
how knowledge-based expansion perform for different query scenarios. For the
OHSUMED testbed, we grouped the 57 queries according to their scenarios, and fur-
ther selected the five largest groups of scenarios, namely treatment, diagnosis,
pathophysiology of a disease, differential diagnosis of a symp-
tom/disease and complications of a disease/medication. We skipped the remain-
ing scenarios because each of these scenarios has too few number of queries to derive
reliable statistics. (The number of queries that belong to each scenario can be easily
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α s 10 20 30 40 50 100 200 300 All

0 (no
boosting)

0.285
(0.3%)

0.287
(0.6%)

0.287
(1%)

0.291
(2.9%)

0.29
(2.6%)

0.293
(4.2%)

0.286
(2.6%)

0.291
(4.6%)

0.292
(4.6%)

0.25 0.285
(0.3%)

0.289
(1.3%)

0.287
(1%)

0.287
(1.6%)

0.289
(2.3%)

0.289
(2.9%)

0.285
(2%)

0.287
(3.3%)

0.289
(3.6%)

0.5 0.285
(0.3%)

0.288
(1%)

0.288
(1.3%)

0.286
(1.3%)

0.29
(2.6%)

0.287
(2.3%)

0.285
(2%)

0.288
(3.6%)

0.288
(3.3%)

0.75 0.29
(1.9%)

0.285
(0%)

0.288
(1.3%)

0.285
(0.6%)

0.293
(3.5%)

0.286
(1.9%)

0.287
(2.9%)

0.288
(3.6%)

0.285
(2.3%)

1 0.287
(1%)

0.287
(0.6%)

0.285
(0.3%)

0.282
(-0.3%)

0.293
(3.5%)

0.288
(2.6%)

0.286
(2.6%)

0.285
(2.3%)

0.285
(2.3%)

1.25 0.287
(1%)

0.286
(0.3%)

0.285
(0.3%)

0.285
(0.6%)

0.291
(2.9%)

0.288
(2.6%)

0.281
(0.7%)

0.284
(2%)

0.288
(3.3%)

1.5 0.284
(-0.3%)

0.284
(-0.6%)

0.286
(0.6%)

0.283
(0%)

0.293
(3.5%)

0.289
(2.9%)

0.285
(2%)

0.285
(2.3%)

0.289
(3.6%)

Table 11: Weight boosting for the McMaster testbed, measured by p@20

scenario

α

treatment
of a disease

differential
diagnosis of a

symptom / disease

diagnosis
of a disease

complication
of a disease /
medication

pathophysiology of
a disease

0 0.465 (3.9%) 0.444 (9.4%) 0.464 (7.5%) 0.466 (2.4%) 0.564 (0.5%)

0.25 0.470 (5.2%) 0.444 (9.4%) 0.470 (9.0%) 0.470 (3.1%) 0.569 (1.4%)

0.5 0.474 (5.9%) 0.439 (8.0%) 0.472 (9.4%) 0.470 (3.2%) 0.571 (1.8%)

0.75 0.474 (6.0%) 0.434 (6.8%) 0.473 (9.7%) 0.464 (2.0%) 0.573 (2.3%)

1 0.474 (5.9%) 0.438 (7.9%) 0.474 (9.8%) 0.466 (2.4%) 0.580 (3.4%)

1.25 0.472 (5.4%) 0.433 (6.6%) 0.480 (11%) 0.470 (3.1%) 0.579 (3.3%)

1.5 0.466 (4.2%) 0.431 (6.1%) 0.475 (9.9%) 0.467 (2.6%) 0.579 (3.3%)

Table 12: Performance improvements for selected scenarios measured by avgp for the
OHSUMED testbed. Expansion size s=All

counted from Table 4.) Similarly, we grouped the 55 McMaster queries based on the
four scenarios they belong to: namely treatment, diagnosis, etiology and
prognosis of a disease.

We average the performance of knowledge-based expansion within each group of
queries and show the avgp, p@10 and p@20 results in Table 12 to Table 14. Each
cell in these tables shows 1) the performance of knowledge-based expansion averaged
over the corresponding group of queries, under the corresponding boosting setting (α),
and 2) the percentage of improvement of knowledge-based expansion over statistical
expansion under the same settings. For example, the shaded cell in Table 12 shows that
among the 35 treatment OHSUMED queries, under the boosting setting of α =
0.75, knowledge-based expansion achieves an average avgp of 0.474. This represents
a 6.0% improvement over the statistical method measured within the same group of
queries.

To derive the results in Table 12, Table 13 and Table 14, we set the expansion size
s=All, All and 200, respectively; for the results in Table 15, Table 16 and Table 17, we
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scenario

α

treatment
of a disease

differential
diagnosis of a

symptom / disease

diagnosis
of a disease

complication
of a disease /
medication

pathophysiology of
a disease

0 0.597 (4.0%) 0.586 (6.5%) 0.622 (3.7%) 0.550 (-2.0%) 0.720 (-2.7%)

0.25 0.609 (6.0%) 0.586 (6.5%) 0.633 (5.6%) 0.575 (2.2%) 0.720 (-2.7%)

0.5 0.611 (6.5%) 0.593 (7.8%) 0.633 (5.6%) 0.575 (2.2%) 0.740 (0.0%)

0.75 0.603 (5.0%) 0.586 (6.5%) 0.633 (5.6%) 0.563 (0.0%) 0.740 (0.0%)

1 0.606 (5.5%) 0.614 (11.7%) 0.644 (7.4%) 0.563 (0.0%) 0.720 (-2.7%)

1.25 0.597 (4.0%) 0.614 (11.7%) 0.656 (9.3%) 0.575 (2.2%) 0.720 (-2.7%)

1.5 0.586 (2.0%) 0.593 (7.8%) 0.644 (7.4%) 0.575 (2.2%) 0.740 (0.0%)

Table 13: Performance improvements for selected scenarios measured by p@10 for the
OHSUMED testbed. Expansion size s=All

scenario

α

treatment
of a disease

differential
diagnosis of a

symptom / disease

diagnosis
of a disease

complication
of a disease /
medication

pathophysiology of 
a disease

0 0.497 (-0.3%) 0.500 (1.4%) 0.517 (-1.1%) 0.525 (-2.3%) 0.720 (0.0%)

0.25 0.506 (1.4%) 0.500 (1.4%) 0.539 (3.2%) 0.531 (-1.2%) 0.710 (-1.4%)

0.5 0.514 (3.2%) 0.500 (1.4%) 0.539 (3.2%) 0.538 (0.0%) 0.710 (-1.4%)

0.75 0.520 (4.3%) 0.500 (1.4%) 0.550 (5.3%) 0.538 (0.0%) 0.700 (-2.8%)

1 0.523 (4.9%) 0.507 (2.9%) 0.572 (9.6%) 0.544 (1.2%) 0.700 (-2.8%)

1.25 0.519 (4.0%) 0.507 (2.9%) 0.550 (5.3%) 0.544 (1.2%) 0.700 (-2.8%)

1.5 0.516 (3.4%) 0.507 (2.9%) 0.544 (4.3%) 0.544 (1.2%) 0.700 (-2.8%)

Table 14: Performance improvements for selected scenarios measured by p@20 for the
OHSUMED testbed. Expansion size s=200

set the expansion size s=20, All, and 50. Such settings are based on our observations
in the previous subsection that the knowledge-based method tend to perform the best
with these expansion sizes under the corresponding evaluation metrics.

These results generally suggest that knowledge-based expansion performs differ-
ently for queries with different scenarios. More specifically, the method yields more
improvements in scenarios such as treatment, differential diagnosis
and diagnosis, whereas it yields less improvements in such scenarios as
complication, pathophysiology, etiology and prognosis. An expla-
nation lies in the different knowledge structures for these scenarios. The knowledge
structures (i.e., the fragments of UMLS Semantic Network such as Figure 2) for the
latter four scenarios were originally missing in UMLS and were acquired by ourselves
from experts. (We will further present the details of this knowledge acquisition process
in Section 5.) These acquired structures have more semantic types marked as relevant
than those for the former three scenarios. As a result, when handling queries with
the latter four scenarios, the knowledge-based method keeps more concepts during the
filtering step. Thus, the expansion result for the knowledge-based method resembles
that of the statistical expansion method, leading to almost equivalent performance be-
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scenario

α

treatment
of a disease

diagnosis
of a disease

etiology
of a disease

prognosis
of a disease

0 0.49 (-0.6%) 0.145 (3.9%) 0.324 (0.9%) 0.229 (-0.4%)

0.25 0.488 (-1%) 0.145 (3.8%) 0.319 (-0.7%) 0.23 (-0.1%)

0.5 0.486 (-1.4%) 0.143 (2.8%) 0.318 (-1%) 0.231 (0.1%)

0.75 0.484 (-1.9%) 0.143 (2.5%) 0.307 (-4.4%) 0.231 (0.2%)

1 0.48 (-2.7%) 0.142 (2.1%) 0.304 (-5.2%) 0.232 (0.6%)

1.25 0.477 (-3.3%) 0.142 (2%) 0.3 (-6.3%) 0.235 (1.8%)

1.5 0.47 (-4.7%) 0.142 (1.5%) 0.298 (-7.1%) 0.234 (1.7%)

Table 15: Performance improvements for selected scenarios measured by avgp for the
McMaster testbed. Expansion size s=20

scenario

α

treatment
of a disease

diagnosis
of a disease

etiology
of a disease

prognosis
of a disease

0 0.482 (26.2%) 0.129 (12.5%) 0.324 (5.8%) 0.271 (5.6%)

0.25 0.465 (21.5%) 0.129 (12.5%) 0.318 (3.8%) 0.257 (0%)

0.5 0.447 (16.9%) 0.114 (0%) 0.324 (5.8%) 0.257 (0%)

0.75 0.441 (15.4%) 0.143 (25%) 0.318 (3.8%) 0.264 (2.8%)

1 0.441 (15.4%) 0.143 (25%) 0.318 (3.8%) 0.264 (2.8%)

1.25 0.435 (13.8%) 0.143 (25%) 0.318 (3.8%) 0.279 (8.3%)

1.5 0.441 (15.4%) 0.143 (25%) 0.318 (3.8%) 0.286 (11.1%)

Table 16: Performance improvements for selected scenarios measured by p@10 for the
McMaster testbed. Expansion size s=All

tween the two methods and less improvements. We believe that a refined clustering
and ranking of the knowledge structures for the four scenarios (i.e., complication,
pathophysiology, etiology and prognosis) will increase the improvements
in retrieval performance.

4.3 Discussion of Results

Choice of α for weight boosting. Our experimental results from Table 6 to Table 11
suggest that weight boosting is in general helpful to improve retrieval performance.
Further, the results shown in Table 12 to Table 17 suggest that the performance of
weight boosting is sensitive to the query scenario. Certain query scenarios such as
treatment and diagnosis are associated with more compact knowledge struc-
tures, which leads to significantly less expansion concepts using our knowledge-based
method compared to those by statistical expansion. In these scenarios, setting α in
between 0.75 and 1.25, which represents more aggressive weight boosting, achieves
noticable improvements. In other scenarios associated with less compact knowledge
structures, e.g., complication, the difference is insignificant between the set of ex-
pansion concepts by our method and those by statistical expansion. As a result, the
cumulative weights of the two set of expansion concepts are close to each other. For
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scenario

α

treatment
of a disease

diagnosis
of a disease

etiology
of a disease

prognosis
of a disease

0 0.462 (3.3%) 0.1 (7.7%) 0.282 (2.1%) 0.186 (0%)

0.25 0.462 (3.3%) 0.107 (15.4%) 0.276 (0%) 0.186 (0%)

0.5 0.462 (3.3%) 0.114 (23.1%) 0.276 (0%) 0.186 (0%)

0.75 0.468 (4.6%) 0.121 (30.8%) 0.271 (-2.1%) 0.193 (3.8%)

1 0.471 (5.3%) 0.114 (23.1%) 0.268 (-3.2%) 0.196 (5.8%)

1.25 0.462 (3.3%) 0.114 (23.1%) 0.268 (-3.2%) 0.2 (7.7%)

1.5 0.468 (4.6%) 0.114 (23.1%) 0.265 (-4.3%) 0.204 (9.6%)

Table 17: Performance improvements for selected scenarios measured by p@20 for the
McMaster testbed. Expansion size s=50

such scenarios, our experimental data suggests a more conservative weight boosting
with α ∈ [0, 0.5].

Comparison with previous knowledge-based query expansion studies. Our re-
search differs from most knowledge-based query expansion studies [Hersh et al.(2000),
Plovnick and Zeng(2004), Guo et al.(2004)] in the baseline method used for compar-
ison. Most existing studies only compare against a baseline generated by no query
expansion. Such studies expand the synonyms, hypernyms and hyponyms of the origi-
nal query concepts, and usually report an insignificant improvement [Guo et al.(2004)]
or even degrading performance [Hersh et al.(2000)] compared to the no expansion
method. In contrast, our study compares against statistical expansion which, in our
experimental setup, has an observed improvement over no expansion by at least 5%.

In Aronson and Rindflesch’s study [Aronson and Rindflesch(1997)], the re-
searchers applied the UMLS Metathesaurus to automatically expand synonyms to the
original query. In one particular setup, their approach achieved a 5% improvement
over a previous study [Srinivasan(1996)] which applied statistical expansion on the
same testbed. This result indicates the value of human knowledge in query expansion,
and generally aligns with the observation in our experiments. We note that the dif-
ference between their research and ours is that their approach is limited to expanding
synonyms only, and is not scenario-specific as we have analyzed in Section 1.

5 Knowledge Acquisition

The quality of our knowledge-based method largely depends upon the quality and com-
pleteness of the domain-specific knowledge source. The knowledge structure in the
UMLS knowledge base is not specifically for scenario-specific retrieval. As a result, we
discovered some frequently asked scenarios (e.g., etiology or complications
of a disease) that are either undefined in UMLS, or defined but with incomplete knowl-
edge. Therefore, we developed a methodology to acquire knowledge and to supplement
the UMLS knowledge source. The methodology consists of the following two steps:
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Disease or 
Syndrome

Semantic Type

??? ??????

is_etiology_of

is_etiology_of

is_etiology_of

Figure 4: A sample template to acquire knowledge for previously undefined scenarios

1. Acquire knowledge for undefined scenarios to supplement the UMLS knowledge
source.

2. Refine the knowledge of the scenarios defined in the UMLS knowledge source
(including the knowledge supplemented by Step 1).

5.1 Knowledge Acquisition Methodology

Knowledge Acquisition for Undefined Scenarios. For an undefined scenario, we
present to medical experts an incomplete relationship graph as shown in Figure 4.
Edges in this relationship graph are labelled with one of the undefined scenarios, e.g.,
“etiology.” The experts will fill in the question marks with existing UMLS semantic
types that fit the relationship. For example, because viruses are related to the etiol-
ogy of a wide variety of diseases, the semantic type “Virus” will replace one of the
question marks in Figure 4. This new relationship graph (etiology of diseases) will
be appended to the UMLS Semantic Network, and can be used for queries with the
“etiology” scenario.

Knowledge Refinement Through Relevance Judgements. A relationship graph for
a given scenario (either previously defined by UMLS or newly acquired from Step
1) may be incomplete in including all relevant Semantic Types. A hypothetical ex-
ample of this incompleteness would be the missing relationship treats between
Therapeutic or Preventive Procedure and Disease or Syndrome.
Our basic idea in amending this incompleteness is to explore the “implicit” knowl-
edge embedded in the relevance judgements of a standard IR testbed. Such a test-
bed typically provides a set of benchmark queries and for each query, a pre-specified
set of relevant documents. To amend the knowledge structure for a certain scenario,
e.g., treatment, we focus on sample queries that are specific to this scenario,
e.g., keratoconus treatment. We then study the content of documents that
are marked as relevant to these queries. From the content, we can identify concepts
that are directly relevant to the query’s scenario, e.g., treatment. If the semantic
type for those concepts are missing in the knowledge structure, we can then refine the
knowledge structure by adding the corresponding semantic types. For example, let
us consider a hypothetical case where the type Therapeutic or Preventive
Procedure is missing in the knowledge structure of Figure 2. If by studying the sam-
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ple query keratoconus treatment, we identify quite a few “Therapeutic
or Preventive Procedure” concepts appearing in relevant documents such
as penetrating keratoplasty and epikeratoplasty, we are then able
to identify Therapeutic or Preventive Procedure as a relevant semantic
type and append it to Figure 2.

Given that a typical benchmark query has a long list of relevant documents, it
is labor-intensive to study the content of every relevant document. One way to ac-
celerate this process is to first apply an incomplete knowledge structure to perform
knowledge-based query expansion and perform retrieval tests based on such expansion.
An incomplete knowledge structure leads to an “imperfect” query expansion, which in
turn, fails to retrieve certain relevant documents to the top of the ranked list. Compar-
ing this ranked list with the gold standard and identifying the missing relevant docu-
ments will give us pointers to determine the incomplete knowledge. For example, fail-
ure to include Therapeutic or Preventive Procedure in the knowledge
structure in Figure 2 prevents us from expanding concepts such as penetrating
keratoplasty to the sample query of keratoconus, treatment. As a re-
sult, documents with a focus on penetrating keratoplasty will be ranked
unfavorably low. After we identify such documents, we can discover the missing ex-
pansion concepts contributing to the low rankings and refine the knowledge structure
as we have just described.

5.2 Knowledge Acquisition Process

We chose the 57 scenario-specific queries (Table 4) in the OHSUMED testbed to apply
our proposed knowledge-acquisition method because of the following considerations:

• The OHSUMED queries are collected from physicians patients in a clinical set-
ting. Therefore, the OHSUMED query scenarios should be representative in
healthcare, and the knowledge acquired from these scenarios should be broadly
applicable.

• The knowledge-acquisition methodology also requires exploring relevance
judgements for a set of benchmark queries. OHSUMED is the largest testbed
for medical free-text retrieval that has relevance judgements for knowledge re-
finement.

We have identified 12 OHSUMED scenarios whose knowledge structures are miss-
ing in UMLS. We applied the two-step knowledge-acquisition method to acquire the
knowledge structures for these 12 undefined scenarios and to refine the knowledge
structures for all scenarios. During the first step of the acquisition process, we inter-
viewed two medical experts at the UCLA School of Medicine. During the interview, we
first described the meaning of the relationship graphs as seen in Figure 4. Afterwards,
we presented the entire list of UMLS semantic types to the experts so that appropri-
ate semantic types were filled into the question marks. We communicated the results
from one expert to another until they reached a consensus for each scenario. For the
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Scenarios

# of 
semantic 
types
defined in 
UMLS

# of semantic
types
acquired 
from experts 

# of additional 
semantic types 
through
knowledge
refinement 

Total # of 
semantic 
types after 
knowledge
acquisition 

treatment of a disease 3 N/A 1 4 

diagnosis of a disease 5 N/A 2 7 

prevention of a disease 3 N/A 0 3 

differential diagnosis of a symptom/disease N/A 10 4 14 

etiology of a disease N/A 40 1 41 

risk factors of a disease N/A 40 2 42 

complications of a disease/medication N/A 15 0 15 

pathophysiology of a disease N/A 56 0 56 

prognosis of a disease N/A 15 2 17 

epidemiology of a disease N/A 13 0 13 

research of a disease N/A 28 0 28 

organisms of a disease N/A 7 0 7 

criteria of medication N/A 26 0 26 

when to perform a medication N/A 5 6 11 

preventive health care for a type of patients N/A 10 2 12 

Table 18: Knowledge acquisition results

second step of knowledge acquisition, we performed retrieval tests on the OHSUMED
testbed using both queries expanded by the knowledge-based method and the method
of expanding all statistically-related concepts. We focused on 12 queries where the sta-
tistical method outperforms the knowledge-based method in terms of the precision in
top-10 results. We further applied the method presented in the previous section to study
the content of these top-ranked documents and augmented the knowledge structure for
the corresponding scenario with appropriate semantic types.

5.3 Knowledge Acquisition Results

The acquisition results are shown in Table 18. Due to space constraints, we only pro-
vide a statistical summary of the results. Appendix D presents the results in full detail.

The scenarios in the first three rows, i.e., treatment, diagnosis and
prevention, are originally defined by UMLS. The first column in these rows
shows the number of semantic types marked as relevant for each scenario (i.e., the
number of semantic types that experts have filled into the blank rectangles of Fig-
ure 4). The second column for these rows is “N/A” because there was no need to ac-
quire knowledge structure from domain experts for these scenarios. The third column
shows the number of semantic types added during knowledge refinement (the second
step of knowledge acquisition). For example, for the diagnosis scenario two ad-
ditional semantic types, Laboratory or Test Result and Biologically
Active Substance were added because of the study on Query #97: Iron
deficiency anemia, which test is best. These two semantic types
were added because the absence of these two types has prevented the knowledge-
based method from expanding two critical concepts into the original query: serum
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ferritin and fe iron, each belonging to one of the two semantic types. From
the relevance judgement set, we noted that missing these two concepts leads to the low
ranking of three relevant documents that heavily use these two concepts.

Starting from the fourth row, we list the scenarios for which we need to acquire
knowledge structure from domain experts. The first column for these scenarios is
“N/A” because these scenarios are originally undefined in UMLS. The second column
shows the number of semantic types that experts have filled into the structure template
of Figure 4. The third column shows the number of additional semantic types from
knowledge refinement (the second step of knowledge acquisition), and the last column
shows the total number of semantic types after knowledge acquisition.

The proposed knowledge-acquisition method on the OHSUMED testbed has shown
to be efficient and effective. We finished communicating with domain experts to ac-
quire the knowledge structures for the 12 scenarios in less than 20 hours, and spent
an additional 20 hours to refine the knowledge structure by exploring the relevance
judgements. We applied the augmented knowledge source in our knowledge-based
query expansion experiments. The augmented knowledge was shown to be effective
in helping improve the retrieval performance of the knowledge-based method over the
statistical expansion method.

6 Study of The Relevany of Expansion Concepts by Do-
main Experts

Through experiments on the two standard medical text retrieval testbeds, we have
observed that under most retrieval settings knowledge-based query expansion outper-
forms statistical expansion. Our conjecture is that knowledge-based query expansion
selects more specific expansion concepts to the original query’s scenario than statistical
expansion does. To verify this conjecture, we have asked domain experts to manually
evaluate the relevany of expansion concepts.

The basic idea for this study is the following: For each query in a given retrieval
testbed, we apply the two query expansion methods to generate two sets of expansion
concepts. We then prepare an evaluation form which inquires about the relevany of
each expansion concept to the original query. In this form, we present the query’s
text, and ask domain experts to judge the relevancy based on the query’s scenario(s).
For each concept we provide four scales of relevancy: relevant, somewhat relevant,
irrelevant, or do not know. We blind the method used to generate each concept. In
doing so, we reduce bias that an expert might have towards a particular method. A
sample fraction of this form is shown in Appendix C.

To implement this idea, we chose the 57 scenario-specific queries in the
OHSUMED testbed. We applied the two expansion methods and derived 40 expan-
sion concepts from each method with the highest weights. We presented the evaluation
form consisting of these concepts to three medical experts who are intern doctors at the
UCLA School of Medicine. We asked them to make judgements only on those queries
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Figure 5: Relevancy of expansion con-
cepts created by statistical expansion

Figure 6: Relevancy of expansion concepts
created by knowledge-based expansion

that belong to their area of expertise, e.g., oncology, urology, etc. On average, each ex-
pert judged the expansion concepts for 15 queries. Thus, for each expansion method,
we obtained 1,600 expansion concepts classified as one of the four categories.

Figure 5 and Figure 6 present a summary of the results from this human subject
study. For the expansion concepts derived from each method, we summarized the re-
sults into a histogram. The bins of this histogram are the four scales of relevancy. We
note that 56.9% of the expansion concepts derived by the knowledge-based method are
judged as either relevant or somewhat relevant. This represents a 46.6% improvement
compared to expansion concepts derived from statistical expansion. This result vali-
dates that knowledge-based query expansion derives more relevant expansion concepts
to the original query’s scenario(s) than those by statistical expansion, and thus yields
improved retrieval results for scenario-specific queries.

7 Conclusion

Scenario-specific queries represent a special type of query that is frequently used in
medical free-text retrieval. In this research, we have proposed a knowledge-based
query expansion method to improve the retrieval performance for such queries. We
have made the following contributions:

• We have developed a methodology that exploits the knowledge structures in the
UMLS Semantic Network and the UMLS Metathesaurus to identify concepts
that are specifically related to the scenario(s) in the query. Appending such iden-
tified concepts to the query results in scenario-specific expansion.

• We have developed an efficient and effective methodology for knowledge acqui-
sition to supplement and refine the knowledge source.

• We have performed extensive experimental evaluation of the retrieval perfor-
mance of knowledge-based query expansion by comparing with that of statistical
expansion. Our experimental studies reveal that:
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– Knowledge provided by UMLS is useful in creating scenario-specific query
expansion, leading to over 5% of improvements over statistical expansion
in the majority of cases studied. Such improvements are significant since
statistical expansion outperforms the no-expansion method by at least 5%
in our experimental setup.

– Since knowledge-based expansion tends to expand less terms into the orig-
inal query, boosting the weights of these terms is necessary to generate
improvements over the statistical method.

– Because the knowledge structures defined for different query scenarios
exhibit different characteristics, the performance improvements of the
knowledge-based expansion method differ for these scenarios.

The focus of this research is to support scenario-specific queries in the medical
domain. Scenario-specific queries can appear in other domains as well. In extending
our research to other domains, we note that the quality of domain knowledge is im-
portant to the performance of our method. In certain domains where such knowledge
is not readily available, the success of our approach depends on the knowledge acqui-
sition process which is resource-intensive. This represents a limitation of our current
approach in terms of extensibility across different domains, and is an interesting topic
for future research.
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Appendix A. The List of Scenario-Specific OHSUMED
Queries

Table A shows the 57 OHSUMED queries used in our study. The first column shows
the query ID as assigned by the OHSUMED dataset. The second column shows the
information-request [Hersh et al.(1994)] sub-portion of each query. The third column
lists the scenario(s) manually identified for each query. During scenario identifica-
tion, we mapped the management scenario into its equivalent scenario treatment,
workup into diagnosis, etc. Such mapping was derived by consulting experts from
UCLA School of Medicine.
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Query
ID

Information-request sub-portion of the query Scenario(s)

2 pathophysiology and treatment of DISSEMINATED INTRAVASCU-
LAR COAGULATION

pathophysiology, treatment of a dis-
ease

3 ANTICARDIOLIPIN and LUPUS ANTICOAGULANTS, patho-
physiology, epidemiology, complications

pathophysiology, epidemiology,
complications of a disease

13 LACTASE DEFICIENCY therapy options treatment of a disease
14 PANCYTOPENIA IN AIDS, workup and etiology differential diagnosis, etiology of a

disease
15 THROMBOCYTOSIS, treatment and diagnosis treatment, diagnosis of a disease
16 CHRONIC FATIGUE SYNDROME, management and treatment treatment of a disease
21 SECONDARY HYPERTENSION, recent strategy for workup diagnosis of a disease
23 SPONTANEOUS UNILATERAL GALACTORRHEA, differential

diagnosis and workup
differential diagnosis of a disease

26 pathophysiology and etiology of STEVENS-JOHNSON SYN-
DROME

pathophysiology, etiology of a dis-
ease

27 SICKLE CELL DISEASE, treatment advice treatment of a disease
29 THROMBOCYTOPENIA IN PREGNANCY, etiology and manage-

ment
treatment, etiology of a disease

30 ACUTE TUBULAR NECROSIS due to AMINOGLYCOSIDES,
CONTRAST DYE, outcome and treatment

complication, treatment of a disease

31 CHRONIC PAIN management, review article, use of TRICYCLIC
ANTIDEPRESSANTS

treatment of a disease/symptom

32 COCAINE WITHDRAWAL, management treatment of a disease
33 CAROTID ENDARTERECTOMY, when to perform when to perform a medication
35 risk factors and treatment for HEPATOCELLULAR CARCINOMA treatment, risk factors of a disease
37 FIBROMYALGIA / FIBROSITIS, diagnosis and treatment treatment, diagnosis of a disease
38 DIABETIC GASTROPARESIS, treatment treatment of a disease
39 VIRAL GASTROENTERITIS, current management treatment of a disease
40 best treatment of MALIGNANT PERICARDIAL EFFUSION in

ESOPHAGEAL CANCER
treatment of a disease

41 ASCITES, differential diagnosis and work-up differential diagnosis of a find-
ing/symptom

42 KERATOCONUS, treatment options treatment of a disease
43 BACK PAIN, information on diagnosis and treatment treatment, differential diagnosis of a

disease/symptom

32



45 ACUTE MEGAKARYOCYTIC LEUKEMIA, treatment and prog-
nosis

treatment, prognosis of a disease

47 URINARY RETENTION, differential diagnosis differential diagnosis of a dis-
ease/symptom

49 FLORINEF and CORONARY ARTERY DISEASE, any indications criteria of a medication
51 differential diagnosis of U WAVES differential diagnosis of symptom
52 indications for and success of PERICARDIAL WINDOWS and

PERICARDECTOMIES
criteria, complication of a medica-
tion

53 LUPUS NEPHRITIS, diagnosis and management treatment, diagnosis of a disease
56 treatment of HYPOTHYROIDISM IN RAPID CYCLING (BIPO-

LAR DISORDER)
treatment of a disease

57 CEREBRAL EDEMA SECONDARY TO INFECTION, diagnosis
and treatment

treatment, diagnosis of a disease

58 diagnostic and therapeutic work up of BREAST MASS treatment, diagnosis of a disease
61 TRANSJUGULAR SPLENIC SHUNT, outcome complication of a medication
62 evaluation for complications and management of BULIMIA complication, treatment of a disease
64 prevention, risk factors, pathophysiology of HYPOTHERMIA risk factors, prevention, pathophysi-

ology of a disease/symptom
65 CHRONIC INFLAMMATORY DEMYELINATING POLYNEU-

ROPATHY, differential diagnosis and criteria
differential diagnosis of a disease

66 complications of PROLONGED PROGESTERONE complication of a disease
67 outpatient management of DIABETES, standard management of DIA-

BETES and any new management techniques
treatment of a disease

69 DIVERTICULITIS, differential diagnosis and management treatment, differential diagnosis of a
disease

70 differential diagnosis of ELEVATED ALKALINE PHOSPHATASE
and ELEVATED LDH LEVELS

differential diagnosis of find-
ings/symptoms

72 THYROTOXICOSIS, diagnosis and management treatment, diagnosis of a disease
74 NEUROLEPTIC MALIGNANT SYNDROME, differential diagno-

sis, treatment
treatment, differential diagnosis of a
disease

75 CARCINOID TUMORS OF THE LIVER AND PANCREAS, re-
search, treatments

research, treatment of a disease

76 RADIATION INDUCED THYROIDITIS, differential diagnosis,
management

treatment, differential diagnosis of a
disease

77 HEAT EXHAUSTION, management and pathophysiology treatment, pathophysiology of a dis-
ease

79 complications and management of ANOREXIA and BULIMIA complication, treatment of diseases
80 ADRENAL MASS, how to work up diagnosis of a disease
81 CULTURE NEGATIVE ENDOCARDITIS, organisms, diagnosis,

treatment
organism, treatment, diagnosis of a
disease

82 AIDS DEMENTIA, workup diagnosis of a disease
85 RECURRENT CELLULITIS, risk factors, management, prophylaxis treatment, risk factors, prevention of

a disease
93 ALLERGIC REACTION TO COUMADIN, treatment treatment of a disease
94 URINARY TRACT INFECTION, criteria for treatment and admis-

sion
criteria of medication

96 preventive health care for the ADULT PATIENT preventive health care for a type of
patients

97 IRON DEFICIENCY ANEMIA, which test is best diagnosis of a disease
98 SCHEURMANN’S DISEASE, treatment treatment of a disease
102 how to best control PAIN and DEBILITATION secondary to OS-

TEOPOROSIS in never treated advanced disease
treatment of a disease

103 differential diagnosis of BREAKTHROUGH VAGINAL BLEED-
ING while on ESTROGEN AND PROGESTERONE THERAPY

differential diagnosis of a symtom

Table A: The 57 studied queries and their corresponding scenarios
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Appendix B. The List of Scenario-Specific McMaster
Queries

Table B, organized similarly as Table A, shows the 55 McMaster queries used in our
study.

Query
ID

Information-request sub-portion of the query Scenario(s)

1 ANEMIA, treatment treatment of a disease
2 ANEMIA, etiology etiology of a disease
3 ANEMIA, prognosis prognosis of a disease
4 ASTHMA, treatment treatment of a disease
5 ASTHMA, diagnosis diagnosis of a disease
6 ASTHMA, etiology etiology of a disease
7 BRONCHIAL ASTHMA, prognosis prognosis of a disease
8 BREAST CANCER, treatment treatment of a disease
9 BREAST CANCER, diagnosis diagnosis of a disease
10 BREAST CANCER, etiology etiology of a disease
11 BREAST CANCER, prognosis prognosis of a disease
12 CEREBRAL PALSY, treatment treatment of a disease
13 CEREBRAL PALSY, etiology etiology of a disease
14 CEREBRAL PALSY, prognosis prognosis of a disease
15 CHRONICAL DISEASE, treatment treatment of a disease
16 CHRONICAL DISEASE, etiology etiology of a disease
17 CHRONICAL ILLNESS, prognosis prognosis of a disease
18 CAD, treatment treatment of a disease
19 CAD, diagnosis diagnosis of a disease
20 CAD, etiology etiology of a disease
21 CAD, prognosis prognosis of a disease
22 CYSTIC FIBROSIS, treatment treatment of a disease
23 CYSTIC FIBROSIS, etiology etiology of a disease
24 CYSTIC FIBROSIS, prognosis prognosis of a disease
25 DEPRESSION, treatment treatment of a disease
26 DEPRESSION, diagnosis diagnosis of a disease
27 DEPRESSION, etiology etiology of a disease
28 DEPRESSION, prognosis prognosis of a disease
29 DIABETES, treatment treatment of a disease
30 DIABETES, diagnosis diagnosis of a disease
31 DIABETES, etiology etiology of a disease
32 DIABETES, prognosis prognosis of a disease
33 HEPATOCELLULAR CARCINOMA, treatment treatment of a disease
34 HEPATOCELLULAR CARCINOMA, diagnosis diagnosis of a disease
35 HEPATOCELLULAR CARCINOMA, etiology etiology of a disease
36 HEPATOCELLULAR CARCINOMA, prognosis prognosis of a disease
37 HYPERTENSION, treatment treatment of a disease
38 HYPERTENSION, etiology etiology of a disease
39 HYPERTENSION, prognosis prognosis of a disease
40 OSTEOPOROSIS, treatment treatment of a disease
41 OSTEOPOROSIS, etiology etiology of a disease
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42 RENAL FAILURE, treatment treatment of a disease
43 RENAL FAILURE, etiology etiology of a disease
44 RENAL INSUFFICIENCY, prognosis prognosis of a disease
45 THROMBOCYTOPENIA, treatment treatment of a disease
46 THROMBOCYTOPENIA, etiology etiology of a disease
47 THROMBOCYTOPENIA, prognosis prognosis of a disease
48 UTI, treatment treatment of a disease
49 URINARY TRACT INFECTION, diagnosis diagnosis of a disease
50 UTI, etiology etiology of a disease
51 URINARY TRACT INFECTION, prognosis prognosis of a disease
52 ALLERGIC REACTION, treatment treatment of a disease
53 ALLERGIC REACTION, etiology etiology of a disease
54 MIGRAINE, treatment treatment of a disease
55 MIGRAINE, etiology etiology of a disease

Table B: The 55 McMaster queries and their corresponding scenarios

Query 42: Keratoconus, treatment options
Please judge the relevancy of the following concepts with regard to the treatment
of keratoconus.

Concept derived by one method A
Concept Relevant Somewhat

relevant
Irrelevant Do not

know
penetrating keratoplasty
epikeratoplasty
epikeratophakia
keratoplasty
contact lens
...
mm / mitomycin / mitomycins

Concept derived by method B
Concept Relevant Somewhat

relevant
Irrelevant Do not

know
fuchs dystrophy
penetrating keratoplasty
epikeratoplasty
corneal ectasia
acute hydrops
...
eye

Table C: A part of the evaluation form for domain experts to judge the relevancy of the
expansion terms to the original query. Method names were blinded when the form was
presented to domain experts. Method A corresponds to knowledge-based expansion,
whereas method B corresponds to statistical expansion.
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Appendix C. A Sample Evaluation Form Used for Eval-
uating The Relevancy of Expansion Terms

The goal of designing the evaluation form is to collect domain experts’ judgements
about the relevancy of expansion terms derived by both knowledge-based expansion
and statistical expansion. For a given query, we used both methods to derive 40 expan-
sion concepts that have the highest weights. In Table C, we show a part of this form
for the OHSUMED query keratoconus treatment.

Appendix D. Knowledge Acquisition Results

We first consulted medical experts to acquire the set of semantic types relevant to a
scenario that is previously undefined by UMLS (e.g “etiology of disease”). Table D
lists the acquisition results. Due to space limit, we only provide the ID of each se-
mantic type. The definition can be found in the “SRDEF” table of UMLS. We further
performed knowledge refinement through relevance judgements and present the refine-
ment results in Table E. The second column in the figure shows the additional semantic
types added to the corresponding scenario from this step.
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Scenario Set of relevant semantic types by consulting experts (ID’s only)

differential diagnosis of
a disease

T059, T060, T097, T121, T184, T046, T047, T048, T049, T191

etiology of a disease T004, T005, T006, T007, T009, T031, T073, T074, T075, T103, T104, T105, T106, T107,
T108, T109, T110, T111, T112, T113, T114, T115, T116, T118, T119, T120, T121, T122,
T123, T124, T125, T126, T127, T128, T129, T130, T131, T167, T168, T192, T053, T054,
T055, T047, T048, T191, T049, T190, T019, T020, T037

risk factors of a disease T004, T005, T006, T007, T009, T031, T073, T074, T075, T103, T104, T105, T106, T107,
T108, T109, T110, T111, T112, T113, T114, T115, T116, T118, T119, T120, T121, T122,
T123, T124, T125, T126, T127, T128, T129, T130, T131, T167, T168, T192, T053, T054,
T055, T047, T048, T191, T049, T190, T019, T020, T037

complications of a dis-
ease/medication

T033, T034, T184, T059, T060, T061, T047, T048, T190, T019, T020, T054, T055, T080,
T081

pathophysiology of a
disease

T062, T059, T039, T040, T041, T042, T043, T044, T045, T046, T047, T048, T191, T049,
T050, T018, T021, T023, T024, T025, T026, T028, T190, T019, T020, T109, T110, T111,
T112, T113, T114, T115, T116, T118, T119, T120, T121, T122, T123, T124, T125, T126,
T127, T128, T129, T192, T033, T034, T184, T085, T086, T087, T088, T169, T022, T059

prognosis of a disease T033, T034, T184, T059, T060, T061, T047, T048, T190, T019, T020, T054, T055, T080,
T081

epidemiology of a dis-
ease

T083, T097, T098, T099, T100, T101, T102, T002, T003, T004, T005, T006, T007

research of a disease T062, T063, T109, T110, T111, T112, T113, T114, T115, T116, T118, T119, T123, T124,
T125, T126, T127, T128, T129, T192, T085, T086, T087, T088, T004, T005, T006, T007

organisms for a disease T001, T002, T003, T004, T005, T006, T007
criteria of medication T033, T034, T184, T059, T060, T109, T110, T111, T112, T113, T114, T115, T116, T118,

T119, T123, T124, T125, T126, T127, T128, T129, T192, T190, T019, T020
when to perform a med-
ication

T059, T060, T033, T034, T184

preventive health care
for a type of patient

T059, T053, T054, T055, T056, T064, T065, T124, T127, T129, T080, T169

Table D: The set of semantic types relevant to each scenario, results acquired by con-
sulting medical experts

Scenario Set of relevant semantic types appended during knowledge refinement

treatment of a disease T093
diagnosis of a disease T034, T123
prevention of a disease n/a
differential diagnosis of a disease T034, T123, T031, T082
etiology of a disease T059
risk factors of a disease T059, T034
complications of a disease/medication n/a
pathophysiology of a disease n/a
prognosis of a disease T169, T025
epidemiology of a disease n/a
research of a disease n/a
organisms for a disease n/a
criteria of medication n/a
when to perform a medication T046, T047, T048, T049, T191, T023
preventive health care for a type of patient T080, T169

Table E: The set of semantic types relevant to each scenario, acquired from knowledge
refinement by exploring relevance judgements
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