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Abstract

An ever increasing amount of valuable information is
stored in Web databases, “hidden” behind search inter-
faces. To save the user’s effort in manually exploring
each database, metasearchers automatically select the
most relevant databases to a user’s query [2, 5, 16, 21,
26]. Existing methods use a pre-collected summary of
each database to estimate its “relevancy” to the query,
and return the databases with the highest estimation.
While this is a great starting point, the existing meth-
ods suffer from two drawbacks. First, because the es-
timation can be inaccurate, the returned databases are
often wrong. Second, the system does not try to im-
prove the “quality” of its answer by contacting some
databases on-the-fly (to collect more information about
the databases and select databases more accruately),
even if the user is willing to wait for some time to ob-
tain a better answer. In this paper, we introduce the
notion of dynamic probing and study its effectiveness
under a probabilistic framework: Under our framework,
a user can specify how “correct” the selected databases
should be, and our system automatically contacts a few
databases to satisfy the user-specified correctness. Our
experiments on 20 real hidden Web databases indicate
that our approach significantly improves the correctness
of the returned databases at a cost of a small number of
database probing.

1 Introduction

An ever increasing number of information on the Web is available
through search interfaces. This information is often called the
Hidden Web or Deep Web [1] because traditional search engines
cannot index them using existing technologies [10, 23]. Since
the majority of Web users rely on traditional search engines to
discover and access information on the Web, the Hidden Web is
practically inaccessible to most users and “hidden” from them.
Even if users are aware of a certain part of the Hidden Web, they
need to go through the painful process of issuing queries to all po-
tentially relevant Hidden Web databases1 and investigating the re-
sults manually. On the other hand, the information in the Hidden

1We call a collection of documents accessible through a Web search
interface as a Hidden-Web database. PubMed (http://www.ncbi.
nlm.nih.gov/entrez/query.fcgi) is one example.

document document
keyword frequency in db1 frequency in db2
cancer 10,000 5,000
kidney 7,000 10,000
breast 2,000 3,500
liver 200 4,000

Figure 1: (Keyword, document frequency) table. Document fre-
quency of a keyword in db is the number of documents in db that
use the keyword

Web is estimated to be significantly larger and of higher quality
than the “Surface Web” indexed by search engines [1].

In order to assist users accessing the information in the Hidden
Web, recent efforts have focused on building a metasearcher or a
mediator that automatically selects the most relevant databases to
a user’s query [2, 5, 14, 15, 16, 18, 21, 24, 25, 26]. In this frame-
work, the metasearcher maintains a summary or statistics on each
database, and consults the summary to estimate the relevancy of
each database to a query. For example, Gravano et al. [14, 16]
maintain (keyword, document frequency) pairs to estimate the
databases with the most number of matching documents. We il-
lustrate the basic idea of the existing approaches using the follow-
ing example.

Example 1 A metasearcher mediates two Hidden-Web
databases, db1 and db2. Given a user’s query q, the goal of the
metasearcher is to return the database with the most number of
matching documents. The metasearcher maintains the (keyword,
document frequency) table shown in Figure 1.2 For example, the
first row shows that 10,000 documents in db1 contain the word
“cancer” while 5,000 documents in db2 contain “cancer.” We
assume that each of db1 and db2 has a total of 20,000 documents.

Given a user query “breast cancer,” the metasearcher may
select the database with more matching documents in the fol-
lowing way: From the summary we know that 2,000

20,000
fraction

of the documents in db1 contain the word “breast” and 10,000
20,000

of them contain the word “cancer.” Then, assuming that the
words “breast” and “cancer” are independently distributed, db1
will have 20, 000 · 2,000

20,000
· 10,000

20,000
= 1, 000 documents with both

words “breast” and “cancer.” Similarly, db2 will have 20, 000 ·
3,500
20,000

· 5,000
20,000

= 875 matching documents. Based on this esti-
mation, the metasearcher returns db1 to the user. 2

2References [18] explain in detail how we may construct this table
from hidden Web databases.
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In this paper, we improve upon this existing framework by in-
troducing the concept of probabilistic correctness and dynamic
probing for Hidden Web database selection. One of the main
weaknesses of the existing method is that the selected databases
are often not the most relevant to the user’s query, because the rel-
evancy of a database is estimated based on a pre-collected sum-
mary. For instance, in the above example, the word “breast” and
“cancer” may not be independently distributed, and db2 may actu-
ally contain more matching documents than db1. Given a wrong
answer, the user ends up wasting a significant amount of time on
the irrelevant databases. Recent study shows that investigating ir-
relevant Web pages is a major cause of user’s wasted time on the
Web [3].

One way of addressing this weakness is to issue the user’s
query q to all the databases that the metasearcher mediates, and
select the best ones based on the actual result returned by each
database. For instance, the metasearcher may issue the query
“breast cancer” to both db1 and db2 in the above example, ob-
tain the number of matching documents reported by them and
select the one with more matches. While this approach can im-
prove the “correctness” of database selection, its huge network
and time overhead makes it impractical when metasearchers me-
diate a large number of Hidden-Web databases (often thousands
of them [1]).

In this paper, we develop a probabilistic approach to use dy-
namic probing (issuing the user query to the databases on the
fly) in a systematic way, so that the correctness of database se-
lection is significantly improved while the metasearcher contacts
the minimum number of databases. In our approach, the user
can specify the desired correctness of database selection (e.g.,
“more than 9 out of the 10 selected databases should be the ac-
tual top 10 databases”), and the metasearcher decides how many
and which databases to contact based on the user’s specification.
Informally, we may consider the user-specified correctness as a
“knob:” When the user does not care about the answer’s correct-
ness, our approach becomes identical to the existing ones (no dy-
namic probing). As the user desires higher correctness, our ap-
proach will contact more databases. Our experimental results re-
veal that dynamic probing often returns the best databases with a
small number of probing.

Dynamic probing of Web databases introduces many interest-
ing challenges. For example, how can we guarantee a certain level
of correctness? How can we maximize the correctness with the
minimal number of dynamic probing? Which databases should
we probe? This paper studies these problems using a probabilis-
tic approach.

Our solution is based on the following observations: Although
the actual relevancy of a Web database may deviate from an initial
inaccurate estimation, the way it deviates follows a probabilistic
distribution that can be observed. Such a distribution usually cen-
ters around the estimated relevancy value. If we roughly know
this actual relevancy distribution for each database, then we can
“guess” how likely we have selected the actual top-k databases us-
ing these distributions. Furthermore, by probing a few databases,
we can obtain their actual relevancy values and we can select top-
k databases with higher confidence. Our task of dynamic probing
thus becomes using the minimum number of probing to accom-
plish the user-specified correctness level. We will formalize these
notions, e.g. the probabilistic distribution and the correctness of
an answer, in Section 2. Overall, we believe our paper makes the
following contributions:

1. A probabilistic model for relevancy estimation: With
the probabilistic model, we can quantify the correctness of

database selection. (Section 2)

2. Using dynamic probing to increase the correctness of
database selection: We keep on probing till the certainty
exceeds a user-specified level. (Section 3)

3. Probing strategies: Our optimal strategy uses the mini-
mum number of database probing to reach the required level
of certainty. (Section 3.1) We also present a greedy strat-
egy that can identify top-k databases at reasonable compu-
tational complexity. (Section 3.2)

4. Experimental validation: We validate our algorithms us-
ing real Hidden Web databases, under various experimental
settings. (Section 5) The results reveal that dynamic probing
significantly improves the correctness of database selection
with a reasonably small number of probing. For example,
with a single probing, we can improve the correctness of an
answer by 70% in certain cases.

2 A Probabilistic Approach for Dynamic
Probing

To select the most relevant databases for a query and make our
selection as correct as possible, we need to fully understand the
“relevancy” of a database to a query, and the “correctness” of a set
of selected databases. In this section, we first define the relevance
metric of a database. We then introduce the notion of expected
correctness for a top-k answer set. Finally, we explain the cost
model for dynamic probing.

2.1 Database relevancy and probing

Relevancy of a database Intuitively, we consider a database rel-
evant to a query if the database contains enough documents perti-
nent to the query topic. The following are two possible definitions
that reflect this notion of relevancy.

• Document-frequency-based A database is considered the
most relevant if it contains the highest number of matching
documents [14, 16]. This number of matching documents
is referred to as the document frequency of the query in the
database.

• Document-similarity-based A database is considered the
most relevant if it contains the most similar document(s) to
the query [15, 21, 25]. Query-document similarity is often
computed using the standard Cosine function [22].

Relevancy estimation A metasearcher has to estimate the ap-
proximate relevancy of a database to a query using a pre-collected
summary. Note that this estimate may or may not be the same as
the actual relevancy of the database. We refer to the estimated
relevancy of a database db to a query q as r̃(db, q).

To make our later discussion concrete, we now briefly illus-
trate how we may estimate the relavancy of a database under the
document-frequency-based metric [14]. Note, however, that our
framework is independent of the particular relevancy metric and
the relevancy estimator used by a metasearcher. Our approach can
be used for any relevancy metric and estimator combination.

In [14, 16], Gravano et al. compute r̃(db, q) by assuming that
the query terms q = {t1, ..., tm} are independently distributed in
db. Using their independence estimator, r̃(db, q) can be computed
as follows:
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r̃(db, q) = |db| ·
∏

ti∈q

r(db, ti)

|db|
(1)

where |db| is the size of db and r(db, ti) is the number of docu-
ments in db that use ti. Note that Eq.(1) assumes that r(db, ti) is
available to the metasearcher for every term ti and every database
db. In practice, however, a hidden web database seldom ex-
ports such an exhaustive content summary to the metasearcher.
Reference [18] proposes an approximation method to guess the
r(db, ti) values for all query terms.

Database probing We define probing a database as the opera-
tion of issuing a particular query to the database and gathering
the necessary information to evaluate its exact relevancy to the
query. Depending on the relevancy metric, we need to collect
different information during probing. For example, under the
document-frequency-based metric, we need to collect the number
of matching documents from the probed database, while under the
document-similarity-based metric, we need to collect the similar-
ity value of the most similar document(s) in the probed database.

For most existing Hidden Web databases, we note that it is
possible to get their exact relevancy through simple operations.
For instance, many Hidden Web databases report the number of
matching documents in their answer page to a query, so we can
easily compute their exact document-frequency-based relevancy.
Also, under the document-similarity-based metric, we may down-
load the first document that a Hidden Web database returns, and
then analyze its content to compute its cosine similarity. In the re-
mainder of this paper, we refer to the exact relevancy of a database
db to a query q as r(db, q). Thus, after probing db, its estimated
relevancy r̃(db, q) becomes r(db, q).

2.2 Correctness metric for the top-k databases

Our goal is to find the k databases that are most relevant to a
query. We represent this set of correct top-k answers as DBtopk.
We refer to the set of k databases selected by a particular selec-
tion algorithm as DBk. We may define the correctness of DBk

compared to DBtopk in one of the following ways.

• Absolute correctness: We consider DBk is “correct” only
when it contains all DBtopk.

Definition 1 The absolute correctness of DBk compared
to DBtopk is

Cora(DBk) =

{

1 if DBk = DBtopk

0 otherwise 2

• Partial correctness: We give “partial credit” to DBk if it
contains some of DBtopk.

Definition 2 The partial correctness of DBk compared to
DBtopk is

Corp(DBk) =
|DBk ∩DBtopk|

k
2

In this definition, the correctness value of a top-5 answer set
is 0.4 if it contains 2 of the actual top 5 databases.

We study both of these metrics in this paper. For reader’s con-
venience, we summarize the notation that we have introduced in
Figure 2. Some of the symbols will be discussed later.

Symbol Meaning

DB {db1, ..., dbn}, the total set of databases
q The user’s query
k The number of top databases asked by the user
r(db, q) The actual relevancy of db for q
r̃(db, q) The estimated relevancy of db for q
DBk A set of k databases selected by a particular al-

gorithm, DBk ⊆ DB

DBtopk The set of correct top-k databases
Cora(DBk) Absolute correctness metric for DBk

Corp(DBk) Partial correctness metric for DBk

DBP The set of databases that have already been
probed

DBU The set of databases that have not been probed,
i.e. DB −DBP

PRD Probabilistic Relevancy Distribution
P (r(db, q) ≤ α |
r̃(db, q) = β)

The probability of r(db, q) being lower than α,
given the relevancy estimation r̃(db, q) = β.
This probability is given by the PRD. α and β
are specific relevancy values

E[Cor(DBk)] The expected correctness of DBk , here Cor

can be Cora or Corp

t The user-specified threshold of the answer’s ex-
pected correctness

c The cost of probing a database
ECost(DBU ) The expected probing cost on the set of un-

probed databases, DBU

err(r, r̃) The error function computing the difference be-
tween r(db, q) and r̃(db, q)

Figure 2: Notation used throughout the paper

2.3 Probabilistic relevancy distribution and expected
correctness

While we may estimate the relevancy of a database db to a
query q, r̃(db, q), using existing relevancy estimators, we do not
know the exact r(db, q) value until we actually probe db. There-
fore, we may model r(db, q) to follow a probabilistic distribu-
tion that (hopefully) centers around the r̃(db, q) value. We refer
to this distribution as a Probabilistic Relevancy Distribution, or
PRD. In Figure 3(a), we show example PRDs for four databases,
db1, . . . , db4. The horizontal axis in the figure represents the ac-
tual relevancy value of a database and the vertical axis shows the
probability density that the actual relevancy is at the given value.
For instance, for db3, the estimated relevancy is 0.5, and the actual
relevancy lies between 0.2 and 0.75. (We explain the impulses for
db1 and db2 shortly.) Formally, a PRD tells us the probability that
r(db, q) is lower than a certain value α given the relevancy esti-
mate r̃(db, q) equals to β: P (r(db, q) ≤ α | r̃(db, q) = β). In
Section 4 we explain how we can obtain a PRD by issuing a small
number of sample queries to a database. For now we assume that
the metasearcher knows the PRD of every database.

Note that after probing db, the r(db, q) value is known. Thus
the PRD for r(db, q) changes from a broad distribution to an im-
pulse function. For example, in Figure 3(a), we assume db1 and
db2 have already been probed, so their PRDs have become im-
pulses at their correct relevancy values, 0.8 and 0.6, respectively.
In the middle of a dynamic-probing process, therefore, we have
impulse PRDs for the probed databases, and regular PRDs for the
rest.

We now illustrate how we can use the PRDs to estimate the
probability that a top-k answer DBk is correct.

Example 2 We assume the situation shown in Figure 3(a): db1
and db2 have already been probed and their relevancy values
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Figure 3: The Probabilistic Relevancy Distribution of different
databases at various stages of probing

are 0.8 and 0.6, respectively. We do not know the exact rele-
vancy values for db3 and db4, but the PRD of db3 indicates that
r(db3, q) ≥ r(db2, q) = 0.6 with 20% probability. We use the
absolute correctness metric of an answer set.

Now suppose the user wants the metasearcher to return the
top-2 databases. In this scenario, if we return {db1, db2}, our an-
swer is correct (Cora({db1, db2}) = 1) with 80% probability,
because r(db3, q) < r(db2, q) with 80% probability (in which
case {db1, db2} are the actual top-2 databases).3 With the re-
maining 20% probability, r(db3, q) may be larger than r(db2, q),
so our answer {db1, db2} is wrong (Cora({db1, db2}) = 0) with
20% probability. Therefore, the expected correctness of the an-
swer {db1, db2}, is 1 · 0.8 + 0 · 0.2 = 0.8. 2

The expected correctness in Example 2 can be better under-
stood on a statistical basis. For example, if the user issues 1,000
queries to a metasearcher, and the metasearcher return DBk such
that its expected correctness is greater than 0.8 for every query,
then the user gets correct answers for at least 800 queries.

We now illustrate how a user may use the expected correctness
to specify the “quality” of the answer and how the metasearcher
can use dynamic probing to meet the user’s specification.

Example 3 Still consider the situation in Figure 3(a). After prob-
ing db1 and db2, the metasearcher knows that the expected cor-
rectness of {db1, db2} is 0.8. If the user only requires 0.7 ex-
pected correctness, the metasearcher can stop probing and return
{db1, db2}. If the user’s threshold is 0.9, the metasearcher has to
probe more databases. Suppose the metasearcher picks db3 for
probing. The resulting PRDs are shown in Figure 3(b). Now the
metasearcher knows that db3 and db4 are definitely smaller than
db2, and {db1, db2} must be the correct answer. Therefore the
expected correctness of {db1, db2} is 1 (which exceeds the user’s
threshold, 0.9). As a result, the metasearcher can stop probing and
return {db1, db2}. 2

The above example shows that we can consider the expected
correctness as the “knob” that the user can turn so as to control

3Note that r(db4, q) is always smaller than r(db1, q) and r(db2, q).

the result “quality.” Given the user’s expected correctness specifi-
cation, the metasearcher keeps on probing databases till it finds a
DBk that exceeds the user-specified threshold.

To help our discussion, we refer to the set of databases that
have been probed during this process as DBP and the set of un-
probed databases as DBU . Note that the returned databases DBk

may or may not be the same as the probed databasesDBP . In par-
ticular, DBk may contain a database db that may have not been
probed (db /∈ DBP ). As long as the metasearcher is confident
that r(db, q) is higher than those of others, it is safe to return db
as part of DBk.

From the example, it is clear that we should be able to compute
the expected correctness for DBk given PRDs of the databases.
We use the notationE[Cora(DBk)] andE[Corp(DBk)] to refer
to the expected correctness of DBk under the absolute and partial
correctness metric, respectively. When we do not care about a
particular correctness metric, we use the notation E[Cor(DBk)].

According to our Cora and Corp definitions, the expected
correctness can be computed as:

E[Cora(DBk)]

= 1 · P (DBk = DBtopk) + 0 · P (DBk 6= DBtopk)

= P (|DBk ∩DBtopk| = k) (2)

E[Corp(DBk)]

=
∑

1≤i≤k

i

k
· P (|DBk ∩DBtopk| = i) (3)

The following theorems tell us how to compute the expected
absolute correctness, E[Cora(DBk)], and the expected partial
correctness, E[Corp(DBk)], using the PRD of each database.
We label the databases in DBk as db1, db2, ..., dbk, and label the
databases in DB − DBk as dbk+1, ..., dbn. Let fj(xj) be the
Probability Density Function derived from dbj’s PRD (1 ≤ j ≤
n), and xj be one possible value of r(dbj , q).

Theorem 1 Assuming that all databases operate independently,

E[Cora(DBk)] =

∫ +∞

−∞

...

∫ +∞

−∞





∏

db∈DB−DBk

P (r(db, q) < min(x1, ..., xk))



×





∏

1≤j≤k

fj(xj)



 dx1...dxk

where min(x1, ..., xk) is the minimum relevancy value among all
the dbj ∈ DBk. 2

Proof See Appendix ¥
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Theorem 2 Assuming that all databases operate independently,

E[Corp(DBk)] =

∑

1≤i≤k

i

k
·

∫ +∞

−∞

...

∫ +∞

−∞











∑

DBk−i⊆

DB−DBk

∏

db∈DBk−i

P (r(db, q) > i highest(x1, ..., xk))·

∏

db′∈(DB−

DBk−DBk−i)

P (r(db′, q) < i highest(x1, ..., xk))











×





∏

1≤j≤k

fj(xj)



 dx1...dxk

where i highest(x1, ..., xk) is a function that computes the ith
highest relevancy value among all the dbj ∈ DBk. 2

Proof See Appendix ¥

2.4 Two-stage cost models

When a user interacts with a metasearcher, his eventual goal is
to retrieve a set of relevant documents. Therefore, the overall
metasearching process can be separated into two stages as shown
in Figure 4. In the first stage, the dynamic prober finds an answer
set DBk by probing a few databases. In the second stage, the
document retriever contacts each selected database, retrieves the
relevant documents and returns them to the user. In measuring
the cost of our metasearching framework, we may use one of the
following metrics:

• Probing cost model: We only consider the cost for the prob-
ing stage, ignoring the cost for the document-retrieval stage.
We assume that the probing cost of a single database is c
and is identical for every database. (It is straightforward
to extend our model to the case where the probing cost for
each database is different.) Since the dynamic prober does
|DBP | number of probing in the first stage, |DBP | ·c is the
cost under this model.

• Probing-and-Retrieval (PR) cost model: We also consider
the cost for the document retrieval stage. The cost for the re-
trieval stage may depend on whether a selected database was
probed or not in the first stage. For example, suppose the dy-
namic prober returns {db1, db2} as the top-2 databases after
probing db1 (but not db2). If the dynamic prober has re-
trieved the top ranking documents of db1 during its probing
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Figure 5: The dynamic probing process

of db1,4 then the matasearcher may have “cached” the re-
trieved documents, so that it will not contact db1 again in
the second stage. In this case, the metasearcher only con-
tacts db2 in the second stage to retrieve its top ranking doc-
uments.

Let the retrieval cost for an unprobed database be d and the
cost for a probed database be d′ (d′ ≤ d). Then the probing
and retrieval cost in the overall metasearching process is

|DBP | · c+ |DBk −DBP | · d+ |DBk ∩DBP | · d′

In this paper, we mainly use the the probing cost model as
our cost metric. Note that an optimal algorithm for the probing
cost model may not be optimal for the PR cost model: Even if an
algorithm does fewer probing during the first stage, the algorithm
may incur a significant cost during the second stage if none of the
returned databases was probed. However, the following theorem
shows that under a certain condition, an optimal probing strategy
for the probing cost model is also optimal for the PR cost model.

Theorem 3 Under the condition that DBk ⊆ DBP (i.e. all
the returned databases have been probed), the optimal probing
algorithm under the probing-only cost model is also optimal for
the PR cost model. 2

Proof See Appendix ¥

In our experiments, we observed that the condition in the
above theorem is valid for most cases. That is, DBk ⊆ DBP

in the majority of cases, which means our algorithm is optimal
also for the PR cost model.

3 The Dynamic Probing Algorithm
Given a query q, n databases and a threshold t, our goal is to use
a minimum number of probing to find a k-subset DBk whose
expected correctness exceeds t. Figure 5 roughly illustrates our
dynamic probing process to achieve this goal. At any interme-
diate step of the dynamic probing, the entire set of databases
DB is divided into two subsets: the set of probed databases
DBP and the set of unprobed databases DBU . Based on the
impulse and regular PRDs of DBP and DBU , we compute the
expected correctness of every k-subset DBk (using Theorem 1
for the absolute correctness, for example). If there is a DBk such
that E[Cor(DBk)] ≥ t, the dynamic probing halts and returns
this DBk; otherwise it continues to probe one more database in

4Which will be necessary if our relevancy definition is document-
similarity-based (Section 2.1)
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Algorithm 3.1 DPro(DB, q, k, t)
Input:
DB: the entire set of given databases, {db1,...,dbn}
q: a given query
k: the number of databases to return
t: the user’s threshold for E[Cor(DBk)]

Output:
DBk with E[Cor(DBk)] ≥ t

Procedure
[1] DBP ← ∅, DBU ← DB

[2] If (E[Cor(DBk)] ≥ t) for some DBk ⊆ DB

Return DBk

[3] dbi ← SelectDb(DBU )
[4] Probe dbi

[5] Change the PRD of dbi from regular to an impulse
[6] DBP ← DBP ∪ {dbi}, DBU ← DBU − {dbi}
[7] Go to [2]

Figure 6: The dynamic probing algorithm DPro

DBU , moves it from DBU to DBP , and recomputes the ex-
pected correctness for every DBk.

Figure 6 provides the algorithm of our dynamic probing pro-
cess. At each iteration, we try to find a k-subset DBk that has the
desired level of expected correctness and return it (Step [2]). If no
such DBk exists we pick a database from the unprobed set (Step
[3]), probe it (Step [4]) and recompute the expected correctness
(goto Step [2]).

Note that one key issue in this algorithm is how
SelectDb(DBU ) should pick the next “best” database to probe in
order to minimize probing cost. In the next subsection, we derive
the answer to this question.

3.1 Selecting the optimal candidate database for prob-
ing

In SelectDB(DBU ), we need to select the next database candidate
that will lead to the earliest termination of the probing process
and thus minimizing the probing cost. This database often should
not be the one with the largest expected relevancy. Consider the
following example.

Example 4 We want to return the top-2 databases from
{db1, db2, db3}. We have not probed any of them. Figure 7(a)
shows their PRDs. We assume that E[Cor(DB2)] is smaller than
the user threshold for any DB2 ⊆ {db1, db2, db3} yet. We need
to pick the next database to probe.

Note that we do not need to probe db1, because its relevancy
is the highest among all three, and it will always be returned as
part of DB2. Probing db1 does not increase answer correctness
at all. Similarly, note that probing db2 is not very helpful, either.
Because r(db2, q) lies between the two peaks of r(db3, q), even
after we probe db2 (Figure 7(b)), it is still uncertain which one
(between db2 and db3) will have higher relevancy.

In constrast, probing db3 is very likely to improve the certainty
of our answer. Given the PRD of db3, r(db3, q) will be either on
the left side of r(db2, q) (Figure 7(c)) or on the right side (Fig-
ure 7(d)). If it is on the left side (Figure 7(c)), we can return
{db1, db2} as the top-2 databases. If it is on the right side (Fig-
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Figure 7: Selecting the top-2 databases from {db1, db2, db3}

Algorithm 3.2 SelectDb(DBU )
Input:
DBU : the set of unprobed databases

Output:
dbi: the next database to probe

Procedure
[1] For every dbi ∈ DBU :
[2] costi = c+ ECost(DBU − {dbi})
[3] Return dbi with smallest costi

Figure 8: The optimal SelectDb(DBU ) function

ure 7(d)), we can return {db1, db3} as the top-2 databases. In ei-
ther case, we can return the top-2 databases with high confidence.

Therefore, SelectDb(DBU ) should pick db3 as the next
database to probe, because we can finish the probing process only
after one probing. Otherwise our algorithm needs at least two
probing to halt. Notice that the expected relevancy of db3 is the
lowest among the three databases. The next database to probe is
not the one with the highest expected relevancy. 2

From this example, we can see that the function
SelectDb(DBU ) should pick the dbi ∈ DBU that yields
the smallest number of expected probing. To formalize this
idea, we introduce the notation ECost(DBU ) to represent the
expected amount of additional probing on DBU after we have
probed DB −DBU (=DBP ).

Now we analyze the expected probing cost if we pick dbi ∈
DBU as the next database to probe. The cost for prob-
ing dbi itself is c. The expected cost after probing dbi is
ECost(DBU − {dbi}) under our notation. Therefore, by prob-
ing dbi next, we are expected to incur c+ECost(DBU − {dbi})
additional probing cost. Based on this understanding, we now
describe the function SelectDb(DBU ) in Figure 8. In Steps [1]
and [2], the algorithm first computes the expected additional prob-
ing cost for every dbi ∈ DBU . Then Step [3] returns the one with
the smallest cost.
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Algorithm 3.3 ECost(DBU )
Input:
DBU : the set of unprobed databases

Output:
cost: the expected probing cost for DBU

Procedure
[1] If (E[Cor(DBk)] ≥ t) for some DBk ⊆ DB

Return 0
[2] For every dbi ∈ DBU :
[3] costi = c+ ECost(DBU − {dbi})
[4] Return min(costi)

Figure 9: Algorithm ECost(DBU )

We now explain how we can compute ECost(DBU ) using re-
cursion. We assume that we have probed DBP so far, and DBU

(= DB −DBP ) have not been probed yet. There are two possi-
ble scenarios at this point:

• Case 1 (Stopping condition): With the databases DBP

probed, we can find a DBk ⊆ DB such that
E[Cor(DBk)] ≥ t. In this case, we can simply return
DBk as the top-k databases. We do not need any further
probing. Thus,

ECost(DBU ) = 0 (4)

Note that when all databases have been probed (DBU =
∅), we know the exact relevancy of all databases, so
ECost(DBU ) = 0.

• Case 2 (Recursion): There is no DBk ⊆ DB whose ex-
pected correctness exceeds t. Therefore, we need to probe
more databases to improve the expected correctness. As-
sume we probe dbi ∈ DBU next. Then the expected prob-
ing cost is c + ECost(DBU − {dbi}). Remember that
SelectDb(DBU ) always picks the dbi with the minimal ex-
pected cost. Therefore, the expected cost at this point is

ECost(DBU )

= min
dbi∈DBU

(c+ ECost(DBU − {dbi})) (5)

Figure 9 shows the algorithm to compute ECost(DBU ). In
Step [1], we first check whether we have reached the stopping
condition. If not, we compute the expected probing cost for every
dbi ∈ DBU (Steps [2] and [3]), and return the minimum expected
cost (Step [4]).

The following theorem shows the optimality of our algorithm
SelectDb(DBU ).

Theorem 4 SelectDb(DBU ) returns the database that leads to
the minimum expected probing cost, ECost(DBU ), on the set of
unprobed databases DBU . 2

Proof See Appendix ¥

Note that the computation of ECost(DBU ) is recursive
and can be very expensive. For example, assume that
DBU = {db1, ..., dbn} as we show in Figure 10. To com-
pute ECost(DBU ), we have to compute ECost(DBU − {dbi})
for every 1 ≤ i ≤ n (first-level branching in Figure 10).
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Figure 10: Exploring a search tree to compute ECost(DBU )

Algorithm 3.4 greedySelectDb(DBU )
Input:
DBU : the set of unprobed databases

Output:
dbi: the next database to probe

Procedure
[1] For every dbi ∈ DBU :
[2] ECori = max

DBk⊆DB
(E[Cor(DBk)] after probing dbi)

[3] Return dbi with the highest ECori

Figure 11: The greedy SelectDb(DBU ) function

Then to compute ECost(DBU − {dbi}), we need to com-
pute ECost(DBU − {dbi, dbj}) for every j 6= i (second-level
branching in Figure 10). Therefore, the cost for computing
ECost(DBU ) is O(n!) if |DBU | = n. Clearly this is too ex-
pensive when we mediate a large number of databases. In the
next subsection, we propose a greedy algorithm that reduces the
computation complexity of selecting the next database to O(n).

3.2 A greedy choice

The goal of the DPro algorithm is to find a DBk with
E[Cor(DBk)] ≥ t using minimum number of probing. Thus,
the optimal DPro computes the expected probing cost for all pos-
sible probing scenarios and picks the one with the minimum cost.
Informally, we may consider that the optimal DPro “looks all
steps ahead” and picks the best one. Our new greedy algorithm,
instead, looks only “one step ahead” and picks the best one.

The basic idea of our greedy algorithm is the following: Since
we can finish our probing process when E[Cor(DBk)] exceeds
t for some DBk, the next database that we probe should be the
one that leads to the highest E[Cor(DBk)] after probing (thus
mostly likely to exceed t early).

Notice the subtle difference between the optimal algorithm
and the greedy algorithm. The optimal algorithm computes
ECost(DBU ) for all possible scenarios, while our greedy al-
gorithm computes E[Cor(DBk)] after we probe only one more
database dbi. Using Theorem 1 we can compute E[Cora(DBk)]
after we probe dbi if we know the PRD of each database.5

In Figure 11, we show a new SelectDb(DBU ) function that
implements this greedy idea. In Steps [1] and [2], the algorithm
computes the expected correctness value after we probe dbi. Then
in Step [3] it returns the dbi that leads to the highest expected
correctness.

5Since we do not know the outcome of probing dbi, we need to use
Theorem 1 to compute and expected E[Cor(DBk)] value, based on
dbi’s PRD. The detailed formula is provided in the appendix.
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Figure 12: Distribution of the absolute-error function

4 Probabilistic Relevancy Distribution
In Section 2, we assumed that the PRD for database db was al-
ready given. We now discuss how we obtain the PRD that gives
us P (r(db, q) ≤ α | r̃(db, q) = β), where α and β are spe-
cific relevancy values. For simplicity, we use r and r̃ to represent
r(db, q) and r̃(db, q).

Our basic idea is to use sampling to estimate the PRD. That
is, we issue a small number of sampling queries, say 1000, to db
and observe how the actual r values are distributed. From this
result, we can compute the difference of r from r̃ and obtain the
distribution.

Note that the PRD P (r ≤ α | r̃ = β) is conditional on r̃.
Therefore, the exact shape of the PRD may be very different for
different r̃ values. Ideally, we have to issue a number of sampling
queries for each r̃ value, in order to obtain the correct PRD shape
for each r̃. However, issuing a set of queries for each r̃ is too
expensive given that there are an infinite number of r̃ values. To
reduce the cost for PRD estimation, we assume that the distribu-
tion we observe is independent of what r̃ may be. More precisely,
we may consider one of the following independence assumptions:
• Absolute-error independence: We assume that the absolute

error of our estimate, r− r̃ (the difference between our esti-
mate and the actual relevancy), is independent of the r̃ value.
Therefore, from our sampling queries, we obtain a single
distribution for (r − r̃) values (even if the r̃ values for the
queries are different), and use the distribution to derive the
PRD.

• Relative-error independence: We assume that the relative
error of our estimation, r−r̃

r̃
, is independent of the r̃ value.

Therefore, from sampling queries, we obtain a single distri-
bution for r−r̃

r̃
values (even if their r̃ values for the queries

are different) and use the distribution to derive the PRD.
In general, if there is an error function err(r, r̃) (e.g.,

err(r, r̃) = r − r̃ for the first case) whose distribution is inde-
pendent of r̃, then we can use just one set of queries (regardless of
their r̃ values) to estimate the err(r, r̃) distribution. Then using
this distribution, we can obtain the correct PRD for every r̃ value.
This can be illustrated through the following example:

Example 5 Suppose from 1,000 sampling queries, we are able
to obtain a probability distribution for the absolute-error function:
err(r, r̃) = r − r̃, as shown in Figure 12. Assume that r − r̃ is
independent of r̃. Let us derive the probability P (r ≤ 150 | r̃ =
100) using this distribution.

P (r ≤ 150 | r̃ = 100)

= P (r − r̃ ≤ 50 | r̃ = 100)

= P (r − r̃ ≤ 50) (independency of r − r̃ and r̃)

This probability P (r − r̃ ≤ 50), as shown in Figure 12, is 0.8. 2

More formally, we observe that the error function err(r, r̃)
should satisfy the following properties to derive a PRD:

I. Independency:
err(r, r̃) is probabilistically independent of r̃

II. Monotonicity:
err(r1, r̃) ≤ err(r2, r̃) for any r1 ≤ r2

The following theorem shows that the probability of a rele-
vancy value can be obtained through the probability of the error
function, via a variable transformation from r to err(r, r̃).

Theorem 5 If err(r, r̃) is independent and monotonic, then

P (r ≤ α | r̃ = β) = P (err(r, r̃) ≤ err(α, β)) (6)

2

Proof See Appendix. ¥

In Section 5, we compare the absolute-error function
erra(r, r̃) = r − r̃, and the relative-error function, errr(r, r̃) =
(r−r̃)

r̃
experimentally. Our result shows that the relative-error

function works well in practice and roughly satisfies the two prop-
erties in Theorem 5.

5 Experiments
This section reports our experimental results that testify the effec-
tiveness of the dynamic probing approach. Section 5.1 describes
the experimental setup and the dataset we use. Section 5.2 ex-
perimentally compares the error functions to derive a PRD. Sec-
tions 5.3 and 5.4 show the improvement of our dynamic probing
compared to the existing methods.

5.1 Experimental setup

In our experiments, we simulate a real metasearching application
by mediating 20 real Hidden-Web databases and using 4,000 real
Web query traces. The databases for our experiments are mainly
related to “health.” Thus, we may consider that the experiments
evaluate the effectiveness of our dynamic probing approach in the
context of a health-related metasearcher. In this subsection, we
explain our experimental setup in detail.

First, we select 13 databases from the health category of Invis-
ibleWeb,6 which is a manually-maintained directory of Hidden-
Web databases. While the directory lists more than 13 health-
related databases, most of them are either obsolete or too small.
In our experiments, we use only the databases with at least 3,000
documents. Most of the small databases are relatively obscure and
of little interest.

Because 13 is a relatively small number, and in order to in-
troduce heterogeneity to our experiments, we append four more
databases on broader topics (e.g., Science and Nature), and three
more news websites (e.g., CNN and NYTimes). We show some
sample databases and their sizes in Figure 13.7 The complete list
of our databases can be found in [20].

Second, we select a subset of queries from a real query trace
from Yahoo (provided by Overture8). We start by building a
sample medical vocabulary using single terms extracted from the
health topic pages in MedLinePlus,9 an authoritative medical in-
formation website. We then randomly pick any 2-term and 3-term
queries from the Yahoo query trace that use at least two terms
from our vocabulary. Again, this selection was done to simulate a
metasearcher that focuses on health-related topics.

6http://www.invisibleweb.com
7For databases that do not export their sizes, we roughly estimate the

size by issuing a query with common terms, e.g. “medical OR health OR
cancer ...”

8http://inventory.overture.com/
9http://www.medlineplus.org
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Database URL Size
MedWeb www.medweb.emory.edu ∼14,000
PubMed Central www.pubmedcentral.nih.gov ∼60,000
NIH www.nih.gov 163,799
Science www.sciencemag.org 29,652

Figure 13: Sample Web databases used in our experiment

Using the above selection method, we prepare a sample query
set QS1 which contains 1,000 2-term queries and 1,000 3-term
queries. We use QS1 in Section 5.2 to derive the PRD for each
database. Similarly, we prepare another query set QS2 that con-
tains, again, 1,000 2-term queries and 1,000 3-term queries. QS2

is used in Sections 5.3 through 5.4 when we evaluate how well our
dynamic prober works. Note that a typical Web query has only a
small number of terms, with 2.2 terms on average [19]. Therefore,
we believe our experiments using 2 or 3-term queries reflect the
typical scenario that a real metasearcher can expect.

In all of our experiments, we use document-frequency-based
relevancy metric (Section 2.1) and independence relevancy esti-
mator (Eq.1). Further, we use the independency estimator to cre-
ate a baseline representing traditional estimation-based selection
methods. All of our dynamic probing is done using the greedy al-
gorithm (Section 3.2). Due to its exponential computational cost,
it takes a long time for the optimal algorithm to terminiate, so we
could not finish enough experiments to include their results in this
draft.

5.2 Selecting an error function to derive the correct
PRD

To obtain the correct PRD from the err(r, r̃) distribution,
err(r, r̃) needs to be monotonic and independent of r̃ (The-
orem 5). In this subsection, we experimentally compare the
absolute-error function erra(r, r̃) = r− r̃ with the relative-error
function, errr(r, r̃) = (r−r̃)

r̃
, and select the better one for our

experiment.
From their analytical forms, it is easy to verify that both error

functions are monotonic. What we need to verify is the indepen-
dence property. This can be done by computing the statistical cor-
relation between err(r, r̃) and r̃, where err can be erra or errr .
If the correlation is close to 0, it means err and r̃ are roughly
independent; Otherwise they are not.

More specifically, we first obtain the err(r, r̃) value for every
1,000 2-term query in QS1 on a database db. We then compute
the correlation between err(r, r̃) and r̃ on these 1,000 queries,
regarding db. We repeat this process for all 20 databases and
compute the average correlation over all databases. We similarly
compute the correlation for the 1,000 3-term sample queries in
QS1, and summarize the results in Figure 14. The max correla-
tion value among the 20 databases is also included to show the ex-
treme cases. Figure 14(a) shows that the absolute error erra(r, r̃)
has a high positive correlation with r̃ for both 2-term and 3-term
queries. Therefore, erra(r, r̃) is dependent on r̃ and becomes
larger as r̃ gets larger. Figure 14(b) reveals that the relative er-
ror errr(r, r̃) is roughly independent of r̃. Therefore we use
errr(r, r̃) as the error function to derive a PRD.

From our experiments, we observe that the shape of errr(r, r̃)
distribution for 2-term queries is slightly different from that for
3-term queries. Therefore, we maintain two PRDs for each
database, one for 2-term queries and the other for 3-term queries,
and pick the appropriate PRD depending on the number of terms
in a query.

Correlation between erra and r̃ 2-term 3-term
average 0.567 0.632
max 0.851 0.885

(a) The average and maximum correlation between erra(r, r̃)
and r̃ for 20 databases

Correlation between errr and r̃ 2-term 3-term
average -0.073 -0.023
max 0.217 0.061

(b) The average and maximum correlation between errr(r, r̃)
and r̃ for 20 databases

Figure 14: The correlation between err(r, r̃) and r̃
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Figure 15: The effect of dynamic probing on the average cor-
rectness (k = 1,t = 0.9)

5.3 Effectiveness of dynamic probing

In the second set of our experiments, we study the impact of dy-
namic probing on the correctness of database selection. Our main
goal in this section is to investigate how accurate an answer be-
comes as we probe more databases, so we restrict our experiments
only to the queries that require at least three probing for DPro
to terminate (i.e. E[Cor(DBk)] ≥ t only after three probing).
When we set t = 0.9 and k = 1 10 as our parameters, 1,033 out
of the 2,000 test queries in QS2 (1,000 2-term queries and 1,000
3-term queries) belong to this category.

For each query issued, we then ask DPro to report the
database with the highest expected correctness after each prob-
ing (even if it has not terminated yet). By comparing this reported
database to the most relevant database (i.e., DBk = DBtopk?)
we can measure how accurate the answer becomes as we probe
more databases. Note the correct DBtopk is inaccessible to DPro
during its probing process.

Figure 15 summarizes the result from these experiments. In
the figure, the horizontal axis shows the number of probing that
DPro has performed so far. The vertical axis shows the fraction of
correct answers that DPro reports at the given number of prob-
ing. For example, after one probing, DPro reports the correct
database for 524 queries out of 1,033, so the average correctness
is 524/1, 033 = 0.51 at one probing.

Note that at the point of no probing (# of probing = 0), DPro
is identical to the traditional estimation-based method because it
does not use any dynamic probing. At this point average correct-
ness is only 0.30. After two probing correctness reaches 0.80.
From this result, it is clear that dynamic probing significantly im-
proves the answer correctness: We can improve the correctness of
the answer by more than twice with only two probing.

10Note that Cora and Corp are the same when k = 1. Therefore we
do not specify our correctness metric in this experiment.
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Figure 16: The average number of probing under different settings of t and k

5.4 The average amount of probing under different t

settings

In this subsection, we study how many probings DPro does for
different settings of t. We experiment on six t values: {0.7, 0.75,
0.8, 0.85, 0.9, 0.95}. For a larger t, it is expected that DPro
probes more databases to meet the threshold. In Figure 16, we
show how the number of probing increases as t becomes larger.
The x-axis shows the different t values, and the y-axis is the aver-
age number of probing DPro does for a particular t, over the
2,000 test queries in QS2. For example, when k = 1 (Fig-
ure 16(a)), DPro terminates after 3 probing on average for the
threshold value t = 0.9. In Figures 16(b) and (c) we include
the results for the absolute (Cora) and partial (Corp) correctness
metrics. When k = 1, the two correctness metric are the same, so
we have only one graph in Figure 16(a). Note that the graph for
Cora is always above that of Corp. Since Corp is always larger
than Cora, DPro reaches the correctness threshold faster under
Corp and terminates earlier.

The figure shows that our algorithm DPro can find correct
databases with a reasonable number of probing. For example,
when k = 5 and t = 0.9 (Figure 16(c)), DPro finds a DBk with
E[Corp(DBk)] > 0.9 after 6.8 probing. In most cases, all 5
returned databases are probed during the selection process. That
means that 5 of 6.8 probing is done on the top-k databases re-
turned, so the information that we collect during the probing stage
can be used to reduce the cost for the document retrieval stage
(Figure 4). So the “extra” probing in the overall metasearching
process is only 1.8.

Note that even if the user specified threshold t is 0.7, the top-k
databases that DPro returns may be correct in more than 70% of
the time. User threshold t is simply a lower bound for the correct-
ness of the returned answer. To show how accurate answers DPro
returns, Figure 17 and Figure 18 show the average correctness
of the answers for different threshold values. Figure 17 shows
the result under the Cora metric, and Figure 18 shows the re-
sult under the Corp metric. The baseline (the triangle line) is the
average correctness of the traditional estimation-based selection.
Since the traditional method does not depend on the t value, the
average correctness remains constant. The dotted lines in the fig-
ures represent Avg(Cor) = t. The average correctness of the
answers from DPro should be higher than the dotted line, since t
is the minimum threshold value for DPro to terminate. From the
graphs, we can see that this is indeed the case.

6 Related work
Database selection is a critical step in the metasearching pro-
cess. Past research mainly focused on applying certain approx-
imate method to estimate how relevant a database is to the user’s
query. The databases with the highest estimated relevancy are se-

lected and presented to the user. The quality of database selection
is highly dependent on the accuracy of the estimation method.
In the early work of bGlOSS [14] that mediates databases with
boolean search interfaces, a metasearcher estimates the relevancy
of each database by assuming query terms appear independently.
vGlOSS [15] extends bGloss to support databases with vector-
based search interfaces, and uses a high-correlation assumption
or a disjoint assumption on query terms to estimate the relevancy
of a database under the vector-space-model. [21] uses term co-
variance information to model the dependency between each pair
of terms, and achieve better estimation than vGlOSS. An even
better estimation is reported in [25] by incorporating document
linkage information. There have been parallel research in the dis-
tributed information retrieval context. In [2, 5, 24] the relevancy
of a database is modelled by the probability of the database con-
taining similar documents to the query. In [4], various estima-
tion methods discussed above are compared on a common basis.
Our dynamic probing method is orthogonal to these research in
that we are not proposing a new estimation method under certain
relevancy definition. Instead, we use probabilistic distribution to
model the accuracy of a particular estimation method, and use
probing to increase the correctness of database selection.

Database selection is related to a broader research area called
top-k query answering. Past research [11, 7, 8, 9] largely
focused on relational data, and use deterministic methods to
find the absolutely correct top-k answers. While in our con-
text of Hidden-Web-database-selection, enforcing the determin-
istic approach would end up probing almost all the Hidden-Web
databases. In our probabilistic approach, we only probe the
databases that would maximally increase our certainty of the top-
k answers.

Mediating heterogenous databases to provide a single query
interface has been studied for years [17, 12]. While the existing
research focused on integrating data sources with relational search
capabilities, we in this paper investigate the mediation of Hidden-
Web databases with much more primitive query interfaces over a
collection of unstructured textual data.

7 Conclusion
We have presented a new approach to the Hidden Wed database
selection problem using dynamic probing. In our approach, the
accuracy of a particular relevancy estimator is modelled using
Probabilistic Relevancy Distribution (PRD). The PRD enables us
to quantify the correctness of a particular top-k answer set in
a probabilistic sense. We propose an optimal probing strategy
that uses the least probing to reach the user-specified correctness
threshold. A greedy probing strategy with much less computation
complexity is also presented. Our experimental results reveal that
dynamic probing significantly improves the answer’s correctness
with a reasonably small amount of probing.
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Figure 17: Avg(Cora): dynamic probing vs. the estimation-based database selection
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Figure 18: Avg(Corp): dynamic probing vs. the estimation-based database selection

Our experimentation on real datasets justifies an effective new
direction for the metasearching research. In the past, researchers
tried to improve the correctness of database selection via con-
structing more accurate estimators that estimates the database’s
relevancy to a particular query. A more accurate estimator de-
mands more comprehensive content-summary of each database.
For example, storing the pair-wise term covariance [21, 25] takes
O(M2) of space, where M is the size of the vocabulary. How-
ever, once the estimator is constructed, the correctness of database
selection is fixed at a certain level and cannot be explicitly con-
trolled by the user. In our dynamic probing approach, the user
explicitly specifies the desired level of correctness, regardless of
what estimator we use. Our results reveal that using the relevancy
estimator developed in bGlOSS [14], the answer’s correctness is
greatly improved via a small amount of probing.
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Figure 1: The event that |DBk ∩DBtopk| = i

A The expected absolute correctness

We label the databases in DBk as db1, db2, ..., dbk, and label the
databases in DB − DBk as dbk+1, ..., dbn. Let fj(xj) be the
Probability Density Function derived from dbj’s PRD (1 ≤ j ≤
n), and xj be one possible value of r(dbj , q).

Theorem 1 Assuming that all databases operate independently,

E[Cora(DBk)] =

∫ +∞

−∞

...

∫ +∞

−∞





∏

db∈DB−DBk

P (r(db, q) < min(x1, ..., xk))



×





∏

1≤j≤k

fj(xj)



 dx1...dxk

(1)

where min(x1, ..., xk) is the minimum relevancy value among all
the dbj ∈ DBk. 2

Proof From our definition of the expected absolute correctness,

E[Cora(DBk)] = P (|DBk ∩DBtopk| = k)

Now we need to derive the formula for P (|DBk∩DBtopk| = k),
the probability of DBk equals to DBtopk.

Let us first assume that we know the relevancy values of all
the databases in DBk. Specifically, let xj be the relevancy value
taken by database dbj . min(x1, ..., xk) computes the minimum
relevancy value among all dbj ∈ DBk. Thus, the event that DBk

equals to DBtopk, i.e. DBk is absolutely correct, is the same as
the event that all the databases not in DBk have relevancy lower
than min(x1, ..., xk). Assuming that all the database operate in-
dependently, the probability of the latter event is:

∏

db∈DB−DBk

P (r(db, q) < min(x1, ..., xk)) (2)

Since we may not know the exact relevancy values of databases in
DBk, we have to integrate Eq.(2) over all possible values of xj

for each dbj ∈ DBk. This gives us the formula in Eq.(1). ¥

B The expected partial correctness

Theorem 2 Assuming that all databases operate independently,

E[Corp(DBk)] =

∑

1≤i≤k

i

k
·

∫ +∞

−∞

...

∫ +∞

−∞











∑

DBk−i⊆

DB−DBk

∏

db∈DBk−i

P (r(db, q) > i highest(x1, ..., xk))·

∏

db′∈(DB−

DBk−DBk−i)

P (r(db′, q) < i highest(x1, ..., xk))











×





∏

1≤j≤k

fj(xj)



 dx1...dxk

(3)

where i highest(x1, ..., xk) is a function that computes the ith
highest relevancy value among all the dbj ∈ DBk. 2

Proof From out definition of the expected partial correctness,

E[Corp(DBk)] =
∑

1≤i≤k

i

k
· P (|DBk ∩DBtopk| = i) (4)

Clearly, the critical part of computing Eq.(4) is to compute the
probability P (|DBk ∩ DBtopk| = i), 1 ≤ i ≤ k. Similar to
the proof for Theorem 1, we first assume that we know the rel-
evancy values of all the databases in DBk, with dbj’s relevancy
being xj (1 ≤ j ≤ k). Then let i highest(x1, ..., xk) repre-
sent the ith highest relevancy value for all the databases in DBk.
The event that DBk and DBtopk have i members in common is
the same as that the i databases in DBk with the highest rele-
vancy values are also in DBtopk, while the rest k − i databases
in DBk are not in DBtopk. Therefore, DBtopk must consist
of two parts: first, the i database with the highest relevancy val-
ues in DBk; second, DBk−i, a (k − i)-subset of DB − DBk.
This is illustrated by Figure 1. All the databases in DBk−i have
relevancy values higher than i highest(x1, ..., xk), while all the
databases in DB −DBk −DBk−i have relevancy values lower
than i highest(x1, ..., xk). Thus, by assuming all databases op-
erate independently, the latter event has the following probability:

∏

db∈DBk−i

P (r(db, q) > i highest(x1, ..., xk))·

∏

db′∈(DB−

DBk−DBk−i)

P (r(db′, q) < i highest(x1, ..., xk))

Since DBk−i can be any (k− i)-subset of DB−DBk, we need
to enumerate over all possible (k − i)-subsets of DB − DBk,
and also integrate over all possible relevancy values taken by the
databases in DBk, which gives us Eq.(3). ¥
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C Invariance of the optimal probing algo-
rithm under different cost models

Theorem 3 Under the condition that DBk ⊆ DBP (i.e. all
the returned databases have been probed), the optimal probing
algorithm under the probing-only cost model is also optimal for
the PR cost model. 2

Proof Let algorithm A1 be the optimal under the probing-only
cost model, i.e. A1 spends the minimum number of probing under
the the probing-only model. For a particular query q, A1 returns
DBk

1 as a subset of DBP
1 , where DBP

1 is the set of databases A1

probes. The total cost of A1 under the total cost model is:

|DBP
1 | · c+ |DBk

1 −DBP
1 | · d+ |DBk

1 ∩DBP
1 | · d

′

which can be reduced to

|DBP
1 | · c+ |DBk

1 | · d
′ = |DBP

1 | · c+ k · d′ (5)

because DBk
1 −DBP

1 = ∅.
Now we want to show that A1 is also optimal for q under the

total cost model. We shall prove this via contradiction. Suppose
for q, A2 6= A1 is the optimal algorithm for q under the total cost
model. Suppose A2 find the satisfactory answer DBk

2 via probing
DBP

2 . The total cost of A2 under the total cost model is:

|DBP
2 | · c+ |DBk

2 −DBP
2 | · d+ |DBk

2 ∩DBP
2 | · d

′ (6)

Because d ≥ d′, we have:

|DBP
2 | · c+ |DBk

2 −DBP
2 | · d+ |DBk

2 ∩DBP
2 | · d

′

≥ |DBP
2 | · c+ |DBk

2 −DBP
2 | · d

′ + |DBk
2 ∩DBP

2 | · d
′

= |DBP
2 | · c+ |DBk

2 | · d
′ = |DBP

2 | · c+ k · d′

Since A2 is optimal under the total cost model, we know
Eq.(5) > Eq.(6). Therefore,

|DBP
1 | · c+ k · d′ > |DBP

2 | · c+ k · d′

which gives us that |DBP
1 | > |DBP

2 |. Therefore, the cost of A2

under the probing-only cost model is |DBP
2 | · c and is smaller

than A1’s probing cost. This contradicts our assumption that A1

is optimal under the probing-only cost model. ¥

D Optimality of the SelectDb(DBU) func-
tion

Theorem 4 SelectDb(DBU ) returns the database that leads to
the minimum expected probing cost, ECost(DBU ), on the set of
unprobed databases DBU . 2

Proof Based on Lemma 1 (which is given later),
ECost(DBU − {dbi}) represents the minimum cost that
we expect to spend, after we have probed dbi. Therefore, in Step
[2] of Figure 8, costi is the minimum expected cost incurred by
probing dbi. By selecting the dbi that yields the smallest costi,
we return the database that incurs the minimum expected cost
over all possible probing scenarios. ¥

Lemma 1 ECost(DBU ) represents the minimum expected cost
that we need to selectively probe DBU . 2

Proof We shall prove by natural induction on the size of DBU ,
i.e. |DBU |.

1. |DBU | = 0

According to the stopping condition (Eq. (4) in Section 3.1),
ECost(DBU ) = 0. Since ECost(DBU ) is non-negative
by definition, it is minimum in this case.

2. |DBU | > 0. We can assume that for all DBU′ s.t.
|DBU′ | = |DBU | − 1 (i.e. DBU′ contains one less
database than DBU ), ECost(DBU′ ) represents the mini-
mum expected cost that we will spend on DBU′ . There are
two sub-cases:

(a) With all the databases probed DBP (= DB −
DBU ), we are able to find a DBk ⊆ DB s.t.
E[Cor(DBk)] ≥ t (t being the user-specified
threshold). According to the stopping condition,
ECost(DBU ) = 0. ECost(DBU ) is minimum un-
der this sub-case.

(b) With all the databases probed DBP , we cannot find a
DBk ⊆ DB s.t. E[Cor(DBk)] ≥ t. According to
the recursive definition:

ECost(DBU )

= min
db∈DBU

(c+ ECost(DBU − {db}))) (7)

Since for every db ∈ DBU , ECost(DBU − {db}))
is the minimum expected cost we will spend on
DBU − {db} (according to our induction assump-
tion), Eq.(7) computes the minimum expected cost we
will spend on DBU . ¥

E Computing the expected value of
E[Cor(DBk)] for the greedy probing
strategy

In Step[2] of Figure 11, ECori is the maximum E[Cor(DBk)]
value we can obtain after probing dbi, for a certain DBk ⊆ DB.
The key issue is how can we know the E[Cor(DBk)] value for
any DBk after probing dbi, when we have not yet probed dbi?
Our solution is to compute an expected E[Cor(DBk)], based on
the PRD of dbi.

Specifically, let us assume α is the relevancy of dbi after prob-
ing. Under this condition, we can use Theorem 1 to compute
E[Cora(DBk) | r(dbi, q) = α], which means the expected cor-
rectness of DBk under the condition that r(dbi, q) = α. We can
then compute the expected E[Cor(DBk)] as the average over all
possible α values that we can obtain through probing dbi:

E[E[Cor(DBk)]] =
∫ +∞

−∞

(

max
DBk⊆DB

E[Cor(DBk) | r(dbi, q) = α]

)

·fi(α)·dα

(8)

where fi(α) is the probability density at α, which is given by
dbi’s PRD.

Formally, we can replace the “E[Cor(DBk)] if we probe dbi”
in Step [2] of Figure 11 as E[E[Cor(DBk)]] computed by Eq.
8.
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F Relationship between the PRD and the
err(r, r̃) distribution

Theorem 5 If err(r, r̃) is independent and monotonic, then

P (r ≤ α | r̃ = β) = P (err(r, r̃) ≤ err(α, β))

2

Proof

P (r ≤ α | r̃ = β)

= P (err(r, r̃) ≤ err(α, r̃) | r̃ = β) (Monotonicity)

= P (err(r, r̃) ≤ err(α, β) | r̃ = β) (r̃ = β)

= P (err(r, r̃) ≤ err(α, β)) (Independency)

¥
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