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Medical records, such as patient records, lab reports, literature articles, newsletters, etc. are 
in free-text form and often time, medical practioners wish to retrieve these scenario-
specific documents.  A scenario typically refers to a specific health care task, such as, 
searching for treatment methods for a specific disease. Although, traditional information 
retrieval systems are useful for retrieving general documents, these systems cannot support 
scenario-specific information retrieval because: 
1. The terms in the query posed by the user may not use a standardized medical 

vocabulary.   
2. The lack of an effective technique to represent synonyms, phrases and similar 

concepts in free-text. 
3. The mismatch between the terms used in a query and those used in a document for 

representing the same topic. 
In this chapter, we present a new knowledge-based (e.g. UMLS) approach to mitigate 
these problems. More specifically, we propose to use the metathesaurus and semantic 
structure in the UMLS to extract key concepts from a free-text for: 1) indexing; 2) phrase-
based indexing for representing similar concepts, and 3) query expansion to improve the 
probability of matching query terms with the terms in the document. To do so, the system 
formulates the query based on the user’s input, and selects scenario templates such as 
“disease, treatment” or “disease, diagnosis.” Thus, the system is able to retrieve relevant 
documents for a specific scenario. Furthermore, a topic (A group of co-occuring) oriented 
directory is proposed which is generated based on query template, frequently occurring 
relevant topics in a document. Such a directory system not only selects a set of relevant 
documents in respect to the query template but also provides cross-reference among 
related topics.   These techniques have been implemented in a test bed at UCLA. Using the 
standard OSHMED corpus, our empirical results validate the effectiveness of this new 
approach over the traditional text retrieval techniques. 
 

14.1  INTRODUCTION 
Medical information knowledge and clinical data are growing at explosive rates.  Ten 
years ago, medical publications were added to the world’s biomedical journal collections 
at the rate of approximately 3,000 entries per month. Today, the volume of bibliographic 
citations is growing at 1,000 per day in Medline alone [1]. Hospitals also generate large 
amounts of healthcare data that are stored on computers. Hence, the delivery of quality 
healthcare to consumers requires the availability and accurate information retrieval from 
this large information sources. The demand for the use of evidence-based practices to help 
improve the quality of care also adds great amounts of pressure on healthcare professionals 
to regularly access the highest quality information during the healthcare planning, decision 
and delivery. Today, computer-assisted information retrieval and processing are necessary 
to support quality decision-making and to help overcome human cognitive constraints [2]. 

A Medical Digital Library consists of three types of data: 1) structure data, such as 
patient lab data and demographic data; 2) multi-media images, such as MRIs; and 3) free-
text documents, such as patient reports, medical literature, teaching files and news articles.  
Previous research focused on the effective retrieval of structure data and image data [3-4].  
However, many medical records are in free-text form and usually require scenario-specific 
retrieval. For example, a physician may pose the following two queries, one for diagnosis 
and the other for treatment of a disease: 
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 diagnosis scenario: “diagnosis of large cell lung cancer,” from all patient reports 
 treatment scenario: “treatment of large cell lung cancer,” from the collection of 

medical literature   articles (e.g. MEDLINE references). 
From the above scenario, specific queries cannot be effectively supported by 

traditional information retrieval systems because the lack of indexing for free text, ranking 
the similarity of the content within the document  with the query term and a method to 
resolve the mismatch of the term in the query with that in the document. We developed the 
following knowledge-based techniques to ameliorate the above problems. 

 
Extracting key concepts from free-text 
We have developed a new technique to automatically extract key concepts from a free-text 
and to permute the set of words in the input free-text, thereby generating all valid concepts 
defined by the controlled vocabulary in a knowledge base (e.g. UMLS). Since the 
generated valid concept may not be relevant to the query, syntactic and semantic filters are 
then used to filter out the irrelevant concept. Thus, retrieval efficiency is improved because 
key concept terms can be used as indices in a free-text directory system, as well as 
transforms the ad hoc terms in the query into a controlled vocabulary. 

 
Phrase-based vector space model (VSM) 
Vector Space Models (VSM) are commonly used to measure the similarity between a 
query and a document.  Traditional stem-based VSM cannot match terms in the query with 
those used in the documents that have a similar meaning but different expressions.  We 
developed a knowledge-based/phrase-based VSM [5], which identifies terms with similar 
meanings, and represents them based on both concepts and stems.  As a result, phrase-
based VSM yields significantly better retrieval performance than the stem-based VSM.  
 
Knowledge-based query expansion 
Queries can be appended with related terms to increase the probability of matching the 
terms in the query with those of relevant documents. Traditional expansion techniques 
append all statistically co-occurring terms into the original query, many of the expanded 
terms may not be scenario-specific.  We use a knowledge-based approach that only 
appends the query with terms related to the scenario of the query. 

 
14.2  EXTRACTING KEY CONCEPTS FROM DOCUMENTS 

14.2.1 The UMLS knowledge source 
Since our approach is leveraged on knowledge bases, we shall first briefly 
describe the Unified Medical Language System’s (UMLS) [6] knowledge 
sources, then present an index tool called IndexFinder, which is used for 
extracting key concepts from free-texts. UMLS is a standard medical 
knowledge source developed by the National Library of Medicine and of the 
UMLS Metathesaurus, the SPECIALIST lexicon, and the UMLS Semantic Network. 



 5 

The Metathesaurus is a central vocabulary component that contains 1.6M phrases 
representing over 800K concepts from more than 60 vocabularies and classifications. We 
use the Metathesaurus as the controlled vocabulary to detect concepts and to derive the 
conceptual relations using the hyponym relations encoded in it. 

A concept unique identifier (CUI) identifies each concept.  The Metathesaurus 
encodes “broader-narrower-than” types of relations among the concepts.  For example, 
“lung cancer” is a broader concept than “lung neoplasm.”  A class of concepts in the 
Metathesaurus is abstracted into one semantic type in the Semantic Network.  For example, 
the concept “lung cancer” belongs to the semantic type “disease and syndrome.”  Each 
semantic type has several semantic relationships with other types, e.g., “disease and 
syndrome” is “treated by” “therapeutic or preventive procedures,” “pharmacological 
substance” and “medical devices.” These semantics are used for knowledge-based query 
expansion (see Section 14.6). 

14.2.2 Indexing for Free-text Documents 
Indexing free-texts is a difficult task since the writing in the free-text does not use a 
controlled vocabulary. Further, similar concept terms, synonyms, and etc. in the free-text 
add an additional level of difficulty to such a task. This also applies to ad hoc queries 
which can also be viewed as documents. Unlike medical literature, where the author(s) 
provide key words, many free-text documents do not provide such information. To 
effectively retrieve these free-texts, we are motivated to extract the key concepts from 
these documents. To rapidly retrieve the relevant information/knowledge for a query from 
a large number of documents, we propose to develop a topic oriented directory system for 
free-text where the document can be obtained based on a set of index terms. Having 
located a group of documents that satisfy the key concept terms, traditional IR techniques 
can then be used to rank these documents.  

Thus, extracting key concepts from free-texts is a critical task. Words or word stems 
are commonly used for indexing, and these indexing techniques do not require any 
knowledge source.  However, synonyms and some morphological differences between the 
texts in the target documents and the search words used often hamper the search results, 
and are beyond the technological spectrum of word/stem indexing and matching 
techniques. This issue is particularly problematic in healthcare, wherein the biomedical 
language is packed with many interchangeable terms, such as common cold and coryza, 
mass and lump, fever and pyrexia, weakness and paresis, and etc.  

Therefore, we developed indexing systems based on standard descriptors or 
dictionaries, such as UMLS. Using search terms generated from standard dictionaries also 
helps resolve the synonym and morphological differences, and thus reduces user 
frustrations by minimizing the rates of missed-hits/failed searches. A significant amount of 
research has been dedicated at developing effective methods for mapping free-text into 
UMLS concepts.  Examples of such efforts include SENSE [7], MicroMeSH [8], 
Metaphrase [9], KnowledgeMap [10], PhraseX [11], MetaMap [12].  Many of these efforts 
use natural language processing (NLP) techniques to parse passages of free-text to 
generate noun phrases, which are in turn mapped into UMLS phrases. This approach 
achieves some success, however, there are two major weaknesses to this general technique: 
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First, some important concepts can never be discovered through the identification of 

noun phrases. Table 14.1 provides examples of texts that reveal the shortcomings of the 
use of noun phrases.   
 Example 1: A word from the first line with a word from the second line forms the key 

concept, “prostate hyperplasia,” which corresponds to concept ID 33577 in the 
UMLS Metathesaurus. 

 Example 2:  A word from the subject and two words from the location phrase 
combine to form the key concept, “left lung mass,” which corresponds to concept ID 
746117 in the UMLS Metathesaurus. 

Second, NLP requires significant computing resources.  As a result, most of the NLP 
systems work in an offline mode, and are not suitable for mapping large volumes of free-
text into UMLS concepts in real time. To remedy these shortcomings, we developed a new 
tool called IndexFinder to extract key concepts from free-text. 

14.2.3 IndexFinder [13] 
We developed a novel approach to detect medical concepts from free-text by permuting 
words in a sentence to generate concept candidates that match the UMLS-controlled 
vocabulary.  Since the generated valid controlled vocabulary and concept terms may 
contain negative sense and may not be relevant to the query, negation detection is used to 
identity negative concepts. Further, syntactic and semantic filters, which are based on a 
specific scenario are used to filter out irrelevant concepts. 
 
Text Preprocessing 
Since IndexFinder uses the UMLS normalized string table for indexing and also supports 
certain types of abbreviations, we need to preprocess the input text to normalize words 
[Aro 01], detect undefined and ambiguous abbreviations as well as remove stop words to 
increase the accuracy of the extraction.   

IndexFinder first converts the UMLS controlled vocabulary into an efficient concept 
indexing structure that resides in the main memory and thus avoids disk access.  To detect 
the concepts embedded in a free-text sentence, IndexFinder scans through the sentence 
word by word, looks up the indexing structure and marks every concept where all the 
words representing that concept have appeared in the sentence.  We use the UMLS 
SPECIALIST lexicon for word normalization, and handle synonyms by mapping different 
wording of the same concept into one entry in the indexing structure.  This indexing and 
matching technique is efficient and able to generate responses in real-time for free-text 
indexing.  

 
Negation Detection 

Example Text 
1 Prostate, right (biopsy) 

  - fibromuscular and glandular hyperplasia 
2 A small mass was found in the left hilum of the lung. 

Table 14.1. Problems with mapping noun phrases individually. 
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Negation detection is an important task in medical document processing since whether or 
not a medical symptom presented can make totally different diagnoses for a disease. If a 
doctor searches for the concept “no cough”, retuning the concept “cough” is considered to 
be irrelevant.  To handle the negation problem in IndexFinder, we first define a list of 
terms and negation hues, which carry negative sense for a concept. Then, we identify the 
UMLS semantic types which can be negated. Finally, for the concepts of the above 
defined semantic types, we combine them with possible negation hues according to certain 
defined rules. More specifically, IndexFinder relays on the three parts for negation 
detection: 
 Negation hues list: specifies the list of words which tends to negate a concept in a 

sentence. For example, in medical reports, the words, no, not, isn’t, etc are frequently 
used for negation.   

 UMLS semantic types qualified for negation: specifies the list of UMLS semantic 
types which can be negated.  For example, the semantic type T191 (disease/cancer) is 
qualified for negation since the concepts related to T191 can appear in patient records 
in negation form.  

 Rules for negating concepts in a sentence: specifies the rules to negate UMLS 
concepts when negation hues are presented in the same sentence where the concepts 
are extracted.  For example, “no” tends to negate the concept immediately followed; 
when multiple concepts are qualified for negation, the concept closest to the negation 
hue is selected for negation. 

Figure 14.1 shows the web interface for IndexFinder. The interface has two text panes: 
the upper text pane takes free-text as input and the lower one outputs the identified UMLS 
concepts.  Each line in the output pane shows one identified concept, which contains the 
concept ID, the concept’s phrase string, and the concept’s semantic type.  Part of the 
UMLS concepts detected from the input pane is shown in the output pane. Three buttons 
for adding synonyms, removing inflection, and configuring options are at the top of the 
input window.  Results appear when a user clicks the IFinder Search button below the 
input window.  Eighteen phrases were found when no filters were applied.  Each line has a 
UMLS concept identifier, phrase text, and corresponding semantic type.   

 

 
 

Figure 14.1.  IndexFinder web interface. 

Output window 

Input window 
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Syntactic and Semantic Filtering 
Although word permutation detects more concept candidates, some concepts may be 
irrelevant to the original sentence.  IndexFinder applies filters that use knowledge source, 
and syntactic or semantic information from the original sentence to filter out irrelevant 
concepts.  For example, if a physician wishes to know what kind of diseases a patient 
suffers, it is more desirable to return disease related UMLS phrases rather than returning 
all concepts to the physician.  We consider six types of filters as shown in Figure 14.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The first three filters are applied during the mapping process: 
 Symbol Type filter: specifies the symbol types of interests.  For example, if a user 

wants to ignore digits like MetaMap did, he can simply not check the Digits box as in 
Figure 14.2.  

 Term Length filter: specifies the length limitation of candidate phrases. 
 Coverage filter: specifies the coverage condition for a candidate phrase.  It has three 

options, at least one, majority, and all. By default, the option all is where every word 
in a candidate phrase should be present in the input text.   

The latter three filters are used for further pruning the candidate phrases:   
 

 Subset filter: removes phrases if they are subsets of other phrases.  For example, if the 
results are {lung cancer} and {cancer}, then {cancer} will be removed since it is a 
subset of the former.   

 Range filter: removes a phrase if the phrase is found from words in the input text to 
exceed a specific distance.      

 Semantic filter: to remove the phrases of semantic types that the user is not interested 
in. In UMLS, 134 semantic types are defined and each concept maps to one or several 
semantic types. For example, as shown in Figure 14.2, the user can select Disease or 
Syndrome and its two sub types, so that the resulting phrases will be of these two 
types.  As a result, the filter also eliminates those irrelevant phrases from the set of 

Figure 14.2.  Filter Selection  
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phrase candidates.  Note that UMLS ISA relationship may also be used to filter out 
more general phrases. 

Figure 14.3 shows the filtering result for the sample input in Figure 14.1, (also 
depicted at the top of Figure 14.3). When a subset filter is used, 8 phrases are returned.  If 
the Pathologic Function is selected, four answers will be returned.  The two phrases, 
prostate and focal, will be given if the user wishes to know about body parts or spatial 
characteristics. Prostate biopsy is the only diagnostic procedure used.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Evaluation 
The IndexFinder is written in C#, and is running on a 1.2GHz PC machine with 512MB 
main memory. We have implemented the algorithm as a web-based service named 
IndexFinder that provides web interfaces for users and programs. We tested the web 
service using 5,783 reports of 128 patients from the UCLA Hospital. The total size of the 
documents is 10,8M bytes. There are 910K concepts found in 254 seconds.  Therefore, the 
throughput is about 42.7 K bytes per second, which validates that the system can extract 
key concepts from clinical free-texts in real-time. Next, we manually examined the 
mapping results for 100 topic sentences from the above set of patient reports.  There are 
total 456 UMLS phrases found of the 100 topic sentences. We noticed 18 concepts that are 
not from a single noun phrase and thus cannot be detected by NLP-based methods.  
Further, we note that all the concepts detected by IndexFinder are relevant. Filtering is 
effective in eliminating the irrelevant terms from the validated candidates. 

 
Comparison with NLP approach  
We performed a comparison study between IndexFinder and MetaMap, which uses the 
NLP method. We noticed that the NLP tends to break each sentence into small fragments. 

Figure 14.3 Key concepts after filtering 

Input:   Prostate, right (biopsy) 
 - fibromuscular and glandular hyperplasia 
 - focal acute inflammation 
 - no evidence of malignancy  
Filtering Results 
 Subset C0194804:biopsy prostate 
 C0033577:prostate hyperplasia 
 C0035621:right 
 C0259776:hyperplasia fibromuscular 
 C0334000:hyperplasia glandular 
 C0522570:inflammation focal 
 C0333361:inflammation acute 
 C0391857:no malignancy evidence 
 Pathologic Function  C0033577:prostate hyperplasia 
   (T046) C0259776:hyperplasia fibromuscular 
 C0334000:hyperplasia glandular 
 C0333361:inflammation acute 
 Body parts & Spatial  C0033572:prostate  
 (T023, T082) C0205234:focal 
 Diagnostic Procedure (T60) C0194804:biopsy prostate 
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Conversely, IndexFinder considers all the possible word combinations in the input unit 
that are valid in UMLS. As a result, NLP does not yield concepts as specific as 
IndexFinder, as shown in Figure 14.4. 

We are currently in the process of further evaluating the accuracy of our method. We 
plan to generate a test dataset by randomly selecting a set of topic sentences from the 
above 5,783 patient reports and then comparing the accuracy of the indexing terms 
generated by the IndexFinder in terms of the numbers of false negatives and false positives 
[14].      

The key terms extracted by IndexFinder can be used for: 1) indexing the free-text 
documents, which can be used in the directory system for linking the documents with key 
concepts; 2) formulating scenario-specific queries for content correlation; and 3) 
transforming the ad hoc query terms to controlled vocabulary, thus increasing retrieval 
effectiveness.   

 

 
An Example 
As a specific clinical application for this research, we have focused on using the 
IndexFinder to intelligently filter all clinical free-text in an electronic medical record for 
documents that specifically mention brain tumor-related content.  It is not uncommon for a 
brain tumor patient to have as many as 50 clinical documents in their medical record. 
Many of these documents will have nothing to do with the treatment of the brain tumor, 
but are concerned with other health problems. These documents consist of primary care 
clinical notes, specialist clinical notes, pathology reports, laboratory results, radiology 
reports, and surgical notes.  Figure 14.5 shows an excerpt from a radiology report. 

Input: A small mass was found in the left hilum of the lung. 
IndexFinder Results: 
 C0024873:a mass >>T190:Anatomical Abnormality 
 C0700321:small >>T080:Qualitative Concept 
 C0746117:mass lung left  >>T033:Finding 
 C0332285:found >>T082:Spatial Concept 
 C0225733:lung left hilum >>T029:Body Location or Region 
MetaMap Results: 
 Phrase: "A small mass" 
     861 Mass, NOS [Anatomical Abnormality] 
     694 Small [Qualitative Concept] 
 Phrase: "was" Meta Mappings: <none> 
 Phrase: "found" Meta Mappings: <none> 
 Phrase: "in the left hilum" 
    1000 Left hilum [Body Part, Organ, or Organ Component] 
 Phrase: "of the lung" 
    1000 Lung [Body Part, Organ, or Organ Component] 
    1000 Lung <3> (Lung diseases) [Disease or Syndrome] 

Figure 14.4.  Comparing results generated by IndexFinder 
and MetaMap. 



 11 

 
Figure 14.5. Free-text excerpt from a radiology report 

Since our interests focus on brain tumor-related concepts, we can specify a semantic filter 
work list of pertinent documents based on brain tumor characteristics including: cancer 
type, anatomical location, and medical interventions.   These characteristics are then 
mapped to relevant UMLS semantic types to define semantic filters, as shown in Table 
14.2. 
 
Brain Tumor Characteristics Relevant UMLS semantic types 
Specific Cancer Neoplastic Proccess 
Medical Intervention Therapeutic Procedure 
Anatomical location Body Part, Organ or Organ Component 

Table 14.2. Using UMLS semantic type to define interests 
 

A clinician looking for specific documents that address a certain type of brain tumor (i.e. 
meningioma) would have to carefully search the individual documents.  With IndexFinder, 
only two key terms, meningioma and encephalomalacia, are returned for the above text 
excerpt as shown in Table 14.3.  The two concepts, in fact, are important in the excerpt 
and thus are good terms for indexing. 

 
 
 
 

Table 14.3. Output from IndexFinder for the text in Figure 14.5 
 

14.3 TRANSFORMING SIMILAR QUERIES INTO QUERY TEMPLATES 

Recent studies reveal that users’ information requests in a specific domain typically 
follow a limited number of patterns.  In the medical domain [15-18] for example, 
more than 60% of all the physicians’ clinical questions can be classified into ten 
frequent categories.  We can summarize the frequently asked similar queries and 
tailor our retrieval system according to the summarized queries.  This motivates us 
to introduce the notion of a query template.  A query template defines the structure 
of a group of similar queries which consist of a key concept and scenario concept(s).  

Semantic Descriptor UMLS code 

T191:Neoplastic Process C0025286:meningioma            
T047:Disease or 
Syndrome 

C0014068:encephalomalacia      

. 

“The right frontal convexity meningioma is slightly 
larger now than on the prior examination. The left 
frontal meningioma is unchanged. There are three other 
small enhancing nodules seen along the frontal 
convexities bilaterally, as described above. There are no 
new lesions seen. There is no mass effect caused by these 
lesions. There is bifrontal encephalomalacia.” 
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Filling in the key concept values in a query template results in a specific free-text 
query. 

To find out how to define a query template, we shall investigate a few medical 
queries presented in [HBL94]. 

Q1: LACTASE DEFICIENCY, therapy options 
Q2: IRON DEFICIENCY ANEMIA, which test is best 
Q3: THROMBOCYTOSIS, treatment and diagnosis 

By inspecting these queries, we note that each focuses on a particular disease 
concept, e.g., “lactase deficiency,” “iron deficiency anemia,” or “throbocytosis.”   
Such disease concepts provide the focuses of each query.  Further, each query asks 
about a specific scenario related to the disease concept.  For example, Q1 asks about 
the “treatment” scenario of a disease, Q2 asks about the “diagnosis” scenario, and Q3 
asks both.  We highlight the disease concept of each query in bold, and the scenario 
concepts in italic. 

To generalize the above sample queries, we can extract the key concept and 
scenario concepts (the structural information) and transform into the following 
templates.  Note that in the templates we unify the representation of scenario 
concepts, e.g. mapping “therapy options” to “treatment.” 

T1: <Disease and syndrome>, treatment 
T2: <Disease and syndrome>, diagnosis 
T3: <Disease and syndrome>, treatment and diagnosis 

Thus, in general, each query template has two essential components:  
a) The key concept.  In the template, we only specify the semantic type of this 

concept, e.g., “Disease and syndrome.”  The user needs to fill in the 
concept value to generate a concrete query.  For example, filling “lung 
cancer” into template T1 results in a real query of “lung cancer, treatment.”  
Further, the concept must belong to the semantic type defined in the 
template, e.g., “lung cancer” must be a “Disease and syndrome” concept.   

b) One or more scenario concepts.  For example, “treatment,” “diagnosis,” 
and/or “complication” of some disease concept.   

In the following sections, we shall illustrate how we use the structural 
information in query templates to organize the key document features into a topic-
oriented directory.  Further, the structural information in query templates enables us 
to expand more scenario-specific terms to the original query and significantly 
improve the retrieval performance. 

 
14.4 TOPIC-ORIENTED DIRECTORY 

To improve the efficiency of free-text document-retrieval in terms of precision and 
recall of the request documents and to provide cross reference among related topics, 
we shall propose to develop a directory system that is based on user queries and 
topic/sub-topic hierarchies derived from key features of the documents.   

Using our IndexFinder, we are able to automatically extract a set of key features 
to represent a document. Next we will use data-mining techniques to identify 
frequently co-occurring key features.  Each group of frequent features can be viewed 
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as a directory topic. Since these topics are directly derived from the document 
content without any generalization, we consider them to be the most specific ones in 
the directory.  Therefore they are placed at the leaf-level of the topic hierarchy.  
Starting from the most specific topics, we merge these sub-topics into more general 
topics. By continuing this process, eventually a topic hierarchy can be constructed.  
In order for the merging process to be semantically meaningful, it will be guided by 
the Semantic Network in the knowledge base (e.g., UMLS).  For the topic hierarchy 
to be sensitive to directory users, we should reorganize the hierarchy also based on 
the user querying patterns. One way to achieve this is to adjust the hierarchy so that 
it corresponds to the frequent browsing patterns from general to specific topics. This 
can be accomplished by modifying the knowledge hierarchies in the semantic 
network in accordance with the query granularity to form directory paths and by 
concatenating these directory paths in the drill-down browsing patterns.  As a result, 
the topics and subtopics in the directory hierarchy are derived based on key features 
in the documents, as well as on user query patterns.  

Such a directory design differs from existing document clustering techniques in 
the following ways.  First, our directory topics are derived from the documents and 
represented by control vocabulary from a knowledge source.  In conventional 
document clustering, each tree node only represents a subgroup of documents 
without any semantic meaning.  Second, our directory topics are generated from 
mining the document key features as well as the user queries (query templates).  As 
a result, our directory system can adapt to different types of queries and is user-
sensitive.  Existing document clustering techniques do not consider information 
related to frequent query patterns and user type.  Third, the directory topic hierarchy 
is organized by the guidance of the semantic network in the knowledge source, e.g., 
UMLS, and therefore is well defined.  The resulting directory structure has more 
semantic meaning than the statistical approaches and thus is able to provide 
scenario-specific indexing and improve document retrieval performance.  

 
Figure 14.6. A sample directory system for a lung cancer physician 

 
Let us illustrate the process of organizing a topic-oriented directory system by 

the following example.  Given a large corpus of documents related to disease, we 
will design a directory system for lung cancer physicians. Based on their interests, 
most of the query will be related to lung cancer; that is, the diagnosis, treatment, risk 
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factors etc., of lung cancer.  As a result, the document collection for these particular 
physicians can be divided into three topics: lung cancer-related, general cancer-
related, and other disease-related documents, as shown in Figure 14.6.  Through 
data-mining of the key features of these documents, we are able to derive the 
following list of topics from the above broader topics: lung cancer, diagnosis, 
treatment, risks of cancer, chemotherapy, surgery, radiation, etc. Such topics and 
subtopics can be organized with the guidance of the semantic network of UMLS. For 
example, the topic “lung cancer” can be further divided into the various subtopics 
such as “diagnosis,” “treatment,” and “risk factors of cancer.”  Then, based on the 
knowledge source, the subtopic “treatments” can organized into the sub-subtopics: 
“chemotherapy,” “surgery,” and “radiation.” Since the topics are derived from the 
key features of the documents, such topics and subtopics can be indexed to represent 
scenario-specific topics.  

Note that the directory is organized based on of a given user query (query 
template), as well as topics and subtopics that derive from the key features of 
documents. Thus, the directory system not only can provide scenario-specific 
document retrieval, but it can also improve document retrieval performance. 
Likewise, we can organize the directory system for different user query templates. 
These different directory systems can be linked and formed into a general directory 
system for the set of query templates. Nodes in the directory of a query may overlap 
with nodes in the directories of some other queries. Such overlap provides cross-
references of topics and increases the search scope of the nodes (topics). For a given 
query, the system will navigate according to its directory to retrieve the documents. 
The overlap nodes may provide cross-references to different scenarios in other 
directory systems. In order to restrict the cross-reference topics, the user can provide 
a certain range of topics of interest. As a result, the directory navigator will only 
branch to these topics. Such focused cross-referencing can increase the search scope 
while providing focused expansion of topics and improving retrieval performance.  

14.4.1 Deriving Frequent Directory Topics via Data-Mining 
Using IndexFinder, we can extract a set of key features from each document. Each 
feature is a concept defined in the controlled vocabulary of the knowledge source 
(e.g., the Metathesaurus in UMLS).  In this section, we will present a data-mining 
technique to discover topics from document features for directory construction. 

A topic can be viewed as a condensed synopsis of a sub-collection of documents.  
For example, “lung cancer and chemotherapy” is a topic that covers all the 
documents on the treatment of “lung cancer” with “chemotherapy.”  To capture the 
meaning of a subset of documents, we typically need multiple concepts, e.g., “lung 
cancer” and “chemotherapy.” Therefore, a specific topic should consist of multiple 
concepts.  Further, the concepts that belong to one topic should frequently co-occur 
in the documents.  For example, it is meaningless to combine “back pain” and “heart 
surgery” within a topic, because very few medical documents mention both concepts. 

Since a topic is a group of concepts that frequently co-occur in documents, we 
propose to use frequent item-set mining techniques [19-21] for topic discovery. To 
map topic discovery into a frequent item-set mining problem, we shall view each 
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Document Market basket 
Concepts in a document Items in a basket 
Topic as a group of 
frequently co-occurring 
concepts 

Frequent item-set 

Minimum number of 
documents under each leaf 
topic 

Minimum support for 
frequent item-sets 

Table 14.4. Mapping between frequent item-set mining and topic discovery 

 

document as a market basket, and the concept features extracted from that document 
as the items in the basket.  To use the data-mining techniques for topic discovery, we 
need to specify a minimum support number.  In the topic-discovery context, this 
minimum support is the minimum number of documents that we want to group under 
each topic.  For example, if any topics in our directory cover at least five documents, 
then we should set the support level at “5.”  Table 14.4 further illustrates the 
mapping between topic discovery and data-mining. 

If we discover that each topic is a group of frequently co-occurring concepts, 
any sub-portion of that group must also be frequent.  That is, any sub-portion of a 
topic is also a valid topic.  For example, if we discovered a topic {“lung cancer,” 
“detection,” “biopsy”} as a group of frequent concepts, then sub-groups such as 
{“detection,” “biopsy”} must also be valid topics.  Super-groups of concepts have 
more specific meanings than sub-groups, e.g., {“lung cancer,” “biopsy,” “detection”} 
is more specific than {“biopsy,” “detection”}.  Therefore, it would be desirable to 
keep only the topics that are super-groups instead of those of the sub-groups.  To 
efficiently discover these super-groups, we need a specialized data-mining technique 
called “maximum frequent item-sets (MFI)” mining.  We have developed a general-
purpose MFI mining algorithm, SmartMiner, which can handle extremely large 
datasets [21].  We plan to apply this technique to discover topics that have the 

longest and the most specialized form and use this to construct a more accurate 
directory system. 

14.4.2 Organizing Topics into a Hierarchical Directory Structure 
By mining frequent co-occurring features in the document collection, we obtain a 
list of topics as well as the corresponding set of documents covered by that topic.  
We shall build a hierarchical structure from these topics for efficient retrieval of 
relevant documents.  Since topics derived from mining frequent document features 
are the most specific ones in the hierarchy, they are placed at the leaf level.  Starting 
from these most specific topics, we can construct a topic hierarchy by iteratively 
merging sub-topics into more general ones.   

To construct a scenario-specific and query-sensitive hierarchical directory, we 
will leverage using knowledge source, UMLS, and the query templates.  The 
knowledge source organizes its concepts in a general-to-specific fashion. For 
example, “lung neoplasm” is a more general term than “lung cancer,” and “lung 
cancer” is more general than “non-small-cell lung cancer.” This provides useful 
guidance to determine the general-to-specific relationships among directory topics.  
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For example, “lung cancer with chemotherapy” will be considered more general than 
“non-small-cell lung cancer with chemotherapy.” 

UMLS defines multiple hierarchies of concepts. Each UMLS concept hierarchy 
focuses on one semantic type of concept. For example, the disease-concept hierarchy 
represents the general-to-specific relationships among all the “Disease and 
Syndrome” concepts. Similarly, the procedure-concept hierarchy focuses on all 
“Therapeutic and Preventive Procedure” concepts.  The information in query 
templates can be used to select the appropriate candidate hierarchy. 

Let us consider the following example. Suppose that we have discovered four 
specific topics by mining the key features of the documents: 
1. “lung cancer, surgery” 
2. “lung cancer, radiotherapy” 
3. “heart disease, surgery” 
4. “heart disease, drug therapy” 

 

 
Figure 14.7. Different directory structures derived from different set of query templates 

 
Following UMLS’s disease-concepts hierarchy, entries 1 and 2, and 3 and 4 are two 
pairs of similar topics.  At a higher level, both of these two topics fall under a 
general topic called “disease.”  The resulting directory structure is shown in Figure 
14.7(a). If we use UMLS’s procedure-concept hierarchy, the resulting directory 
structure is shown in Figure 14.7(b). We shall leverage the query templates 
information to select the appropriate candidate structure. 

Recall that a query template consists of two parts: a key concept and a set of 
scenario concepts. For a particular user type, we can identify the set of frequently-
used query templates. Suppose the key concepts in these frequent templates are 

Disease 

Lung cancer Heart disease 
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Radiotherapy 
 

(a) Directory structure derived from 
the disease-concept hierarchy 

(b) Directory structure derived from 
the procedure-concept hierarchy 



 17 

“<Disease and syndrome>,” i.e., many templates are seen as “<Disease and 
syndrome>, treatment,” or “<Disease and syndrome>, diagnosis,” etc. Now consider 
a sample query constructed by the template, “lung cancer, treatment.” In the initial 
step, we want the directory to guide us to a single branch that is all about “lung 
cancer.” Underneath that single branch, we want to further focus on the treatment 
subtopic. Clearly the first structure (Figure 14.7(a)) serves this need better than the 
second one (Figure 14.7(b)). On the other hand, if the key concept in the query 
templates is of type “<Therapeutic and Preventive Procedure>,” then the second 
structure will be more preferable than the first one. 

14.4.3 Navigating the Topic-Oriented Directory 
The topic-oriented directory is constructed by the set of topics that are generated by 
data-mining, query templates of a particular user type, and the semantic structure of 
the knowledge source.  With the directory system, identifying a set of relevant 
documents for a given query is equivalent to selecting a path in the hierarchy to 
navigate to a leaf node.  The path selection should be based on user type and query 
templates.  Further, the directory enables us to easily navigate to broader topics 
related to the query.  For example, if we use the directory in Figure 14.7(a) to 
answer the query “lung cancer treatment with surgery,” we first select the path 
“disease” “lung cancer”  “surgery” to reach a subset of documents.  Thereafter, 
we can suggest further reading in the closest path “disease” “lung cancer”  
“radiotherapy.” 

Multiple directory structures are constructed from the query templates for 
multiple user types.  The commonality in query templates results in overlapping 
nodes of various directory structures.  Such overlapping nodes provide cross-
referencing points among multiple directories and enlarge the search scope.  For 
example, the leaf node for “disease” “lung cancer”  “surgery” in Figure 14.7(a) 
overlaps with the leaf node “procedure”  “surgery”  “lung cancer” in Figure 
14.7(b).  Depending on the user’s preference, the system may decide the direction 
and the scope of cross-referencing.  For example, a lung cancer oncologist may also 
be interested in the topics of the treatment procedure and in the etiology and 
development of the patient’s disease, but not other diseases such as mental illness.  
Note that for the most general cases, the navigation path may include generalization 
(going upward).  We propose to use query, user type, and topic hierarchy in the 
directory to generate and control the navigation path that provides scenario-specific 
document retrieval. 

14.4.4 An Example 
We should use the 5000 UCLA Medical reports to construct the knowledge hierarchies 
and a sample topic directory. Directly following the Parent of relationships in UMLS, we 
extract all the possible knowledge hierarchies (or knowledge paths). Such paths cannot be 
directly used in our directory system for two reasons. First, using all the knowledge paths 
for our directory system design is infeasible since the number of knowledge paths in 
UMLS for a concept can be large. Second, the granularity can be too detail for a set of 
documents and thus, we need to simplify the knowledge hierarchies as follows: 
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 Select a proper source for a knowledge type. UMLS Semantic Network defines about 

200 knowledge types (or semantic types) such as disease, treatment, body part, etc. 
For each knowledge type, a domain expert can identify the best knowledge source. 
For example, ICD-9 can be a good source for disease knowledge hierarchies. By 
applying a source selector for a knowledge type, we significantly reduce the number 
of knowledge paths for a concept. 

 Combine nodes in knowledge paths that contain synonyms. Patent reports may 
possesses synonym concepts. To reduce the number of knowledge paths we combine 
the parents of synonym concepts to a synonym group and  assign a concept for the 
synonym group in the knowledge paths. 

 Reduce the number of knowledge paths. Remove the nodes in the knowledge paths 
that contain only a single child node to the topic concepts. For a specific document 
set, topics can be derived by data mining the MFIs. The set of concepts that contains 
the topics are called topic concepts. For each topic concept, we can extract knowledge 
paths from UMLS, and we compute the number of descendant nodes in the path. All 
path nodes with a single child will be removed for the simplicity of the topic directory. 

Using the three techniques, we can extract knowledge hierarchies from UMLS and 
simplify them for our directory system design. For example, Table 14.5 shows a portion of 
the body part knowledge hierarchies we have extracted from UMLS. 

 
Depth Disease CUI 
1 Disease C0012634 
 …  
2 . cancer C0006826 
 …  
3 . . respiratory system cancer C0814136 
4 . . . bronchus cancer C0345950 
4 . . . lung cancer C0242379 
5 . . . . small lung cell cancer C0149925 
5 . . . . non small lung cell cancer C0220601 
4 . . . mediastinum cancer C0153504 
4 . . . pleural tumor C0345966 
 …  

Table 14.5 Sample disease knowledge hierarchy extracted from UMLS for the UCLA document set 
 
There are 875,255 concepts in UMLS, 2003AA edition. In a real dataset, the number 

of concepts appearing in the topics of a document set can be much less. Table 14.6 shows 
the number of concepts for some knowledge types in the set of about 5000 UCLA medical 
reports. 

 
TUI Knowledge Type Number of Concepts 
T191 Disease 181 
T184 Finding 171 
T061 Treatment 242 
T060 Diagnosis 155 
T023 Body Organ 482 

Table 14.6 Number of concepts for some knowledge types for the UCLA document set 
 



 19 

We obtain knowledge hierarchies for the five types of knowledge as shown in Table 
14.6.  A portion of the knowledge paths used in our experiment are shown in Table 14.7. 

 
CUI TUI Concept Name Knowledge Path 
C0000735 T191 abdomen tumor disease/cancer/abdomen 
C0001418 T191 adenocarcinoma disease/cancer/epithelial/adenocarcinoma 
C0001624 T191 adrenal tumor disease/cancer/urological/kidney/adrenal 
C0005967 T191 Bone cancer disease/cancer/bone 
C0006118 T191 Brain tumor disease/cancer/neurologic/brain 
C0006142 T191 breast cancer disease/cancer/breast 
C0006264 T191 bronchus tumor disease/cancer/respiratory/bronchus 
… … … … 

Table 14.7 Example of the simplified directory paths for some disease concepts 
 
We constructed the topic directory systems by using a set of 50 patient reports from 

the UCLA Medical Center. Figure 14.8 shows a user giving a usage pattern [disease], after 
which the system creates a directory for the usage pattern. 

 

 
Figure 14.8:  Topic directory system experiment 

 
Using such a directory, a user is able to obtain patient reports that are organized by 

disease type + body organ. For example, if a user wants to find reports on 
cancer/respiratory system/lung, the system returns 33 reports as illustrated in the upper-left 
corner of Figure 14.8. When a user clicks on a report, the system will bring the document 
to the user as shown in the bottom of the figure.  
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Such a system provides the user with the capability to generate a topic oriented 

directory, which enables the user to navigate the information that best satisfies the query 
goals. Such scenario-speific directories generate a set of relevant clinical free text 
documents which can then be inputted for ranking. 

 
14.5 Phrase-based Vector Space Model for Automatic Document Retrieval 

IndexFinder is able to extract key concepts from free-text for the directory system. Based 
on a given query, the directory system is able to identify a group of documents that match 
with the key concepts in the query from a corpus. We need to rank and order this set of 
documents by their similarity with the target document (query). The Vector Space Model 
(VSM) can be used in information retrieval to perform such ranking. In this section, we 
shall first present an overview of the Vector Space Model. Next we introduce the phrase 
Vector Space Model, which is a new paradigm for representing documents. Finally, we 
present the performance improvement of this new model and its computation complexity. 

Retrieval systems consist of two main processes, indexing and matching.  Indexing is 
the process of selecting content identifiers, also known as terms in this setting, to represent 
a text.  Matching is the process of computing a measure of similarity between two text 
representations.  It is possible for human experts to manually index documents.  However, 
it is more efficient and thus more common to use computer programs to automatically 
index a large collection of documents. 

A basic automatic indexing procedure for English usually consists of:  (1) splitting the 
text into words (tokenization), (2) removing frequently occurring words such as 
prepositions and pronouns (removal of stop words), and (3) conflating morphologically 
related words to a common word stem (stemming).  The resulting word stems would be 
the terms for the given text. 

In early retrieval systems, queries were represented as Boolean combinations of terms, 
and the set of documents that satisfied the Boolean expression was returned in response to 
the query.  Since its inception, the vector space model (VSM) [22] is the most popular 
model in information retrieval.  In this model, documents and queries are represented by 
vectors in an n-dimensional space, where n is the number of distinct terms.  Each axis in 
this n-dimensional space corresponds to one term.  Given a query, a VSM system produces 
a ranked list of documents ordered by their similarities to the query.  The similarity 
between a query and a document is computed using a metric on their respective vectors. 

14.5.1 The Problem 
Although word stems have been shown to be quite effective indexing terms, a recurring 
question in document retrieval is: what should be used as the basic unit to identify the 
content in the documents?  Or, what is a term? 

The problem of using word stems as terms is manifested in several ways: 
1. The component words of a phrase sometimes have only remote, if any, relation with 

the phrase.  For example, separating “photo synthesis” into “photo” and “synthesis” 
could be misleading. 

2. Words could be too general.  For example, the individual words “family” and “doctor” 
are not specific enough to distinguish between “family doctor” and “doctor family.” 
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3. Different words could be used to represent the same thing.  For example, both 
“hyperthermia” and “fever” indicate an abnormal body temperature elevation. 

4. The same word could mean different things.  For example, “hyperthermia” can 
indicate an abnormal body temperature elevation, as well as a treatment in which body 
tissue is exposed to high temperature to damage and kill cancer cells. 
As a result, many researchers proposed both phrases and concepts in place of words or 

word stems as content identifiers.  However, neither the phrases nor the concepts had been 
shown to produce significantly better results than word stems in automatic document 
indexing.  On the other hand, through manual indexing, [23] showed the potential of 
concept-based indexing to produce significant improvements over the stem-based scheme.  
The high potential shown there and the low performances of current automatic indexing 
schemes using phrases and concepts led us to the search of such a scheme. 

Also, to facilitate discussion, we use the following example query from the medical 
domain throughout the discussion, “Hyperthermia, leukocytosis, increased intracranial 
pressure, and central herniation. Cerebral edema secondary to infection, diagnosis and 
treatment.” The first part of the query is a brief description of the patient; the second part 
is the information desired. 

14.5.2 Vector Space Models 
 
Stem-based Vector Space Model 
In a stem-based VSM, morphological variants of a word like “edema” and “edemas” are 
conflated into a single word stem, e.g., “edem” using the Lovins stemmer [Lov68], and the 
resulting word stems are used as terms to represent the documents.  Using the Lovins 
stemmer, the example query becomes “hypertherm,” “leukocytos,” “increas,” “intracran,” 
and “pressur,” etc. 

Not all word stems are equally important.  Authors usually repeat words as they 
elaborate the major aspects of a subject.  Therefore, a frequent word stem in a document is 
often more important than an infrequent one.  On the other hand, a word stem that appears 
in many documents is less specific than one that appears in only a few.  Combining these 
two aspects, we often evaluate the importance of a word stem following a term-frequency-
inverse-document-frequency (tf-idf) scheme.  We define the weight of stems s in document 
x as, 
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and define their similarity as the cosine of the angle between their respective document 

vectors, ( )
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Concept-based Vector Space Model 
Using word stems to represent documents results in the inappropriate fragmentation of 
multi-word concepts such as “increased intracranial pressure” into their component stems 
like “increas,” “intracran,” and “pressur.”  Clearly, using concepts instead of word stems 
as content identifiers should produce a vector space model that better mimics human 
thought processes, and therefore results in more effective document retrieval. 

However, using concepts is more complex than using word stems, because, 1) 
concepts are usually represented by multi-word phrases and, 2) there exist polysemous and 
synonymous phrases.  A phrase is polysemous if it can be used to express different 
meanings, and two phrases are synonymous if they can be used to express the same 
meaning.  For example, “fever” and “hyperthermia” are synonyms since both can be used 
to denote “an abnormal elevation of the body temperature.”  On the other hand, 
“hyperthermia” is polysemous, because it can be used to mean either “fever” or a type of 
“treatment.”  3) Some concepts are related to one another. 

Assuming that we can partition the documents into phrases, and ignoring the 
polysemy, our example query becomes (C0015967), (C0023518), and (C0151740) etc., 
representing “hyperthermia,” “leukocytosis,” and “increased intracranial pressure,” etc., 
respectively, where the three strings in the parentheses are concept unique identifiers 
(CUIs) in UMLS [24]. 

Not all concepts are equally important, just as not all stems are equally so.  We define 
the weight of a concept c in document x following the tf-idf scheme just like before, 

( )( )1/log2,,, +==
cxccxcxc
nNw !"! , where 

xc,
! is the number of times c appears in x, N 

is the number of documents in the collection, and nc is the number of documents 
containing c. 

Unlike in the stem-based VSM, where different word stems are considered unrelated, 
we define the concept-based inner product between documents x and y as  
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where we take ( )dcs
c
, , the conceptual similarity between concepts c and d, into 

consideration.  The similarity between documents x and y is defined to be the cosine of the 
angle between their respective document vectors, ( )
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Phrase-based Vector Space Model 
Concepts in controlled vocabularies such as UMLS are used in the concept-based VSM. 
Conceptual similarities needed there are often derived from knowledge sources. The 
qualities of such vector space models therefore depend heavily on the qualities of the 
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controlled vocabularies and the knowledge sources. Some concepts could be missing from 
the controlled vocabularies. For example, if we detect only concept C0021852 for “small 
bowel” in the phrase “infiltrative small bowel process” and find no concepts matching 
either the entire phrase, or the fragments “infiltrative” and “process,” then we are losing 
important information when we represent documents using concepts only. Furthermore, 
missing certain conceptual relations in the knowledge sources potentially degrades 
retrieval effectiveness. For example, treating “cerebral edema” and “cerebral lesion” as 
unrelated is potentially harmful. Noticing the words “infiltrative” and “process” that match 
no concepts and the common component word “cerebral" in phrases “cerebral edema” and 
“cerebral lesion,” we propose a phrase-based VSM to remedy the incompleteness of the 
controlled vocabularies and the knowledge sources. 

In the phrase-based VSM, a document is represented as a set of phrases. Each phrase 
may correspond to multiple concepts (due to polysemy) and consist of several word stems. 
For example, “infiltrative small bowel process” is represented by phrases (; “infiltr”), 
(C0021852; “smal”, “bowel”), (; “proces”). Our example query now becomes (C0015967, 
C0203597; “hypertherm”), (C0023518; “leukocytos”), and (C0151740; “increas”, 
“intracran”, “pressur”) etc. 

We use an ordered pair of two sets to represent a phrase p = ({(s, πs, p)}s∈S, {(c, πc, 

p)}c∈C). The first set, {(s, πs, p)}s∈S, consists of ordered pairs that indicate the stems and 
their occurrence counts, πs, p, in the phrase. The second set {(c, πc, p)}c∈C indicates the 
concepts and their occurrence counts, πc, p, in the phrase. We denote the set of all phrases 
by P. Furthermore, we require that there is at least one stem in each phrase, i.e., for each 
phrase p ∈P, there exists some stem s such that πs, p ≥1. We use a phrase vector xp to 
represent a document x, xp = {(p, τp, x)}p∈P, where τp, x is the number of times phrase p 
occurs in document x. And we define the phrase-based inner product as 

 
where we use sp(p; q) to measure the similarity between phrases p and q. We call sp(p; q) 
the phrase similarity between phrases p and q, and define it as 

 
where ιs, ιc, ιd > 0 are the inverse document frequencies of stem s, concept c, and concept 
d respectively, and sc(c; d) is the conceptual similarity between concepts c and d. As in the 
concept-based VSM, we ignore polysemy and assume each phrase expresses only one 
concept, 

 
where cp is the concept that phrase p expresses. Then the phrase similarity is reduced  to 

  
(14-2) 
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where cp is the concept phrase p expresses, and dq is the concept q expresses. Here we use 
two contribution factors, fs and f+, to specify the relative importance of the stem 
contribution and the concept contribution in the overall phrase similarity. The stem 
contribution 

 
measures the stem overlaps between phrases p and q, and the concept contribution 

 
takes the concept interrelation into consideration. Conceptually, when combining the stem 
contribution and the concept contribution this way, we use stem overlaps to compensate 
for the incompleteness of the controlled vocabularies in encoding all necessary concepts, 
and the incompleteness of the knowledge sources in describing all necessary concept 
interrelations. Once again, we define the phrase-based document similarity between 
documents x and y to be the cosine of the angle between their respective phrase vectors, 

 
 

Phrase Detection 
The building blocks of the concept-based VSM and the phrase-based VSM are phrases. A 
phrase usually consists of multiple words. Given a controlled vocabulary containing a set 
of phrases, P, and a set of documents, X, we need to efficiently detect the occurrences of 
the phrases in P in each of the documents in X.  We can achieve this goal by applying 
indexing methods such as IndexFinder or the Aho-Corasick algorithm.  

In our phrase detection, we remove the stop words in the stop list after multi-word 
phrase detection. In this way, we correctly detect “secondary to” and “infection” from 
“cerebral edema secondary to infection.” We would incorrectly detect “secondary 
infection” if the stop words (“to” in this case) were removed before the phrase detection. 

 
Conceptual Similarity Evaluation 
Among the many possible conceptual relations, we concentrate on the is-a relation, also 
called hypernym relation.  A simple example is that “fever” is a hypernym of “body 
temperature elevation.”  Hypernym relations are transitive [25].  We derive the similarity 
between a pair of concepts using their relative position in a hypernym hierarchy.  For a 
pair of ancestor-descendant concepts, c and d, in the hypernym hierarchy, we define their 
conceptual similarity as  

( )
( ) ( ) ( )( )1log,
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,
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where ( )dcl ,  is the number of hops between c and d in the hierarchy, and ( )cD  and 

( )dD  are the descendant counts of c and d respectively. 
 
Primitive Word Sense Disambiguation 
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Polysemy is one of the difficulties people encounter when using concepts. A polysemous 
phrase can express multiple meanings. As a result, it is necessary to disambiguate 
polysemous phrases in document retrieval. For example, seeing “hyperthermia,” it is 
necessary to figure out whether it means “fever” or a type of “treatment” using word sense 
disambiguation [26]. The current accuracy and efficiency of word sense disambiguation 
algorithms are low. We perform a very primitive word sense disambiguation based on the 
following observation. UMLS tends to assign a smaller CUI to the more popular sense of a 
phrase. For example, the CUI for the “fever” sense of “hyperthermia” is C0015967, while 
the CUI for its “treatment” sense is C0203597. Therefore, we use the concept 
corresponding to the smallest CUI in the concept-based VSM and the phrase-based VSM. 
 

14.5.3 Experimental Evaluation of The Phrase-Based VSM 
Phrase Detection and Conceptual Similarity Derivation via UMLS 
In our experiments, we used UMLS as the controlled vocabulary for phrase detection.   We 
also apply the conceptual relations in the Metathesaurus to derive conceptual similarities.  
We are particularly interested in the hypernym/hyponym relations. Two pairs of relations 
in UMLS roughly correspond to the hypernym/hyponym relations: the RB/RN (broader 
than/narrower than) and the PAR/CHD (parent/child) relations. For example, C0015967 
(fever) has a parent concept C0005904 (body temperature change). RB and RN are 
redundant -- for two concepts c and d, if (c, d) is in the RB relations, then (d, c) is in the 
RN relations, and vice versa. Similarly, PAR and CHD are redundant. As a result, we 
combine RB and PAR into a single hypernym hierarchy. Hypernymy is transitive [25]. For 
example, “sign and symptom” is a hypernym of “body temperature change,” and “body 
temperature change” is a hypernym of “hyperthermia,” so “sign and symptom” is also a 
hypernym of “hyperthermia.” However, the UMLS Metathesaurus encodes only the direct 
hypernym relations but not the transitive closure. We derive the transitive closure of the 
hypernym relation and use Eq. (14.3) to compute the conceptual similarities. 
 
The Test Collections 
To compare the effectiveness of different vector space models in document retrieval, we 
need a test collection that provides 1) a set of queries, 2) a set of documents, and 3) the 
judgments indicating if a document is relevant to a query. 

OHSUMED [16] is a test collection widely used in recent information retrieval tests. 
OHSUMED contains 106 queries. Each query contains a patient description and an 
information need. Our example query is query 57 in the collection. The document 
collection is a subset of 348K MEDLINE references from 1987 to 1991. Seventy-five 
percent of the references contain titles and abstracts, while the remainder have only titles. 
Each reference also contains human-assigned subject headings from the Medical Subject 
Headings. 14,430 references in the document collection are judged by “physicians who 
were clinically active and were current fellows in general medicine or medical informatics 
or senior medical residents” to be definitely relevant, possibly relevant, or non-relevant to 
each of the 105 1 queries. The standard recall and precision evaluation that we shall 
discuss later requires a binary relevance judgment -- relevant or non-relevant. This can be 
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easily achieved by merging the definitely relevant and the possibly relevant documents 
into a single relevant category. 

Another test collection known as Medlars [27] is based on MEDLINE reference 
collections from 1964 to 1966. It has been used extensively in document retrieval system 
comparisons. There are 30 queries and 1,033 references in the collection. The judgments 
are provided by “a medical school student.” 

 
 
 

We use both test collections to compare the retrieval effectiveness of different 
methods. However, based on the qualification of the human experts, the extent, and the up-
to-dateness of these collections, we believe that OHSUMED reflects expert judgment 
better. As such, we direct the attention of the reader to the results obtained from 
OHSUMED collection in later sections. Table 14.8 compares some statistics of the two 
collections. Besides the collection size difference discussed above, other noticeable 
differences include: OHSUMED queries are slightly shorter than those in Medlars; 
OHSUMED documents on average contain more long phrases (those with more than one 
stem); and Medlars contains slightly more polysemous phrases (those with multiple 
senses). 
 
Retrieval Effectiveness Measures 
The goal of document retrieval is to return documents relevant to a user query before non-
relevant ones. The effectiveness of a document retrieval system is measured by the recall 
and precision [28-29] based on the user's judgment of whether each document is relevant 
to a query q. When a certain number of documents are returned, we define precision to be 
the proportion of the retrieved documents that are relevant; and define recall to be the 
proportion of the relevant documents retrieved so far. More specifically, if we use Rq to 
represent the set of documents relevant to q, and A to represent the set of retrieved 
documents, then we define 

 
There are several ways to evaluate the retrieval effectiveness using recall and 

precision. 
To visually display the change in the precision values as documents are retrieved, we 

interpolate the precision values to a set of eleven recall points 0, 0.1, 0.2, . . . , 1. 

Table 14.8 Comparison of OHSUMED and Medlars statistics. Noticeable differences are shown in italic fonts. 
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Averaging the precision values over a set of queries at these recall points illustrates the 
behavior of a system. Further averaging the eleven average precision values, we arrive at 
the average 11-point average precision, denoted by GP11. Instead of interpolating the 
precision values to a set of standard recall points, we could also compute the average 
precision values after each relevant document is retrieved. The average of such a value 
over a set of queries is called the average precision, denoted by GP. 

 
 
 

Comparison of the Recall-Precision Curves 
Figures 14.9 and 14.10 depict the average precision values of 105 OHSUMED queries and 
30 Medlars queries, respectively, at the eleven standard recall points 0, 0.1, 0.2, . . . , 1 for 
five different vector space models. For the OHSUMED results, 
1. “Stems” is the baseline generated by the stem-based VSM. Its average 11-point 

average precision is GsP11 = 0.376. 
2. “Concepts Unrelated” is generated by using the concepts as the terms, and treating 

different concepts as unrelated. More specifically, we use sc(c, d) = δc,d in the inner 
product calculation (Eq. 14-1). The average 11-point average precision is GcuP11 = 
0.336, an 11% decrease from the baseline. 

 

Fig.14.9 Comparison of the average recall-precision curves over 105 OHSUMED queries 

Fig.14.10  Comparison of the average recall-precision curves over 30 Medlars queries. 
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3. “Concepts” is similar to case 2, but taking the concept interrelations into consideration, 
we achieve a significant improvement over case 2. The average effectiveness is 
approximately equal to that of the baseline. 

4. “Phrases, Concepts Unrelated” refers to considering contributions from both the 
concepts and the word stems in a phrase, but once again, treating different concepts as 
unrelated. By setting sc(cp, dq) in Eq. (14.2) to δcp,dq , we achieve significant 
improvement over the “Concept Unrelated” case. In fact, ts average 11-point average 
GcuP11, 7.1% better than the baseline. 

5. “Phrases” is similar to case 4, but considering the concept interrelations, we achieve 
an average 11-point average precision of GpP11 = 0.433, which is a significant 15% 
improvement over the baseline. In both cases 4 and 5, we used equal weight for the 
stem and the concept contributions, fs = fc = 1. 
Our experimental results reveal that using only concepts to represent documents and 

treating different concepts as unrelated can cause the retrieval effectiveness to deteriorate 
(case 2). Considering the concept interrelations (case 3) or relating different phrases by 
their shared word stems (case 4) can both improve retrieval effectiveness. Measuring the 
similarity between two phrases using their stem overlaps and the relation between the 
concepts they represent, the phrase-based VSM (case 5) is significantly more effective 
than the stem-based VSM. 

 
Sensitivity of Retrieval Effectiveness to fs and fc 
To generate the two sets of recall-precision curves “Phrase, Concept Unrelated” and 
“Phrase” in Figure 14.9 and Figure 14.10, we used equal weight, fs = fc = 1. To study the 
relative importance of the stem contribution and the concept contribution in the inner 
product calculation, we vary the weights fs and fc and study the change of the average11-
point average precision value GP11. From Eq. (14.4), (14.5) and (14.6), it is clear that the 
document similarity value depends on the ratio between fs and fc, not their absolute values, 
therefore, we vary the (fs, fc) from the stem-only case (1, 0), to the equal-weight phrase 
case (1, 1), to the concept-only case (0, 1), and study the change of the average 11-point 
average precision values. 

Figure 14.11 depicts the changes of the average 11-point average precision values as 
the result of the change of fs and fc. We observe that the retrieval effectiveness measured 
by GP11 is maximized when fc is about the same as fs, and, in this region, the retrieval 
effectiveness is not sensitive to the change of the relative importance of the stem 
contribution and the concept contribution. 
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Retrieval Effectiveness Comparison in Cluster-based Document Retrieval 
In the previous section, we showed that the phrase-based VSM is more effective than the 
stem-based VSM in document retrieval using an exhaustive search.  Let us consider a set 
of N documents.  In an exhaustive search system, the similarity values between an 
incoming query and all the N documents need to be computed online before the documents 
can be returned to the user.  Because of the relatively large computation complexity of the 
vector space models, such an exhaustive search scheme is not feasible for large document 
collections.  Using hierarchical clustering algorithms, we can first construct a document 
hierarchy using ( )NNO log  offline document similarity computations, and return a 

ranked list of documents using only ( )NNO log  online comparisons. 

We compare the stem-based VSM and the phrase-based VSM using a ( )NNO log  
spherical k-means algorithm that has been shown to produce good clusters in document 
clustering [30-31].  The resulting document clusters are searched using top-down and 
bottom-up searching strategies. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.14.11 Sensitivity of GP11 to fs, fc changes in OHSUMED and Medlars. 
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Figure 14.12. Retrieval effectiveness comparison of the cluster-based retrieval in OHSUMED. 

 
Figure 14.12 contains the recall-precision curves of six different searching strategies 

on the OHSUMED data.  They are the result of an exhaustive search on the 14K 
documents in OHSUMED.  Their average 11-point average precision values are 

376.0
11
=

s
G and 433.0

11
=

p
G .  The other four curves depict the retrieval effectiveness of 

systems when the document hierarchies are searched.  Clearly, the retrieval effectiveness 
of the cluster-based approaches is lower than that of the exhaustive-search-based 
approaches.  That is, by using cluster-based document retrieval, we sacrifice the retrieval 
effectiveness for more efficient retrieval. More importantly, using the same searching 
strategy, we see that the retrieval effectiveness of the phrase-based VSM is always much 
better than that of the stem-based VSM.  For the top-down search, 235.0

,

11
=

tds
G  and 

283.0
,

11
=

tdpG , and for the bottom-up search, 251.0
,

11
=

bus
G  and 299.0

,

11
=

bupG .  In 
each case, the phrase-based VSM is about 20% more effective than the stem-based VSM. 
In information retrieval, if the performance improvement for a new retrial model exceeds 
5% evaluated from 50 queries over an existing model, then it is considered significant 
enough to warrant using the new retrieval model [23]. In our case, there is a 20% 
improvement average over 100 queries, representing a significant improvement. 

14.5.4 Computation Complexity 
The document similarity calculation in the phrase-based VSM is more complex than that 
in the stem-based VSM.  Let us use L to represent the average length of a document.  In 
the stem-based VSM, different word stems are considered unrelated.  As a result, by 
building indexes on the word stems in the documents, an efficient algorithm computes the 
stem-based similarity between two documents using ( )LLO log  time.  The time 
complexity of a straightforward implementation of the phrase-based document similarity 
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calculation is ( )2LO .  Different phrases in the phrase-based VSM can be related to one 
another not only because they may share common word stems, but also because the 
concepts they represent can be related.  Therefore, indexing the phrases in the documents 
does not reduce the time complexity of the phrase-based document similarity calculation 
to ( )LLO log .  To reduce the computation complexity, we need to build separate indexes 
on the concepts and the stems in the documents, keep track of where each stem or concept 
occurs, and modify the conceptual similarity storage structure.  The phrase-based 
document similarity calculation utilizes such data structure modifications has a 
( )LLO log  time complexity.  For the OHSUMED documents, the improved phrase-based 

document similarity calculation is about 10 times slower than the stem-based calculation, 
while the straightforward implementation is over 250 times slower than the stem-based 
calculation. 

Preliminary experimental results show that the number of related concept pairs 
decreases drastically as the pairwise conceptual similarity value increases.  Therefore, we 
can further reduce the phrase-based computation complexity by treating related concepts 
with low conceptual similarity values as unrelated.  We are currently investigating the 
tradeoff between the retrieval effectiveness and the computation time complexity when 
related concepts are treated as unrelated in the phrase-based document similarity 
calculations. 

 
14.6 KNOWLEDGE-BASED SCENARIO-SPECIFIC QUERY EXPANSION 

14.6.1 A Framework for Knowledge-Based Query Expansion 
A knowledge-based query expansion and retrieval framework is shown in Figure 14.13. 
For a given query, Statistical Query Expansion (whose scope is marked by the inner dotted 
rectangle) derives candidate expansion concepts1 that are statistically co-occurring with 
the given query concepts (Section 14.6.2) and assign weights to each candidate concept 
according to the statistical co-occurrence. Such weights will be carried through the 
framework. Based on the candidate concepts derived by statistical expansion, Knowledge-
based Query Expansion (whose scope is marked by the outer rectangle) further derives the 
scenario-specific expansion concepts, with the aid of a domain knowledge source such as 
UMLS [32] (Section 14.6.2). Such knowledge may be incomplete and fail to include all 
possible query scenarios. Therefore, in an off-line process, we apply a Knowledge 
Acquisition and Supplementation module to supplement the incomplete knowledge 
(Section 14.6.5. After the query is expanded with scenario-specific concepts, we employ a 
Vector Space Model (VSM) to compare the similarity between the expanded query with 
each document. Top-ranked documents with the highest similarity measures are output to 
the user. 

                                                
1 In the rest of this paper, a concept is referred to as a word or a word phrase that has a concrete meaning in a particular application domain. In 
the medical domain, concepts in free text can be extracted using existing tools, e.g. MetaMap [Aro01], IndexFinder [ZCM03], etc. 
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Figure 14.13: A knowledge-based query expansion and retrieval framework 

14.6.2 Method 
Formally, the problem for knowledge-based query expansion can be stated as follows: 
Given a scenario-specific query with a key concept denoted as ckey (e.g., lung cancer 
or keratoconus2) and a set of scenario concepts denoted as cs (e.g., treatment or 
diagnosis), we need to derive specialized concepts that are related to ckey and the 
relations should be specific to the scenarios defined by cs. In this section, we describe how 
to derive such scenario-specific concepts by presenting existing statistical query expansion 
methods which generate candidate concepts. We then propose a method that selects 
scenario-specific concepts from this candidate set with the aid of a domain knowledge 
source. 

 
Deriving Statistically-Related Expansion Concepts 
Statistical expansion is also referred to as automatic query expansion [33-34]. The basic 
idea is to derive concepts that are statistically related to the given query concepts, where 
the statistical correlation is derived from a document collection (e.g., OHSUMED [16]). 
Appending such concepts to the original query makes the query expression more 
specialized and thus match relevant documents better. Depending on how such 
statistically-related concepts are derived, statistical expansion methods fall into two major 
categories: 
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 Co-occurrence-thesaurus-based expansion [35-37]. In this method, a concept 
cooccurrence thesaurus is first constructed automatically offline. Given a vocabulary 
of M concepts, the thesaurus is an M×M matrix, where the <i, j> element quantifies 
the co-occurrence between concept i and concept j. When a query is posed, we look 
up the thesaurus to find all concepts that statistically co-occur with concepts in the 
given query and assign weights to those co-occurring concepts according to the 
values in the co-occurrence matrix. A detailed procedure for computing the co-
occurrence matrix and for assigning weights to expansion concepts can be found in 
[35]. 

 Pseudo-relevance-feedback-based expansion [34, 38-41]. In pseudo relevance 
feedback, the original query is used to perform an initial retrieval. Concepts extracted 
from top-ranked documents in the initial retrieval are considered statistically related 
and are appended to the original query. This approach resembles the well-known 
relevance feedback approach except that, instead of asking users to identify relevant 
documents as feedback, top-ranked (e.g. top-10) documents are automatically treated 
as “pseudo” relevant documents and are inserted into the feedback loop. Weight 
assignment in pseudo relevance feedback [39] typically follows the same weighting 
scheme for conventional relevance feedback techniques [38]. 

We note that the choice of statistical expansion method is orthogonal to the design of the 
knowledge-based expansion framework (Figure 14.13). In our current experimental 
evaluation, we used the co-occurrence-thesaurus-based method to derive statistically 
related concepts. For convenience of discussion, we use co(ci, cj) to denote the co-
occurrence between concept ci and cj, a value that appears as the <i, j> element in the 
M×M co-occurrence matrix. Table 14.9 lists the top-15 concepts that are statistically 
related to keratoconus using the co-occurrence measure. Here, the co-occurrence 
measure is computed from the OHSUMED corpus. 

 
# Concepts that statistically 

correlate to keratoconus 
  

1 fuchs dystrophy 
2 penetrating keratoplasty 
3 Epikeratoplasty 
4 corneal ectasia 
5 acute hydrops 
6 Keratometry 
7 corneal topography 
8 Corneal 
9 aphakic corneal edema 
10 Epikeratophakia 
11 granular dystrophy corneal 
12 Keratoplasty 
13 central cornea 
14 contact lens 
15 ghost vessels 

Table 14.9: Concepts that statistically correlate to keratoconus 
 

Deriving Scenario-Specific Expansion Concepts 
Using a statistical expansion method, we can derive a set of concepts that are statistically-
related to the key concept, ckey, of the given query. Only a subset of these concepts are relevant 
to the given query’s scenario, e.g., treatment. For example, the 5th and 8th concepts in 
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Table 14.9, which are acute hydrops and corneal, are not related to the treatment of 
keratoconus. Therefore, in terms of deriving expansion concepts for query 
keratoconus treatment, these concepts should be filtered out. In this section, we will 
first describe the type of knowledge structure that enables us to perform this filtering and then 
present the filtering procedure. 

In previous sections, we have introduced UMLS and how to apply its subsystems, i.e,, 
the Metathesaurus and the SPECIALIST lexicon, for implementing the IndexFinder and 
the Phrase-base VSM.  For the task of knowledge-based query expansion, we apply the 
subsystem of the Semantic Network. 

The Semantic Network defines about one hundred semantic types such as Disease 
or Syndrome, Body Part, etc. Each semantic type corresponds to a class/category of 
concepts. The semantic type Disease or Syndrome, for instance, corresponds to 
44,000 concepts in the Metathesaurus such as keratoconus, lung cancer, 
diabetes, etc. Besides the list of semantic types, the Semantic Network also defines the 
relations among various semantic types, such as treats and diagnoses. Such 
relations link isolated semantic types into a graph/network structure. The top half of Figure 
14.14 presents a fragment of this network, which includes all semantic types that have a 
treats relation with the semantic type Disease or Syndrome. Relations such as 
treats in Figure 14.14 should be interpreted as follows: Any concepts that belong to 
semantic type Therapeutic or Preventive Procedure, e.g., penetrating 
keratoplasty or chemotherapy, have the potential to treat concepts that 
belong to the semantic type Disease or Syndrome, e.g., keratoconus or lung 
cancer. However, it is not indicated whether such relations concretely exist between two 
concepts, e.g., a treats relation between penetrating keratoplasty and 
lung cancer. 

Given the knowledge structure in the Semantic Network, the basic idea in identifying 
scenario-specific expansion concept is to use this knowledge structure to filter out 
statistically-correlated concepts which do not belong to the specific semantic types. Let us 
illustrate this idea through Figure 14.14, using the treatment scenario as an example: 
We start with the set of concepts that are statistically related to keratoconus. Our goal 
in applying the knowledge structure is to identify that: 1) concepts such as 
penetrating keratoplasty, contact lens and griffonia have the 
scenario-specific relation, i.e., treats, with keratoconus and should be kept during 
expansion; 2) concepts such as acute hydrops and corneal which do not have the 
scenario-specific relation with keratoconus are filtered out. 
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Figure 14.14: Using knowledge to identify scenario-specific concept relationships 

 
Each solid circle in Figure 14.14 represents a single concept, and the solid lines 

connecting these solid circles indicate strong statistical correlations computed for a pair of 
concepts, e.g., the solid line between keratoconus and contact lens. A dotted 
circle represents a class of concepts, and a dotted line links that class of concepts to a 
corresponding semantic type. For example, concepts keratoconus and lung 
cancer are in the class that links to Disease or Syndrome. We identified 
scenario-specific expansion concepts using the following process: Given a key concept ckey 
of the given query, we first identified the semantic type that ckey belongs to. For example, 
we identified Disease or Syndrome given the key concept keratoconus. 
Starting from that semantic type, we further followed the relations marked by the query’s 
scenario and reached a set of relevant semantic types. For the previous example, given the 
query’s scenario, treatment, we followed the treats relation to reach the three other 
semantic types as shown in Figure 14.14. Finally, we identified those statistically-related 
concepts that belong to the relevant semantic types as scenario specific. We further filtered 
out other statistically-related concepts which do not satisfy this criteria. From the previous 
example, this final step identified penetrating keratoplasty, contact lens 
and griffonia as scenario-specific expansion concepts and filtered out non-scenario-
specific ones such as acute hydrops and corneal. 

 

Therapeutic or 
Preventive Procedure 

Disease Pharmocological 
Substance 

Medical 
Device 

treats 

penetrating keratoplasty 

contact lens keratoconus 

treats 

griffonia 

corneal 

acute hydrops 

treats treats 

treats chemotherapy 

 

lung cancer insulin X-ray 

treats 

Metathesaurus 

Semantic Network 



          
 
 
 
 

36               CHAPTER 14 KMeX: A KNOWLEDGE-BASED DIGITAL LIBRARY FOR 
RETRIEVING SCENARIO-SPECIFIC MEDICAL TEXT DOCUMENTS 

 
 

# Concepts that treat 
keratoconus 

 Concepts that diagnose 
keratoconus 

    

1 penetrating keratoplasty  keratometry 
2 epikeratoplasty  corneal topography 
3 epikeratophakia  slit lamp examination 
4 keratoplasty  topical corticosteroid 
5 contact lens  echocardiography 2 d 
6 thermokeratoplasty  Tem 
7 button  Interferon 
8 secondary lens implant  Alferon 
9 fittings adapters  Analysis 
10 esthesiometer  Microscopy 
11 Griffonia  Bleb 
12 Trephine  tetanus toxoid 
13 slit lamps  Antineoplastic 
14 fistulization  heart auscultation 
15 soft contact lens  Chlorbutin 
  (a)   (b) 

Table 14.10: Concepts that treat or diagnose keratoconus 
 

The lists of the concepts for treating and diagnosing keratoconus are shown 
in Table 14.10(a) and Table 14.10(b). These concepts were derived based on the process 
described above and show the top-15 concepts in terms of their correlation with 
keratoconus. To highlight the effectiveness of the knowledge-based filtering process, we 
can compare the concepts in Table 14.10 with those in Table 14.9 that are statistically 
correlated with keratoconus. 5 out of these 15 statistically-correlated concepts are kept in 
Table 14.10(a), whereas 2 are kept in Table 14.10(b). This comparison reveals that the 
knowledge structure is effective in filtering out concepts that are not closely related to the 
scenarios of treatment or diagnosis. 

The goal of knowledge-based query expansion is to append specialized terms that 
appear in relevant documents but not in the original query. Scenario-specific concepts 
derived from the previous subsection represent a subset of such specialized terms. Another 
set of highly relevant terms contains hypernym/hyponyms of the key concept ckey.3 For 
example, corneal estasia, a hypernym of keratoconus, is frequently mentioned 
by documents regarding keratoconus treatment. Therefore, we need also expand 
those concepts that are close to ckey in the hypernym/hyponym hierarchy. 

 

 
Figure 14.15: The direct parents, direct children and siblings for keratoconus 

                                                
3 A hypernym of concept c is a concept with a broader meaning than c, whereas a hyponym is one with a narrower meaning. 

corneal 
disease 

corneal 
ectasia 

protrusion 

keratoconu
s 

stable condition 
keratoconus 

acute hydrops 
keratoconus 

keratoconju
nctivitis 

arcus 
corneal 

intususception 

hypernyms 
(parent concepts) 
of keratoconus 

sibling concepts 
of keratoconus 

hyponyms (child 
concepts) of 
keratoconus 



 37 

 
To expand hypernyms/hyponyms of the key concept to the original query, we again 

refer to the UMLS knowledge source. The Metathesaurus subsystem defines not only the 
concepts but also the hypernym/hyponym relationships among these concepts. For 
example, Figure 14.15 shows the hypernyms (parents), hyponyms (children) and siblings 
of concept keratoconus. Here we define a concept’s siblings as those concepts that 
share the same parents with the given concept. Through empirical study (which will be 
discussed later), we have found that expanding the direct parents, direct children and 
siblings to the original query generates the best retrieval performance. This is in 
comparison to expanding parents/children that are two or more levels away from the key 
concept. Therefore, in the rest of our discussion, we will focus on expanding only the 
direct parents/children and siblings. 

 
Concepts that statistically correlate 
to keratoconus 

Weight  Concepts that treat 
keratoconus 

Weight 

     
fuchs dystrophy 0.289  penetrating keratoplasty 0.247 
penetrating keratoplasty 0.247  Epikeratoplasty 0.230 
Epikeratoplasty 0.230  Epikeratophakia 0.119 
corneal ectasia 0.168  Keratoplasty 0.103 
acute hydrops 0.165  contact lens 0.101 
Keratometry 0.133  Thermokeratoplasty 0.092 
corneal topography 0.132  Button 0.067 
Corneal 0.130  secondary lens implant 0.057 
aphakic corneal edema 0.122  fittings adapters 0.048 
Epikeratophakia 0.119  Esthesiometer 0.043 
granular dystrophy corneal 0.109  Griffonia 0.035 
Keratoplasty 0.103  Trephine 0.033 
central cornea 0.103  slit lamps 0.032 
contact lens 0.101  Fistulization 0.030 
ghost vessels 0.095  soft contact lens 0.026 
 (a)   (b) 

Table 14.11: Weights for sample expansion concepts 
 

Weight Adjustment for Expansion Terms 
To match a query and a document using the Vector Space Model (VSM), we represent 
both the query and the document as vectors. Each term in the query becomes a dimension 
in the query vector, and receives a weight that quantifies the importance of this term in the 
entire query. Under this model, any additional term appended to the original query needs 
to be assigned a weight. An appropriate weight scheme for these additional terms is 
important because “under-weighting” will make the additional terms insignificant 
compared to the original query and lead to unnoticeable changes in the ranking of the 
retrieval results. On the other hand, “over-weighting” will make the additional terms 
overly significant and cause a “topic drift” for the original query. 

In the past, researchers have proposed weighting schemes for these additional terms 
based on the following intuition: The weight for an additional term ca should be 
proportional to its correlation with the original query terms. Thus, the weight for ca, wa, is 
proportional to its correlation with the key concept ckey, i.e.: 

wa = co(ca, ckey) · wkey    (14-4) 
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In Eq.(14-4), the correlation between ca and ckey, co(ca, ckey), is derived using methods 

described in Section 14.6.2. wkey denotes the weight assigned to the key concept ckey. In 
Section 14.6.3 we will further explain how wkey is decided according to a common 
weighting scheme. Given that co(ca, ckey) lies in [0, 1], the weight that ca receives will not 
exceed that of ckey. Using this equation, we compute the weights for the terms that 
statistically correlate with keratoconus (Table 14.9) and the weights for those that treat 
keratoconus (Table 14.10(a)). We list the weights for these terms in Table 14.11(a) and 
Table 14.11(b), respectively. These weights are computed by assuming the weight of the 
key concept (i.e., wkey) keratoconus is 1. 

We will compare the retrieval effectiveness of knowledge-based query expansion with 
that of statistical expansion. Since the knowledge-based method applies a filtering step to 
derive a subset of all statistically-related terms, the impact created by this subset on 
retrieval effectiveness will be less than the entire set of statistically-related terms. 
Therefore, weight adjustments are needed to compensate for the filtering. For instance, in 
our example of keratoconus, treatment, the “cumulative weight” for all terms in Table 
14.11(b) is obviously smaller than the “cumulative weight” of those in Table 14.11(a). To 
increase the impact of the terms derived by the knowledge-based method, we can “boost” 
their weights by multiplying a linear factor β, so that the cumulative weight of those terms 
is comparable to those of the statistical-related terms. We refer to β as the boosting factor. 
With this factor, we alter Eq.(14-4) which assigns the weight for any additional term ca as 
follows: 

wa = β · co(ca, ckey) · wkey    (14-5) 

We quantify the cumulative weight for both the statistical expansion terms (e.g., those 
in Table 14.11(a)) and the knowledge-based expansion terms (e.g., those in Table 
14.11(b)). The former cumulative weight will be larger than the latter. We define β to be 
the former divided by the latter. In this way, the cumulative weight for the knowledge-
based expansion terms equals to that of the statistical expansion terms after boosting. 

More specifically, we quantify the cumulative weight of a set of expansion terms 
using the length of the “expansion vector” composed by these terms. Here we define the 
vector length according to the standard vector space notation: Let VKB = <w1

KB, ...,wk
KB> 

be the augmenting vector consisting solely of terms derived by the knowledge-based 
method, where wi

KB (1 ≤ i ≤ k) denotes the weight for the ith term in knowledge-based 
expansion (Eq.(14-4)). Likewise, let Vstat = <w1

stat, ...,wl
stat> be the augmenting vector 

consisting of all statistically related terms. The process of deriving {w1
KB, ...,wk

KB} yields k 
< l. Consequently, {w1

KB, ...,wk
KB} ⊂ {w1

stat, ...,wl
stat}. Let |VKB| be the length of the vector 

VKB, i.e., 
( ) ( ) ( )22

1

2

1|| KB

k

KBKBKB
wwwV +++= L     (14.6) 

Likewise, let |Vstat| represent the length of vector Vstat which can be computed similarly as 
Eq.(14-6). Thus, the boosting factor for VKB is: 
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||
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stat

V

V
=!     (14-7) 

To study the effects of different levels of boosting, a boosting-level-controlling factor 
α is introduced to refine Eq.(14-7): 
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where βr is the refined boosting factor. The parameter α, ranging within [0, 1], can be used 
to control the boosting scale. From Eq.(14-8), we note that βr = 1 when we set α = 0, 
which represents no boosting. βr increases as α increases. As α increases to 1, βr reduces to 

||

||
KB

stat

V

V . Thus, α can be used to experimentally study the boosting sensitivity. (We have 
experimentally evaluated cases of setting α > 1. We noted that the retrieval effectiveness 
in those cases is usually sub-optimal compared to cases with α within [0, 1].)  

14.6.3 Retrieval Performance 
In this section, we compare the retrieval performance of the knowledge-based query 
expansion with that of statistical expansion using two standard medical corpuses. We start 
with the experiment setup and then present the results under selective settings. 

 
Testbeds 
A testbed for a retrieval experiment consists of three components: 1) a corpus (or a 
document collection), 2) a set of benchmark queries and 3) relevance judgments indicating 
which documents are relevant for each query. Our experiment is based on the following 
two testbeds: 

OHSUMED [HBL94]. This testbed has been introduced in Section 14.5.3.  In the task 
of evaluating knowledge-based query expansion, we are interested in a subset of the 
OHSUMED queries which are scenario-specific.  Among the 106 queries, we have 
identified a total number of 57 such queries. In Table 14.12, we categorize these 57 
queries based on the scenario(s) each query mentions. The corresponding ID of each query 
is listed in this table. (The full text of each query is shown in [42]). Note that a query 
mentioning multiple distinct scenarios will appear multiple times in this table 
corresponding to its scenarios. 

 
Scenario Query ID 
  

treatment of a disease 
2, 13, 15, 16, 27, 29, 30, 31, 32, 35, 37, 38, 39, 40, 42, 43, 45, 53, 
56, 57, 58, 62, 67, 69, 72, 74, 75, 76, 77, 79, 81, 85, 93, 98, 102 

diagnosis of a disease 15, 21, 37, 53, 57, 58, 72, 80, 81, 82, 97 
prevention of a disease 64, 85 
differential diagnosis of a symptom/disease 14, 23, 41, 43, 47, 51, 65, 69, 70, 74, 76, 103 
pathophysiology of a disease 2, 3, 26, 64, 77 
complications of a disease/medication 3, 30, 52, 61, 62, 66, 79 
etiology of a disease 14, 26, 29 
risk factors of a disease 35, 64, 85 
prognosis of a disease 45 
Epidemiology of a disease 3 
research of a disease 75 
organisms of a disease 81 
criteria of medication 49, 52, 94 
when to perform a medication 33 
preventive health care for a type of patients 96 

Table 14.12: OHSUMED queries categorized based on their scenarios 
 

The McMaster Clinical HEDGES Database [43-46]. This testbed was originally 
constructed for the task of medical document classification instead of free-text query 



          
 
 
 
 

40               CHAPTER 14 KMeX: A KNOWLEDGE-BASED DIGITAL LIBRARY FOR 
RETRIEVING SCENARIO-SPECIFIC MEDICAL TEXT DOCUMENTS 

 
answering. As a result, adaptation is needed for retrieval performance study. We first 
describe the original dataset, and then explain how we adapted it to make it a usable 
testbed for retrieval performance evaluation. 
 Original dataset. The McMaster Clinical HEDGES Database contains 48,000 

PubMed articles published in 2000. Each article was classified into the following 
scenario categories: treatment, diagnosis, etiology, prognosis, clinical prediction 
guide of a disease, economics of a healthcare issue, or review of a healthcare topic. 
Consensus about the classification was drawn among six human experts [WMH01]. 
When the experts classified each article, they had access to the hardcopies of the full 
text. However, to construct a testbed for our retrieval system, we were only able to 
download the title and abstract of each article from the PubMed system. (The full text 
of each article is typically unavailable through PubMed.) 

 Construction of Scenario-Specific Queries. Since the McMaster Clinical HEDGES 
Database is constructed to test document classification, it does not contain a query set. 
Using the following procedure, we constructed a set of 55 scenario-specific queries, 
and determined the relevance judgements for these queries based on the document 
classification that can be adapted for these queries:  
Step 1. We identified all the disease/symptom concepts in the OHSUMED query set. 
We identified such concepts based on their semantic type information (defined by 
UMLS). We used these concepts as the key concepts in constructing the scenario-
specific queries for the McMaster testbed. In selecting these concepts, we manually 
filtered out eight concepts (out of an original number of 90 concepts) that we 
considered as too general to make a scenario-specific query, e.g., infection, lesion and 
carcinoma. After this step, we obtained 82 such key concepts.  
Step 2. For each key concept identified in Step 1, four scenario-specific queries are 
constructed, namely the treatment, diagnosis, etiology and prognosis of a 
disease/symptom. For example, for the concept breast cancer, we constructed the 
queries breast cancer treatment, breast cancer diagnosis, breast cancer etiology, and 
breast cancer prognosis. Our study was restricted to these four scenarios because 
UMLS only covers these four scenarios.  
Step 3. For each query generated in Step 2, we generated its relevance judgments by 
applying the following simple criterion: A document is considered to be relevant to a 
given query if 1) experts have classified the document to the category of the query’s 
scenario and 2) the document mentions the query’s key concept. This criterion has 
been our best choice to automate the process of generating relevance judgments on a 
relatively large scale; however, it may misidentify irrelevant documents as relevant. 
After we identified the relevant documents for each query, certain queries are filtered 
out based on the intuition that a query with too few relevance judgments will lead to 
less reliable retrieval results (especially in terms of precision/recall). For example, for 
a query with only one relevant document, two similar retrieval systems may obtain 
completely different precision/recall results if one ranks the relevant document on top, 
and another accidentally ranks it out of top-10. Following this intuition, queries that 
have less than 5 relevant documents are filtered out. After this filtering step, we were 
left with 55 queries. These queries together with the scenarios identified for each 
query are presented in [42]. 
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VSM and Indexing 
In Information Retrieval studies, indexing refers to the step of converting free-text 
documents and queries to their respective vector representations [29]. The query and 
document vectors are then matched based on a Vector Space Model (VSM). In 
experimental evaluation of the knowledge-based query expansion method, we focus on 
results generated by the following two VSMs: 
 Stem-based VSM [29].  Using a stem-based VSM, both a query and a document are 

represented as vectors of word stems. Given a piece of free text, we first removed 
common stop words such as “a,” “the,” etc., and then derived word stems from the 
text using the Lovins stemmer [47]. We further applied the tf · idf weighting scheme 
(more specifically the atc · atc scheme [48]) to assign weights to stems in documents 
and the query before expansion. (This weighting process yields the weight for the key 
concept in Eq.(14.1). Under the stem-based VSM, all terms expanded to a given 
query need to be in the word-stem format. Thus, for expansion concepts derived from 
procedures in Section 14.6.2, we applied the following procedure to identify the 
corresponding word stems: For each expansion concept, we first looked up its string 
forms in UMLS. We further removed stop words and used the Lovins stemmer to 
convert the string forms into word stems. Lastly, we assigned weights to these 
expansion word stems using the method described in Section 14.6.2. 

 Phrase-based VSM [5].  Using a phrase-based VSM, both a query and a document are 
represented as vectors of phrases.  We first used the concept extraction method 
presented in Section 14.2 to identify the concepts appearing in a given query and a set 
of documents.  We further formulated phrase representations of the query and the 
documents based on the definition of phrases in Section 14.5.2.  We applied the 
weighting method in Section 14.5.2 to assign weights to phrases in the query and the 
documents.  For expansion concepts appended to the original query, we converted 
them into their corresponding phrase representation, and assigned the weights for 
both concepts and word stems appearing in a phrase using the method described in 
Section 14.6.2.  

 
Evaluation Metrics 
We measure the retrieval performance using the following three different metrics: 
 avgp - 11-point precision average (precision averaged over the 11 standard recall 

points [29]) 
 p@10 - precision in top-10 retrieved documents 
 p@20 - precision in top-20 retrieved documents 

 
Retrieval Performance Using The Stem-Based VSM 
In the following, we study the performance improvement of knowledge-based expansion 
as compared to that of statistical expansion. 

We use s to denote an expansion size.  For a given s, we used both knowledge-based 
expansion and statistical expansion to expand the top-s stems that have the heaviest 
weights. For knowledge-based expansion, no weight boosting was applied. We compute 
the three metrics for both methods on the OHSUMED and McMaster testbeds. We further 
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average the results over the queries in these two testbeds. Table 14.13 shows the 
performance comparison of the two methods on both testbeds, which is under the above 
metrics. The first row in each sub-table shows the performance of statistical expansion, 
whereas the second row shows the performance of knowledge-based expansion and its 
percentage of improvement over statistical expansion. 

In these tables, “s=All” means appending all possible expansion terms that have a 
non-zero weight (Eq.(14.5)) into the original query. Using the knowledge-based method, 
setting “s=All” led to expanding an average of 1717 terms to each query on average, with 
the standard deviation of 1755; using the statistical method, it led to an average of 50317 
terms with the standard deviation of 15243. 

From these experimental results, we observe the following: The performance for 
knowledge-based expansion generally increases as s increases and usually reaches the 
peak when s=All. (The only exception is in the case of using the avgp metric on the 
McMaster testbed, in which the performance of the knowledge-based method roughly 
remains constant as s increases.) On the other hand, the performance of the statistical 
method degrades as s increases. On the OHSUMED testbed, its performance degrades 
after s reaches a certain level, e.g., s=100 (Table 14.13(a)) and s=200 (Table 14.13(b) and 
Table 14.13(c)); on the McMaster testbed, the performance starts degrading almost 
immediately after s exceeds 20. This is due to the fact that statistical expansion does not 
distinguish whether an expansion term is scenario-specific. As a result, as more terms are 
appended to the original query, the negative effect of including those nonscenario-specific 
terms begins to accumulate and the performance drops after a certain point. In contrast, the 
knowledge-based method appends scenario-specific terms, and consequently, the 
performance keeps increasing as more “useful” terms are appended. 

Our experimental results also revealed that both statistical expansion and knowledge-
based expansion consistently outperform the no expansion method by more than 5%.  On 
the OHSUMED testbed, for example, the avgp of no expansion is 0.382, which is 
outperformed by the peak performance of statistical expansion at 0.432 and by the peak 
performance of knowledge-based expansion at 0.452 (Table 14.13(a)).  Similarly, the 
p@10 and p@20 of no expansion are 0.532 and 0.470, which are outperformed by the 
peak performance of statistical expansion at 0.581 and 0.497, and by the peak performance 
of knowledge-based expansion at 0.600 and 0.514 (Table 14.13(b) and 14.13(c)). 
 

S 10 20 30 40 50 100 200 300 All 

Statistical Expansion 0.417 0.424 0.428 0.43 0.429 0.432 0.429 0.43 0.425 

Knowledge-Based Expansion without weight 
boosting 

0.422  0.431  0.430  0.432 0.434 0.438 0.442 0.443 0.445 

Knowledge-Based Expansion with weight 
boosting 

0.428  0.436  0.437  0.437 0.439 0.443 0.446 0.450 0.452 

(a) Performance comparison using the avgp metric for the OHSUMED testbed 
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S 10 20 30 40 50 100 200 300 All 

Statistical Expansion 0.535 0.546 0.549 0.553 0.551 0.567 0.581 0.574 0.567 

Knowledge-Based Expansion without weight 
boosting 

0.544 

 

0.547 

 

0.554 

 

0.551 

 

0.553 

 

0.572 

 

0.572 

 

0.577 

 

0.588 

 
Knowledge-Based Expansion with weight 

boosting 
0.552 

 

0.567 

 

0.568 

 

0.577 

 

0.577 

 

0.595 

 

0.586 

 

0.595 

 

0.600 

 
(b) Performance comparison using the p@10 metric for the OHSUMED testbed 

 

S 10 20 30 40 50 100 200 300 All 

Statistical Expansion 0.482 0.491 0.493 0.491 0.492 0.496 0.497 0.493 0.496 

Knowledge-Based Expansion without weight 
boosting 

0.483 

 

0.491 

 

0.494 

 

0.496 

 

0.493 

 

0.498 

 

0.496 

 

0.497 

 

0.498 

 
Knowledge-Based Expansion with weight 

boosting 
0.482 

 

0.496 

 

0.498 

 

0.510 

 

0.509 

 

0.514 

 

0.514 

 

0.513 

 

0.511 

 
(c) Performance comparison using the p@20 metric for the OHSUMED testbed 

 

S 10 20 30 40 50 100 200 300 All 

Statistical Expansion 0.326 0.328 0.325 0.324 0.323 0.319 0.311 0.309 0.295 

Knowledge-Based Expansion without weight 
boosting 0.325   0.328  0.324    0.326  0.325  0.324  0.321  0.32  0.321  

Knowledge-Based Expansion with weight 
boosting 0.325   0.326  0.324    0.325  0.323  0.322  0.320  0.315  0.318  

(d) Performance comparison using the avgp metric for the McMaster testbed 
 

S 10 20 30 40 50 100 200 300 All 

Statistical Expansion 0.316 0.324 0.324 0.318 0.324 0.311 0.295 0.3 0.293 

Knowledge-Based Expansion without weight 
boosting 0.322  0.324  0.322  0.325  0.322  0.318  0.315  0.32  0.335  

Knowledge-Based Expansion with weight 
boosting 0.320  0.322  0.318  0.322  0.320  0.315  0.316  0.313  0.324  

(e) Performance comparison using the p@10 metric for the McMaster testbed 
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S 10 20 30 40 50 100 200 300 All 

Statistical Expansion 0.285 0.285 0.285 0.283 0.283 0.281 0.279 0.278 0.279 

Knowledge-Based Expansion without weight 
boosting 0.285  0.287  0.287  0.291  0.29  0.293  0.286  0.291  0.292  

Knowledge-Based Expansion with weight 
boosting 0.285  0.289  0.287  0.287  0.289  0.289  0.285  0.287  0.289  

(f) Performance comparison using the p@20 metric for the McMaster testbed 
 

Table 14.13: Performance comparison of the two methods under selected expansion sizes using the 
stem-based VSM 

 
We evaluated the effectiveness of weight boosting and its impact on retrieval 
performance. The boosting factor β was computed using Eq.(14.8), under the 
different settings of α = 0.25, 0.5, 0.75, 1, 1.25, 1.5.  We present the peak 
performance of weight boosting in the third row of each sub-table of Table 14.13.  
For the OHSUMED testbed, boosting helped improve the performance, and the best 
performance occurred in the range from α = 0.5 to α = 1.25. We note that setting α = 
0.5 or = 0.75 generally yields the best boosting effect for the avgp metric; setting α 
= 1 to 1.25 yields better performances for the p@10 and p@20 metrics.  For the 
McMaster testbed, weight boosting failed to yield improvements.  Further discussion 
of the weight boosting are presented in [42,49]. 

We further studied how knowledge-based expansion perform for different query 
scenarios and experimental results show that the performance varied depending on 
the query scenario [42,49]. More specifically, the method yields more improvements 
in scenarios such as treatment, differential diagnosis and 
diagnosis, whereas it yields less improvements in such scenarios as 
complication, pathophysiology, etiology and prognosis. An 
explanation of this lies in the different quality of the knowledge structures for these 
scenarios. The knowledge structures (i.e., the fragments of UMLS Semantic Network 
such as Figure 14.14) for the latter four scenarios were originally missing in UMLS 
and were acquired by ourselves from experts. (see the knowledge acquisition process 
in Section 14.6.5) These acquired structures have more semantic types marked as 
relevant than those for the former three scenarios. As a result, when handling queries 
with the latter four scenarios, the knowledge-based method keeps more concepts 
during the filtering step. Thus, the expansion result for the knowledge-based method 
resembles that of the statistical expansion method, leading to almost equivalent 
performance between the two methods and less improvements. Further refinement on 
the clustering and ranking of the knowledge structures for the four scenarios (i.e., 
complication, pathophysiology, etiology and prognosis) will 
increase the improvements in retrieval performance. 

Choice of α for weight boosting. Experimental results revealed that weight 
boosting is helpful in improving retrieval performance. Further, the performance of 
weight boosting is sensitive to the query scenario. Certain query scenarios such as 
treatment and diagnosis are associated with more mature knowledge 
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structures, which requires less expansion concepts. In these scenarios, setting α in 
between 0.75 and 1.25, which represents more aggressive weight boosting, achieves 
noticeable improvements. In other scenarios associated with less mature knowledge 
structures, e.g., complication, the difference is insignificant between the set of 
expansion concepts by our method and those by statistical expansion. As a result, the 
cumulative weights of the two set of expansion concepts are close to each other. For 
such scenarios, our experimental data suggests a more conservative weight boosting 
with α in the range of 0 to 0.5. 

Comparison with previous knowledge-based query expansion studies. In past 
studies [50-52], researched compared their knowledge-based expansion methods 
against a baseline generated without expansion. Such studies reported an 
insignificant improvement [51-52] or even degrading performance [50] compared to 
the no-expansion method. In contrast, our study compares against a baseline 
generated by statistical expansion. In our experimental setup, this baseline has an 
observed improvement over the no-expansion method by 5% to 10%. 

In Aronson and Rindflesch’s study [53], the researchers applied the UMLS 
Metathesaurus to automatically expand synonyms to the original query. In one 
particular case, their approach achieved a 5% improvement over a previous study 
[54] that applied statistical expansion on the same testbed. This result indicates the 
value of knowledge-based query expansion. However, their approach is limited to 
expanding only synonyms instead of scenario-specific terms. Thus the improvement 
is limited. 

 
Retrieval Performance Using The Phrase-Based VSM 
In this section, we compare the performance of knowledge-based query expansion 
with that of statistical expansion by using the phrase-based VSM for query-
document matching. The experiments were performed on the 57 scenario-specific 
queries in OHSUMED. (Similar results were observed on the McMaster testbed and 
are excluded from this discussion due to space limits.) The results are shown in 
Table 14.14, under the three metrics, avgp, p@10 and p@20. We present the 
performance of both knowledge-based query expansion and statistical expansion 
under selected expansion sizes s. We have also provided the retrieval results for the 
original queries without expansion, as shown in each row and listed under s = 0. 
From these results, we made the following two major observations: 
 With phrase-based VSM, query expansion (both methods) still brings 

significant improvements for about 10%.  For example, both expansion methods 
yield a peak avgp of 0.49 compared to the avgp of the no-expansion method 
which is 0.44. 

 Both expansion methods achieve the peak performance when expanding 10 to 
20 concepts.  This makes it desirable to combine query expansion with the 
phrase-based VSM, since appending 10 to 20 concepts to the original query 
incurs a small amount of computation overhead.  We note that this is in contrast 
to the case of using the stem-based VSM in which we need to expand hundreds 
or thousands of word stems to reach peak performance. 

We also noted that the peak performance of the two expansion methods is 
comparable.  That is, expanding 10 to 20 statistically-related concepts is almost as 
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good as expanding 10 to 20 scenario-specific concepts identified by the knowledge-
based method.  This is in contrast to the comparison obtained by using the stem-
based VSM, where there is significant difference between the two methods.  This is 
mainly due to the ability of the phrase-based VSM in approximately matching 
distinct concepts.  Recall the fact that expanding all statistically-related terms 
introduces certain heavily-weighted terms which are non-scenario-specific.  Using 
the stem-based VSM which performs strict matching among terms, the existence of 
such non-scenario-specific terms promotes the ranking of certain non-scenario-
specific documents while demoting the ranking of other scenario-specific documents.  
The phrase-based VSM, however, is able to partially match a non-scenario-specific 
phrase with a scenario-specific one appearing in a relevant document.  Subsequently, 
the existence of certain non-scenario-specific phrases generated by the statistical 
expansion no longer negatively impacts the retrieval result. 

 
s 0 10 20 30 40 50 100 

Statistical Expansion 0.440 0.486 0.489 0.483 0.479 0.479 0.460 
Knowledge-Based Expansion 0.440 0.486 0.490 0.487 0.482 0.485 0.475 

(a) Performance comparison using the avgp metric 
 

s 0 10 20 30 40 50 100 
Statistical Expansion 0.584 0.612 0.604 0.581 0.579 0.567 0.544 

Knowledge-Based Expansion 0.584 0.612 
 

0.616 
 

0.604 
 

0.600 
 

0.595 
 

0.586 
 (b) Performance comparison using the p@10 metric 

 
s 0 10 20 30 40 50 100 

Statistical Expansion 0.504 0.546 0.540 0.532 0.528 0.525 0.496 
Knowledge-Based Expansion 0.504 0.538 

 
0.546 

 
0.554 

 
0.543 

 
0.542 

 
0.535 

 (c) Performance comparison using the p@20 metric 
 

Table 14.14: Performance comparison of the two methods under various expansion sizes using the 
phrase-based VSM 

 
We also note that the precision of using the phrase-based VSM without 

expansion (the first cell in each row of Table 14.14) is significantly higher than that 
of using the stem-based VSM (the first cell in each row of Table 14.13). Since the 
phrase-based VSM replies on UMLS, these improvements can be viewed as the 
results of a first step in applying human knowledge.  On top of this, statistical 
expansion takes another step and applies statistical knowledge derived from a 
sample corpus to append statistically-correlated concepts.  The 5%-10% 
improvement in precision (e.g., an avgp of 0.489 for statistical expansion under s = 
20 compared to an avgp of 0.440 for no expansion, Table 14.14(a)) suggests that the 
statistical knowledge is “additive” on top of human knowledge to achieve better 
retrieval results.  Knowledge-based query expansion uses statistical expansion as a 
starting point, and attempts to further apply UMLS to refine the query expansion 
results.  Nonetheless, since the same knowledge source has already been applied in 
the form of the phrase-based VSM, this refinement step yields only a small amount 
(1-2%) of performance improvements. 



 47 

14.6.4 Computation Complexity Comparison 
The computation complexity of knowledge-based expansion is comparable to that of 
statistical expansion.  In the step of deriving expansion terms, the knowledge-based 
method requires an additional step of going through all statistically-related terms 
and selecting those that are scenario-specific.  This step incurs a complexity that is 
linear to the number of statistically-related terms.  Since the complexity of 
identifying all statistically-related terms by the statistical method is at least linear to 
the number of these terms, the additional step in the knowledge-based method does 
not significantly increase complexity. 
 In the step of matching an expanded query with documents, the complexity of 
the knowledge-based method is less than that of the statistical method. The 
complexity in this step is directly proportional to the number of terms in the 
expanded query. As revealed by our experiments, knowledge-based expansion 
requires significantly less expansion terms, which reduce the computation 
complexity. As a result, the knowledge-based expansion yields comparable retrieval 
performance with that of statistical expansion. 

14.6.5 Knowledge Acquisition 
The quality of our knowledge-based method largely depends upon the quality and 
completeness of the domain-specific knowledge source. The knowledge structure in 
the UMLS knowledge base is not specifically designed for scenario-specific retrieval. 
As a result, some frequently asked scenarios (e.g., etiology or 
complications of a disease) are either undefined in UMLS, or defined but with 
incomplete knowledge. Therefore, we present a methodology that consists of the 
following two steps: 
1. Acquire knowledge for undefined scenarios to supplement the UMLS knowledge 

source. 
2. Refine the knowledge of the scenarios defined in the UMLS knowledge source 

(including the knowledge supplemented by Step 1). 
 

Knowledge Acquisition Methodology 
Knowledge Acquisition for Undefined Scenarios. For an undefined scenario, an 
incomplete relationship graph as shown in Figure 14.16 is presented to medical 
experts. Edges in this relationship graph are labeled with one of the undefined 
scenarios, e.g., “etiology.” The experts will fill in the question marks with existing 
UMLS semantic types that fit the relationship. For example, because viruses are 
related to the etiology of a wide variety of diseases, the semantic type “Virus” will 
replace one of the question marks in Figure 14.16. This new relationship graph 
(etiology of diseases) will be appended to the UMLS Semantic Network, and can be 
used for queries with the “etiology” scenario. 

Knowledge Refinement Through Relevance Judgments. A relationship graph for 
a given scenario (either previously defined by UMLS or newly acquired from Step 1) 
may be incomplete in including all relevant Semantic Types. A hypothetical example 
of this incompleteness would be the missing relationship treats between 
Therapeutic or Preventive Procedure and Disease or Syndrome. 
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The basic idea in amending this incompleteness is to explore the “implicit” 
knowledge embedded in the relevance judgments of a IR testbed. Such a testbed 
typically provides a set of benchmark queries and for each query, a pre-specified set 
of relevant documents. To amend the knowledge structure for a certain scenario, e.g., 
treatment, we focus on sample queries that are specific to this scenario, e.g., 
keratoconus treatment. We then study the content of documents that are 
marked as relevant to these queries. From the content, we can identify concepts that 
are directly relevant to the query’s scenario, e.g., treatment. If the semantic type 
for those concepts are missing in the knowledge structure, we can then refine the 
knowledge structure by adding the corresponding semantic types. For example, let 
us consider a hypothetical case where the type Therapeutic or Preventive 
Procedure is missing in the knowledge structure of Figure 14.16. If by studying 
the sample query keratoconus treatment, we identify quite a few 
“Therapeutic or Preventive Procedure” concepts appearing in relevant 
documents such as penetrating keratoplasty and epikeratoplasty, 
we are then able to identify Therapeutic or Preventive Procedure as a 
relevant semantic type and append it to Figure 14.16. 

 

  
 

Figure 14.16: A sample template to acquire knowledge for previously undefined scenarios 
 

Given that a typical benchmark query has a long list of relevant documents, it is 
labor-intensive to study the content of every relevant document. One way to 
accelerate this process is to first apply an incomplete knowledge structure to perform 
knowledge-based query expansion and conduct retrieval tests based on such 
expansion. An incomplete knowledge structure leads to an “imperfect” query 
expansion, which in turn, fails to retrieve certain relevant documents to the top of 
the ranked list. Comparing this ranked list with the “gold standard” and identifying 
the missing relevant documents will give us pointers to determine the incomplete 
knowledge. For example, failure to include Therapeutic or Preventive 
Procedure in the knowledge structure in Figure 14.14 prevents us from 
expanding concepts such as penetrating keratoplasty to the sample query 
of keratoconus, treatment. As a result, documents with a focus on 
penetrating keratoplasty will be ranked unfavorably low. After we 
identify such documents, we can discover the missing expansion concepts that are 
contributing to the low rankings and refine the knowledge structure as we have just 
described. 

 
 

Disease or 
Syndrome 

Semantic Type 

??? ??? ??? 

is_etiology_of 

is_etiology_of 

is_etiology_of 
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Scenarios 

# of 
semantic 
types 
defined in 
UMLS 

# of semantic 
types 
acquired 
from experts 

# of additional 
semantic types 
through 
knowledge 
refinement 

Total # of 
semantic 
types after 
knowledge 
acquisition 

     

treatment of a disease 3 N/A 1 4 
diagnosis of a disease 5 N/A 2 7 
prevention of a disease 3 N/A 0 3 

 

differential diagnosis of a symptom/disease N/A 10 4 14 
Etiology of a disease N/A 40 1 41 
risk factors of a disease N/A 40 2 42 
complications of a disease/medication N/A 15 0 15 
pathophysiology of a disease N/A 56 0 56 
prognosis of a disease N/A 15 2 17 
epidemiology of a disease N/A 13 0 13 
research of a disease N/A 28 0 28 
organisms of a disease N/A 7 0 7 
criteria of medication N/A 26 0 26 
when to perform a medication N/A 5 6 11 
preventive health care for a type of patients N/A 10 2 12 

Table 14.15: Knowledge acquisition results 
 

Knowledge Acquisition Process 
The 57 scenario-specific queries (Table 14.12) in the OHSUMED testbed are chosen 
to apply our proposed knowledge-acquisition method because of the following 
considerations: 
 The OHSUMED queries are collected from physicians patients in a clinical 

setting. Therefore, the OHSUMED query scenarios should be representative in 
healthcare, and the knowledge acquired from these scenarios should be broadly 
applicable. 

 The knowledge-acquisition methodology also requires the explorion of 
relevance judgments for a set of benchmark queries. OHSUMED is the largest 
testbed for medical free-text retrieval that has relevance judgments for 
knowledge refinement. 

We have identified 12 OHSUMED scenarios whose knowledge structures are 
missing in UMLS. We applied the two-step knowledge-acquisition method to 
acquire the knowledge structures for these 12 undefined scenarios and to refine the 
knowledge structures for all scenarios. During the first step of the acquisition 
process, we interviewed two intern physicians at the UCLA School of Medicine. 
During the interview, we first described the meaning of the relationship graphs as 
shown in Figure 14.16. Next, we presented the entire list of UMLS semantic types to 
the experts so that appropriate semantic types were filled into the question marks. 
We communicated the results from one expert to another until they reached a 
consensus for each scenario. For the second step of knowledge acquisition, we 
performed retrieval tests on the OHSUMED testbed using both queries expanded by 
the knowledge-based method and the method of expanding all statistically-related 
concepts. We focused on 12 queries where the statistical method outperforms the 
knowledge-based method in terms of the precision in top-10 results. We further 
applied the method presented in the previous section to study the content of these 
top-ranked documents and augmented the knowledge structure for the corresponding 
scenario with appropriate semantic types. 
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Knowledge Acquisition Results 
The acquisition results are shown in Table 14.15. Due to space constraints, we only 
provide a statistical summary of the results. The scenarios in the first three rows, i.e., 
treatment, diagnosis and prevention, are defined in UMLS. The first 
column in these rows shows the number of semantic types marked as relevant for 
each scenario (i.e., the number of semantic types that experts have filled into the 
blank rectangles of Figure 14.16). The second column for these rows is “N/A” 
because there was no need to acquire knowledge structure from domain experts for 
these scenarios. The third column shows the number of semantic types added during 
knowledge refinement (the second step of knowledge acquisition). For example, for 
the diagnosis scenario two additional semantic types, Laboratory or Test 
Result and Biologically Active Substance were added because of the 
study on Query #97: Iron deficiency anemia, which test is 
best. These two semantic types were added because the absence of these two types 
has prevented the knowledge-based method from expanding two critical concepts 
into the original query: serum ferritin and fe iron, each belonging to one 
of the two semantic types. From the relevance judgment set, we noted that missing 
these two concepts leads to the low ranking of three relevant documents that heavily 
use these two concepts. 

Starting from the fourth row, we list the scenarios for which we need to acquire 
knowledge structure from domain experts. The first column for these scenarios is 
“N/A” because these scenarios are originally undefined in UMLS. The second 
column shows the number of semantic types that experts have filled into the 
structure template of Figure 14.16. The third column shows the number of additional 
semantic types from knowledge refinement (the second step of knowledge 
acquisition), and the last column shows the total number of semantic types after 
knowledge acquisition. 

The proposed knowledge-acquisition method on the OHSUMED testbed has 
shown to be efficient and effective. We finished communicating with domain experts 
and acquiring the knowledge structures for the 12 scenarios in less than 20 hours, 
and spent an additional 20 hours to refine the knowledge structure by exploring the 
relevance judgments. The augmented knowledge was applied in our experiments 
presented in Section 14.6.3 and was effective in improving the retrieval performance 
of the knowledge-based method over the statistical expansion method. 

14.6.6 Study of The Relevancy of Expansion Concepts by Domain Experts 
Through experiments on the two standard medical text retrieval testbeds, we have 
observed that under most retrieval settings, knowledge-based query expansion 
outperforms statistical expansion. Our conjecture is that knowledge-based query 
expansion selects more specific expansion concepts to the original query’s scenario 
than statistical expansion does. To verify this conjecture, we have requested domain 
experts to manually evaluate the relevancy of expansion concepts. 

The basic idea for this study is the following: For each query in a given retrieval 
testbed, we apply two query expansion methods to generate two sets of expansion 



 51 

concepts. We then prepare an evaluation form which inquires about the relevancy of 
each expansion concept to the original query. In this form, we present the query and 
ask domain experts to judge the relevancy based on the query’s scenario(s). For each 
concept, we provide four scales of relevancy: relevant, somewhat relevant, 
irrelevant, or do not know. We blind the method used to generate each concept and 
in doing so, we reduce bias that an expert might have towards a particular method. 

To implement this idea, we chose the 57 scenario-specific queries in the 
OHSUMED testbed. We applied the two expansion methods and derived 40 
expansion concepts from each method with the highest weights. We presented the 
evaluation form consisting of these concepts to three medical experts who are intern 
doctors at the UCLA School of Medicine. We asked them to make judgments only 
on those queries that belong to their area of expertise, e.g., oncology, urology, etc. 
On average, each expert judged the expansion concepts for 15 queries. Thus, for 
each expansion method, we obtained 1,600 expansion concepts classified into one of 
the four categories. 

Figure 14.17 and Figure 14.18 present a summary of the results from this human 
subject study. For the expansion concepts derived from each method, we 
summarized the results into a histogram. The bins of this histogram are the four 
scales of relevancy. We note that 56.9% of the expansion concepts derived by the 
knowledge-based method are judged as either relevant or somewhat relevant, 
whereas only 38.8% of expansion concepts by statistical expansion are judged 
similarly. This represents a 46.6% improvement. The results validate that 
knowledge-based query expansion derives more relevant expansion concepts to the 
original query scenario(s) than those by statistical expansion, and thus yields 
improved retrieval performance for scenario-specific queries. 

 

   
Figure 14.17 Relevancy of statistical  Figure 14.18 Relevancy of knowledge-based 
expansion concepts    expansion concepts 
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14.7  A SYSTEM ARCHITECTURE FOR RETRIEVING SCENARIO-SPECIFIC 
FREE TEXT DOCUMENTS 

 
Figure 14.19. The KMeX system architecture 

 
We have implemented and integrated the three proposed techniques in a test bed to 
provide scenario-specific free-text retrieval (Figure 14.19). This system provides the 
capability to retrieve many types of medical free-text documents, e.g., patient 
clinical reports, medical literature articles, etc.  IndexFinder will first extract key 
concepts and normalize them into standard terms as defined in the knowledge source 
(e.g., UMLS). Topics and subtopics are then derived by mining the frequently co-
occurring features extracted from the documents.  With the aid of the knowledge 
source and the user’s query patterns, a topic-oriented directory system can be 
constructed.   

During the retrieval phase, the query expansion module appends the user query 
with scenario-specific terms.  The directory system selects the most relevant topics 
that match the expanded query.  Documents that belong to those topics are submitted 
to the module which ranks the documents based on their similarity to the query via 
the phrase-based Vector Space Model (VSM) and return to the users. 
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14.8 SUMMARY 
We have developed a new knowledge-based approach for retrieving scenario-
specific free-text documents, which consists of three integrated components: 
IndexFinder, phrase-based VSM and knowledge-based query expansion. 
IndexFinder can extract key terms from free-text, generating conceptual terms by 
permuting words in a sentence rather than the traditional technique based on NLP. 
Although the generated concepts are matched with the controlled vocabulary in the 
ULMS and are valid terms, they might not be relevant to the document. Thus, 
syntactic and semantic filters are used to eliminate the irrelevant candidates. 
Preliminary evaluation shows that filtering is effective in eliminating irrelevant 
concepts Our experimental results show that IndexFinder can process free-texts at a 
speed of about 43K bytes of text per second on a PC with Pentium 4. As a result, it 
is able to extract key UMLS concepts from clinical texts in real time. The extracted 
concepts can be used for content correlation, document indexing for directory 
systems, and transforming ad hoc terms in the queries into controlled vocabulary to 
improve retrieval effectiveness.  

A new vector space model, the phrase-based VSM, has been developed for 
document retrieval. In the phrase-based VSM, we divided each document into a set 
of phrases.  Each phrase is represented by both a concept defined in the controlled 
vocabulary and the corresponding word stems.  The similarity between concepts is 
based on the interrelationships of concepts in the knowledge base. The similarity 
between two phrases is measured by their stem overlaps as well as the similarity 
between the concepts they represented. The similarity between two documents is 
defined as the cosine of the angle between their respective phrase vectors. 

Using UMLS as both the controlled vocabulary and the knowledge base to 
derive the conceptual similarities, we demonstrated from different perspectives that 
the retrieval effectiveness of the phrase-based VSM was significantly higher than 
that of the current gold standard – the stem-based VSM. This is because in phrase 
VSM, the stem similarity compensates for the incompleteness of knowledge sources, 
while the concept similarity compensates for the lack of semantic meaning in the 
stem similarity. Such a significant increase in retrieval effectiveness was achieved 
without sacrificing excessive computation efficiency.  Knowledge-based query 
expansion expands terms related to the scenario and yields 5% - 10% improvements 
in precision and recall as compared to the statistical query expansion case.  
Knowledge-based query expansion can be applied together with the Phrase-based 
VSM.  In that case, the peak performance occurred with very few expansion terms 
(10 to 20) which is a desirable property. 

Topics can be generated from mining document features. Based on query 
templates, and knowledge type hierarchies, free text documents can be organized 
into a set of scenario specific topic oriented directory systems.  In each such 
directory, the documents are indexed and linked based on the topics. Such topic 
organization not only improves the retrieval performance for ranking relevant 
documents but also provides cross-referencing among related topics.   
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We have implemented a test bed with the above three technologies. Using the 
UCLA patient reports as a test set, we have shown that IndexFinder is able to extract 
features from free text documents, and data mining algorithms can be used to 
organize features into topics and are feasible to construct topic oriented directory 
systems. Our knowledge based query expansion techniques as well as the phase 
based vector space model can be used in conjunction to significantly improve 
precission and recall. The scenario specific topic oriented directory systems further 
improves the retrieval effectiveness as well as to perform content correlation of 
medical documents.  

14.9  EXERCISES  
1. Explain why IndexFinder currently limits word combination within a sentence. Discuss 

the  tradeoffs  of using  other  methods of  word combination such as  phrase, paragraph or  
word properties (e.g. part of speech).   

2. Discuss why semantic filtering is important in improving the retrieval quality for 
IndexFinder.   

3. Discuss how to handle negation concept in the IndexFinder.   
4. List the reasons why the knowledge-based query expansion technique performs better than 

the statistical expansion. 
5. Discuss what type of queries the knowledge-based query expansion method in this chapter 

may not yield significant retrieval performance improvements over that of the statistical 
expansion cases; Suggest ways to improve such queries. (Hint: non-scenario-specific 
queries.) 

6. Discuss why the retrieval performance of statistical query expansion improves  as the 
number of expansion terms increases and then the performance degrades with expansion 
after it reaches a  certain size, while the knowledge based expansion does not have such a 
behavior.  

7. Discuss why the phrase-based vector space model alone (without applying query 
expansion) yields similar performance as that of the combination of knowledge-based 
query expansion and the stem-based vector space model. 

8. Explain why the expansion size required to reach optimal performance using phrase-based 
vector space model is much smaller than using the stem-based vector space model. 

9. What is the computation complexity of phrase vector space model? Suggest methods to 
reduce the computation complexity. 

10. Describe the concept of topics directory. How does topic directory compliment search 
technique to improve document retrieval performance. 

11. Discuss what are the additional tasks and research issues needed to extend the knowledge-
based document retrieval methods used in this chapter (i.e., IndexFinder, the phrase-based 
VSM, knowledge-based query expansion, and topic-oriented directory) to application 
domains other than medicine and healthcare. 
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