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ABSTRACT
In retrieving medical free text, users are often interested in an-
swers relevant to certain scenarios, scenarios that correspond to
common tasks in medical practice, e.g., “treatment” or “diagno-
sis” of a disease. Consequently, the queries they pose are often
scenario-specific, e.g., “lung cancer, treatment.” A fundamental
challenge in handling such queries is that scenario terms in the
query (e.g. “treatment”) are too general to match specialized terms
in relevant documents (e.g. “lung excision”). In this paper we pro-
pose a knowledge-based query expansion method that exploits the
UMLS knowledge source to append the original query with addi-
tional terms that are specifically relevant to the query’s scenario(s).
We compare the proposed method with statistical expansion that
only explores statistical term correlation and expands terms that
are not necessarily scenario specific. Our study on the OHSUMED
testbed shows that the knowledge-based method which results in
scenario-specific expansion is able to improve more than 5% over
the statistical method on average, and about 10% for queries that
mention certain scenarios, such as “treatment of a disease” and
“differential diagnosis of a symptom/disease.”

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

Keywords
Knowledge-Based Approach, Medical Free-Text Retrieval, Auto-
matic Query Expansion

1. INTRODUCTION
Recent years have witnessed a phenomenal growth of Web-based

medical document collections. Such collections, e.g., PubMed1

and Harrison’s Online,2 provide comprehensive coverage of medi-
cal literature and teaching materials. In searching these collections,

1
http://www.ncbi.nlm.gov/entrez/query.fcgi?db=PubMed

2
http://harrisons.accessmedicine.com
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it is often desirable to retrieve only those documents pertaining to
a specific medical “scenario,” where a scenario is typically defined
as a frequently-reappearing medical task. For example, in diagnos-
ing a potential lung cancer patient, a physician may pose a query
“lung cancer, diagnosis” in order to find out the latest diagnostic
techniques about this disease. Here “diagnosis” is the medical task
that marks the scenario of this query. Recent studies [1, 2, 3, 4,
5] reveal that in clinical practice, as many as 60% of physicians’
queries center around a limited number of scenarios, e.g. “treat-
ment,” “diagnosis,” “etiology,” etc. While the contextual informa-
tion in such queries (e.g., the particular disease of a patient such as
“lung cancer,” the age group of that patient, etc.) varies from case
to case, the set of frequently-asked medical scenarios remains un-
changed. Retrieving documents that are specifically related to the
query’s scenario is referred to as scenario-specific retrieval.

Scenario-specific retrieval is not adequately addressed by tradi-
tional text retrieval systems (e.g. SMART [6] or INQUIRY [7]).
Such systems suffer from the fundamental problem of query-
document mismatch [8] when handling scenario-specific queries.
Scenario terms in these queries are typically general, e.g., “treat-
ment” in the query “lung cancer, treatment,” while full-text med-
ical documents often discuss the same topic using much more
specialized terms, e.g., “lung excision” or “chemotherapy.” Such
general scenario terms fail to match with the specialized terms in
relevant documents, resulting in poor retrieval performance. Be-
cause of such ineffectiveness, searching online document collec-
tions for clinical usage is still frustrating, labor-intensive and time-
consuming, as reported by recent studies [9, 10, 11, 2, 3]. Although
about one third of a physician’s clinical questions can potentially
be answered by such online information resources [12], the overall
usage of them in medical practice remains relatively low [1, 3].

There has been recent research on query expansion [13, 14, 15,
16] to ameliorate the query-document mismatch problem. How-
ever, such techniques also have difficulties handling scenario-
specific queries. In principle, query expansion techniques append
the original query with specialized terms that have a statistical co-
occurrence relationship with original query terms in medical liter-
ature. Although appending such specialized terms makes the ex-
panded query a better match with relevant documents, the expan-
sion is not scenario-specific. For example, in handling the query
“lung cancer, treatment,” existing query expansion techniques will
append not only terms such as “lung excision” or “chemotherapy”
that are relevant to the “treatment” scenario, but also irrelevant
terms like “smoking” and “lymph node,” simply because the latter
terms co-occur with “lung cancer” in medical literature. Append-
ing non-scenario-specific terms leads to the retrieval of documents
that are irrelevant to the original query’s scenario, diverging from
our goal of scenario-specific retrieval.



In this paper, we propose a knowledge-based query expansion
technique to support scenario-specific retrieval. Our technique ex-
ploits domain knowledge in order to restrict query expansion to
scenario-specific expansion terms, thus improving upon traditional
query expansion approaches. The following are challenges in de-
veloping such a knowledge-based technique:
• Using domain knowledge to automatically identify

scenario-specific expansion terms. It is impractical to
ask users or domain experts to manually identify scenario-
specific terms for every query and all possible scenarios,
and therefore an automatic approach is highly desirable.
However, the distinction between scenario-specific expan-
sion terms and non-scenario-specific ones may seem appar-
ent to a human expert, but can be very difficult for a program.
To address this problem, we propose a method that exploits
a domain-specific knowledge source to treat this distinction.

• Incompleteness of knowledge sources. Knowledge sources
are usually not specifically designed for the purpose of
scenario-specific retrieval. As a result, scenarios frequently
appearing in medical queries may not be adequately sup-
ported by those knowledge sources. To address this problem,
we propose a knowledge-acquisition methodology to supple-
ment the existing knowledge sources with additional knowl-
edge that supports undefined scenarios.

The rest of this paper is structured as follows. A framework
for knowledge-based query expansion is presented in Section 2,
and detailed methods in this framework are described in Section 3.
We experimentally evaluate the framework and report the results in
Section 4. Section 5 discusses related works and Section 6 con-
cludes the paper.

2. A FRAMEWORK FOR KNOWLEDGE-
BASED QUERY EXPANSION

Figure 1 depicts the components in a knowledge-based query
expansion and retrieval framework. Given an original query, Sta-
tistical Query Expansion (whose scope is marked by the inner dot-
ted rectangle) will first derive candidate expansion concepts3 that
are statistically co-occurring with the original query concepts (Sec-
tion 3.1), and assign weights to each candidate concept according to
the statistical co-occurrence. Such weights will be carried through
the framework.

Based on the candidate concepts derived by statistical expan-
sion, Knowledge-based Query Expansion (whose scope is marked
by the outer dotted rectangle) further derives the scenario-specific
expansion concepts, with the aid of domain knowledge such as
UMLS [19] (Section 3.2). Such knowledge may be incomplete to
include all possible query scenarios. Therefore, in an off-line pro-
cess, we use a Knowledge Acquisition and Supplementation module
to supplement the incomplete knowledge (Section 3.3).

After the query is expanded with scenario-specific concepts, we
use a Vector Space Model (VSM) to compare the similarity between
the expanded query and each document, and further output the top-
ranked documents.

3. METHOD
In this section, we first describe existing methods to de-

rive statistically-related concepts. Afterwards, we propose a
knowledge-based method to automatically detect scenario-specific
3In the rest of this paper, a concept is referred to as a word or a word phrase that has a
concrete meaning in a particular application domain. In the medical domain, concepts
in free text can be extracted using existing tools, e.g. MetaMap [17], IndexFinder [18],
etc.

concepts among those statistically-related concepts. This addresses
the first challenge identified in the introduction section. In the end,
we describe a knowledge-acquisition methodology to supplement
the incomplete knowledge source so as to handle previously un-
supported scenarios, which addresses the second challenge.

3.1 Deriving statistically-related expansion
concepts

Statistical expansion is also referred to as automatic query ex-
pansion [8, 16]. The basic idea is to derive concepts that are statisti-
cally related to the original query concepts in a document collection
(e.g. OHSUMED [20]). Appending such concepts to the original
query makes the query expression more specialized and helps the
query better match with relevant documents. Depending on how
such statistically-related concepts are derived, statistical expansion
methods fall into two major categories:
• Co-occurrence-thesaurus-based expansion [13, 14, 15]. In

this method, a concept co-occurrence thesaurus is first con-
structed automatically offline. Given a vocabulary of M con-
cepts, the thesaurus is an M ×M matrix, where the 〈i, j〉
element quantifies the co-occurrence between concept i and
concept j. When a query is posed, we look up the thesaurus
to find all concepts that statistically co-occur with concepts
in the given query, and assign weights to those co-occurring
concepts according to the values in the co-occurrence the-
saurus. A detailed procedure to compute the co-occurrence
thesaurus and to assign weights to expansion concepts can be
found in [13].

• Pseudo-relevance-feedback-based expansion [21, 22, 23, 24,
16]. In pseudo relevance feedback, the original query is used
to perform an initial retrieval. Concepts extracted from top-
ranked documents in the initial retrieval are considered sta-
tistically related and are appended to the original query. This
approach resembles the well-known relevance feedback ap-
proach [25, 26] except that, instead of asking users to iden-
tify relevant documents as feedbacks, top-ranked (e.g. top-
10) documents are automatically treated as “pseudo” rele-
vant documents, and subsequently inserted into the feedback
loop. Weight assignment in pseudo relevance feedback [22]
typically follows the same weighting scheme (〈α, β, γ〉) as
conventional relevance feedback techniques [25].

We note that the choice of statistical expansion method is orthog-
onal to the design of the knowledge-based expansion framework
(Figure 1). In our current experimental evaluation, we use the co-
occurrence-thesaurus-based method as described in [13] to derive
statistically-related concepts.

3.2 Deriving scenario-specific expansion con-
cepts

Using the method in the previous section we derive candidate ex-
pansion concepts that are statistically related to the original query.
Only a sub-set of these candidate concepts is relevant to the original
query’s scenario. In this section we first present a knowledge-based
method to select such scenario-specific concepts. Further we dis-
cuss how to adjust the weights of these selected scenario-specific
concepts to increase their significance in the expanded query.

A knowledge-based method to identify scenario-specific expan-
sion concepts. The basic idea of our knowledge-based method
is the following: A scenario-specific query consists of two parts:
a key concept ck (e.g., “lung cancer”) and several scenario con-
cepts cs’s (e.g., “treatment,” “diagnosis,” etc.). Given a scenario-
specific query in free-text format, we can detect ck using concept
indexing methods existing in the literature, e.g., IndexFinder [18],
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Figure 1: A knowledge-based query expansion and retrieval framework

MetaMap [17], etc. The scenario concepts can be indicated by
the user by selecting from a list of scenarios, since the number of
frequently-asked scenarios is limited.

Using statistical expansion, we obtain candidate expansion con-
cepts co-occurring with the key concept ck, e.g., “smoking,” “lung
excision,” etc., for ck =“lung cancer.” Afterwards, we explore
a domain-specific knowledge source to identify possible relation-
ships between each candidate expansion concept and ck. For exam-
ple, the knowledge source may indicate that “smoking” is a “risk
factor” for “lung cancer,” whereas “lung excision” is a “treatment”
method for this disease. Among these identified relationships, cer-
tain relationships are “desirable” because they match with scenar-
ios of the original query. Thus, our knowledge-based method will
keep only the candidate concepts that have a desirable relationship
with ck. Since such concepts should be specifically relevant to the
original query’s scenarios, appending such concepts should lead to
scenario-specific expansion.

To develop the idea above in full details, in the following, we
first introduce the knowledge structure used in our study, and then
describe our knowledge-based method as a 5-step procedure.

For free text retrieval in the medical domain, we choose UMLS
to be our domain-specific knowledge. UMLS is a comprehensive
medical knowledge source developed by the National Library of
Medicine (NLM) [19]. It consists of the following major com-
ponents: the Metathesaurus, the Semantic Network and the SPE-
CIALIST Lexicon, and our method relies on the first two com-
ponents. The Metathesaurus contains over 800,000 medical con-
cepts (small circles in Figure 2). A group of concepts (enclosed
by a dotted circle in Figure 2) in the Metathesaurus belong to a
Semantic Type (rectangles in Figure 2) in the Semantic Network.
For example, “lung cancer” and other disease concepts belong to
one Semantic Type called “Disease or Syndrome.” The Semantic
Network is modelled as an Entity-Relation diagram in which each
Semantic Type is an entity and Semantic Types are associated via
relationships. In Figure 2, for example, Semantic Types “Thera-
peutic and Preventive Procedures,” “Medical Device” and “Phar-
macologic Substance” have a “treats” relationship with Semantic
Type “Disease or Syndrome.”

Given this knowledge structure, we propose the following pro-
cedure to identify the scenario-specific expansion concepts:

1. We identify the key concept ck in the scenario-specific query
and locate its position in the Metathesaurus.

2. We navigate from ck to the Semantic Type it belongs to (e.g.
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from “lung cancer” to “Disease or Syndrome” in Figure 2).
3. Starting from ck’s Semantic Type, we follow the relation-

ships as indicated by the scenario concepts cs’s, e.g., follow-
ing “treats” if a cs is “treatment,” and reach a set of rele-
vant Semantic Types (e.g., “Medical Device,” “Therapeutic
or Preventive Procedure” and “Pharmacologic Substance” in
Figure 2).

4. Among all these candidate expansion concepts derived by
statistical expansion (Section 3.1), those concepts that belong
to these relevant Semantic Types are selected as scenario-
specific expansion concepts (e.g., the shaded circular areas
in Figure 2).

5. Concepts in the Metathesaurus are interconnected by parent-
child relationships, forming a general-to-specific concept hi-
erarchy (which is not displayed in Figure 2). To match rele-
vant documents discussing concepts that are more general or
specialized than the key concept ck, we add ck’s surrounding
concepts in this hierarchy (parents, children and sibling con-



Concept Weight  Concept Weight  Concept Weight 
nonsmall cell lung cancer  2.77  nonsmall cell lung cancer  2.77  nonsmall cell lung cancer  2.77 
large cell carcinoma 2.28  small cell lung cancer  2.15  small cell lung cancer  2.15 
small cell lung cancer  2.15  lung carcinoma 1.64  lung carcinoma 1.64 
cancer 1.84  excision of lung 1.36  bronchial carcinomas 1.2 
radon daughters 1.76  incision of lung 1.25  lung tumor 1.14 
mediastinal lymph node 1.71  bronchial carcinomas 1.20  mediastinoscopy 1.08 
non small cell 1.68  lung tumor 1.14  thoracotomy 0.87 
lung carcinoma 1.64  mediastinoscopy 1.08  ipomeanol 0.86 
sputum cytology 1.62  pneumonectomy 0.99  repairmen 0.83 
adenocarcinoma 1.57  resection of trachea 0.95  mediast lymph nodes sampling 0.79 
lung adenocarcinoma 1.38  lung cancer screening 0.89  carotenoid 0.7 
excision of lung 1.36  thoracotomy 0.87  beta carotene 0.63 
suspected lung cancer  1.36  lung collapse therapy  0.84  pleura cancer 0.62 
smoking 1.35  percutaneous cordotomy  0.71  fiberoptic bronchoscopy with biopsy 0.59 
histological type 1.34  lung cancer prevention  0.71  mediastinal metastasis 0.57 
staging 1.3  remote afterloaders  0.70  chest x ray 0.57 
incision of lung 1.25  stages microscope  0.69  hospital porter 0.57 
radon 1.23  neoadjuvant therapy 0.68  platinol 0.57 
squamous carcinoma 1.22  lobectomy 0.66  diagnosis 0.57 
stage iiia 1.20  beta carotene 0.63  staging 0.55 
 (a)    (b)    (c)  

 

 Figure 4: (a) Statistical expansion concepts for query “lung cancer, treatment.” (b) Knowledge-based expansion concepts for query
“lung cancer, treatment.” (c) Knowledge-based expansion concepts for query “lung cancer, diagnosis.”

cepts) to the expanded query. The surrounding concepts for
“lung cancer,” for example, are illustrated in Figure 3.

In our study, we have also tried expanding more than the im-
mediate surrounding concepts, e.g., ancestors or descendants
more than two levels from ck. Our results reveal that enlarg-
ing the scope of surrounding concepts yields degraded per-
formance, which is consistent with results reported by Hersh
et al. [27]. As a result, in our experiments, we restrict the
scope to parents, children and siblings of ck only.

For illustration purposes, for the sample query “lung cancer,
treatment,” we first use statistical expansion technique to derive
candidate expansion concepts, and then identify the scenario-
specific expansion concepts using the procedure described above.
The top-20 heavily-weighted statistical expansion concepts are
listed in Figure 4(a), where the weights are assigned according
to the co-occurrence thesaurus (Section 3.1). The shaded con-
cepts in Figure 4(a) are the ones identified as scenario-specific,
corresponding to the concepts in the shaded circles of Figure 2.
These scenario-specific concepts, together with other top-weighted
scenario-specific concepts, are shown in Figure 4(b). Some con-
cepts down the list of Figure 4(b) (e.g., “lung collapse therapy”)
do not appear in the list of Figure 4(a), simply because they have
relatively smaller weights and we are only showing the top-20
statistically-related concepts in Figure 4(a).

Similar to Figure 4(b), we have also derived scenario-specific
expansion concepts for another query “lung cancer, diagnosis,” and
show results in Figure 4(c). The following observations are made
from these results.
• By comparing Figure 4(a) with Figure 4(b), we can clearly

see that knowledge-based expansion identifies expansion
concepts that are much more relevant to the original query’s
scenario (“treatment”) compared to statistical expansion.

• By comparing Figure 4(b) with Figure 4(c), we can see that
the results of knowledge-based expansion differ under differ-
ent scenarios, i.e., “treatment” and “diagnosis,” thus achiev-
ing the goal of scenario-specific query expansion.

Adjusting the weights of the scenario-specific expansion con-
cepts to increase their significance. By comparing the weights
of scenario-specific expansion concepts with those of statistical
expansion concepts (e.g., comparing the weights in Figure 4(b)
with those in Figure 4(a)), we can see that scenario-specific con-
cepts generally have less weights. This happens because we have
filtered out certain heavily-weighted concepts, concepts that are

statistically-related but not scenario-specific. Because of their rel-
atively smaller weights, the scenario-specific concepts appended
by the knowledge-based method bring less impact to the expanded
query, compared to that in the statistical method.

To increase the impact of the scenario-specific concepts, we can
“boost” their weights by multiplying a linear factor, so that the
overall “significance” of the scenario-specific concepts is compa-
rable to that of the statistical-expansion concepts. To quantify the
“significance” of a set of expansion concepts, we use the length of
the expansion vector composed by these concepts. Formally, let |V |
represent the length of a l-dimension vector V = (v1, v2, ..., vl),
where |V | is computed as:

|V | =
√

v2

1
+ v2

2
+ · · ·+ v2

l

Further, let Vstat represent the vector of statistical expansion con-
cepts and VKB represent the vector of scenario-specific expansion
concepts generated by the knowledge-based method. Because cer-
tain heavily weighted components in Vstat has been filtered out to
generate VKB , for any query we have:

|Vstat| ≥ |VKB |

We define the boosting factor for VKB to be:

1 + α · (
|Vstat|

|VKB |
− 1) (1)

Here α is a positive real number that controls the length of the
scenario-specific expansion vector after boosting. If α = 0, the
boosting factor is reduced to 1 which essentially means no boost-
ing; If α = 1, the boosting factor is reduced to |Vstat|

|VKB |
which makes

the boosted vector have exactly the same length as that of the sta-
tistical expansion vector.

In the experiments section, we will discuss how this parameter α
affects the retrieval result.

3.3 Knowledge acquisition
The quality of our knowledge-based method described in Sec-

tion 3.2 is largely dependent on the quality and completeness of the
domain-specific knowledge source. The knowledge source used in
our study, UMLS, is not specifically designed for the purpose of
scenario-specific retrieval. As a result, in our study we have ob-
served some frequently-asked scenarios (e.g. query scenarios in
OHSUMED [20]) that are undefined in UMLS. To support these
scenarios, we propose the following methodology for knowledge
acquisition to supplement the UMLS knowledge source.
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First, we identify the scenarios that are not currently supported
by UMLS. By studying sample medical queries, e.g., queries in the
OHSUMED test collection, we have identified the following list of
scenarios that are frequently used but undefined by UMLS: “dif-
ferential diagnosis,” “etiology,” “risk factors,” “pathophysiology,”
“prognosis,” “epidemiology,” “research,” “organisms” of a disease,
“complications” of a disease/medication, “criteria” of or “when to
perform” a medication, and “preventive health care” for a type of
patients. By “undefined,” we mean that such scenarios have no cor-
responding relationship graphs in the UMLS Semantic Network,
such as the graph shown in Figure 2. Therefore, we plan to sup-
plement the UMLS Semantic Network with additional relationship
graphs to support the above frequently-used scenarios.

We use the following method for this supplementation task:
First, we present to medical experts a blank Semantic Type rela-
tionship graph such as the one shown in Figure 5. Edges in this
relationship graph are labelled with one of the undefined scenario,
e.g., “etiology.” The experts will decide which UMLS Semantic
Types should be filled into the blank rectangles. (Currently UMLS
defines 134 Semantic Types.) For example, because viruses are
related to the etiology of a wide variety of diseases, the Semantic
Type “Virus” will be filled into one of the rectangles in Figure 5.
Note that the number of black rectangles are not pre-determined
and will be decided by the experts to make sure the relationship
graph is complete.

4. EXPERIMENTAL RESULTS

4.1 Dataset and experimental setup
Dataset. Our experiment is based on the OHSUMED [20] test col-
lection that has been widely used in medical-information-retrieval
research. OHSUMED consists of 1) a corpus, 2) a query set, and
3) relevance judgments for each query.
• Corpus. The corpus consists of 348,000 MEDLINE articles

from 1988 to 1992. Each document contains a title, an op-
tional abstract, a set of MeSH headings, author information,
publication type, source, a MEDLINE identifier, and a docu-
ment ID.

• Query set. The query set consists of 106 queries. Each
query contains a patient description, an information request,
and a query ID. Since we are interested in short and gen-
eral queries, we use the information-request sub-portion to
represent each query. To study scenario-specific retrieval,
we focus on all queries in the form of “〈key concept(s)〉,
〈scenario concept(s)〉.” Among the 106 queries, 57 queries
satisfy this criterion and are included in our study.4 The rest
of the queries skipped in our study typically ask for the re-
lationship among several key concepts without mentioning
scenario concepts, e.g., “use of beta-blockers for thyrotoxi-
cosis during pregnancy” or “chemotherapy advanced for ad-
vanced metastatic breast cancer.”

4In fact there is an additional query, query #8, which also satisfy this criteria. How-
ever, OHSUMED provides no relevance judgements for this query, and therefore we
exclude this query from our experiments.

Scenario Queries ID’s

treatment of a disease 2, 13, 15, 16, 27, 29, 30, 31, 32, 35, 37,
38, 39, 40, 42, 43, 45, 53, 56, 57, 58,
62, 67, 69, 72, 74, 75, 76, 77, 79, 81,
85, 93, 98, 102

diagnosis of a disease 15, 21, 37, 53, 57, 58, 72, 80, 81, 82,
97

prevention of a disease 64, 85
differential diagnosis of a symp-
tom/disease

14, 23, 41, 43, 47, 51, 65, 69, 70, 74,
76, 103

pathophysiology of a disease 2, 3, 26, 64, 77
complications of a disease/medication 3, 30, 52, 61, 62, 66, 79
etiology of a disease 14, 26, 29
risk factors of a disease 35, 64, 85
prognosis of a disease 45
epidemiology of a disease 3
research of a disease 75
organisms of a disease 81
criteria of medication 49, 52, 94
when to perform a medication 33
preventive health care for a type of pa-
tients

96

Figure 6: Number of queries mentioning each scenario

Scenario # of relevant Semantic Types in the 
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pathophysiology of a disease 56 
complications of a disease/medication 15 
etiology of a disease 40 
risk factors of a disease 40 
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epidemiology of a disease 13 
research of a disease 28 
organisms of a disease 7 
criteria of medication 26 
when to perform a medication 5 
preventive health care for a type of 
patients 

10 

 Figure 7: Number of Semantic Types in the relationship graphs
after knowledge acquisition

We list the queries that mention each scenario in Figure 6.
Due to space constraint, we only provide the query ID’s.
The query strings can be downloaded at OHSUMED’s of-
ficial Website.5 Note that some queries do not mention the
scenario terms such as “treatment” or “diagnosis” directly,
but “management” or “workup” instead. We consult experts
in UCLA Medical School to classify these queries into the
appropriate scenarios.

• Relevance judgements. For a given OHSUMED query, a
document is either judged by experts as definitely-relevant
(DR), partially-relevant (PR), irrelevant or not judged at all.
In our experiments, we restrict the retrieval to the 14,430
judged documents only and count both DR and PR docu-
ments as relevant answers as we measure the precision-recall
of a particular retrieval method.6

Indexing and VSM. We index both documents and queries us-
ing word stems, and assign weight to each stem using the standard
tf · idf weighting scheme [6]. Word stems are derived using the
Lovins stemmer [28]. Special considerations in this indexing pro-
cess include:

• We use the title and the abstract to index each document.
We have discarded the MeSH headings in indexing in order
to simulate a common application environment in which no

5
ftp://medir.ohsu.edu/pub/OHSUMED

6Treating both DR and PR documents are relevant documents is consistent with the
settings of existing studies [20, 27]



expert-assigned indexing terms are available.

• To emphasize the importance of title terms in representing a
document’s content, we count the tf of every single appear-
ance of a term in the title as 3, while keeping the tf for terms
in other parts of a document unmodified.

• Since the expanded query is eventually represented as a vec-
tor of stems, we use the following procedure to convert the
expansion concepts (derived either by our knowledge-based
method or the statistical method) to word stems and append
these stems to the original query: For each expansion concept
we first look up its concepts strings from UMLS. We further
remove all stop words from these concept strings and convert
all the words into word stems. The weights of these expan-
sion stems are assigned based on the co-occurrence thesaurus
computed from the corpus [13].

After we index the documents and the expanded query using
word stems, we use the standard stem-based Vector Space Model
(VSM) [6] to compute query-document similarities and generate
document ranking.

4.2 Knowledge acquisition results
We follow the methodology in Section 3.3 for this task. To sup-

plement the Semantic Network with additional relationship graphs
for the currently unsupported scenarios (e.g. “etiology” of a dis-
ease), we interviewed two medical experts at UCLA Medical
School. During the interview we first described the meaning of
relationship graphs such as Figure 5, and then presented the en-
tire list of UMLS Semantic Types to the experts so that appropriate
Semantic Types were filled into the question marks. We commu-
nicated the results by one expert with another until they reached
a consensus. Basic statistics for the knowledge acquired in this
step are presented in Figure 7. The detailed list of Semantic Types
for each scenario is presented in the extended version of this pa-
per [29].

4.3 Retrieval results
In this section we study the performance of knowledge-based ex-

pansion compared to that of statistical expansion. We first compare
the two methods under different expansion sizes, then study the per-
formance of the knowledge-based method under different boosting
factors and different query scenarios.

4.3.1 Comparison of the two methods under different
expansion sizes

For a given expansion size n, we use both knowledge-based ex-
pansion and statistical expansion to expand the top-n stems that
have the heaviest weights. For knowledge-based expansion, no
weight boosting is applied at this stage. We measure the perfor-
mance of both methods using the 11-point precision average, de-
noted as avgp. We have also compared the two methods using
other metrics, such as precision among the top-10 or top-20 re-
trieved documents, and the comparison results are similar.

We compute avgp for both methods on each of the 57 queries,
and further average the results over the 57 queries. Figure 8(a)
shows the performance of the two methods, whereas Figure 8(b)
shows the percentage of improvement of knowledge-based expan-
sion over statistical expansion. In these figures, “n=All” means
appending all expansion terms that have non-zero weights into the
original query. Before we compare the results, we emphasize that
the baseline method in our comparison, the statistical expansion
method, outperforms the no-expansion retrieval method by more
than 5% under most of the settings. (The avgp for no-expansion
retrieval is 0.408.)
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Figure 8: Comparison of the two methods using avgp
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Figure 9: The impact of different weight-boosting settings on
the performance of knowledge-based expansion

As the figure shows, the performance for knowledge-based ex-
pansion generally increases as n increases, and usually reaches the
peak when n=All. On the other hand, the performance of the sta-
tistical method degrades after n=100. This is due to the fact that
statistical expansion does not distinguish between expansion terms
that are scenario-specific from those that are not. As a conse-
quence, as more terms are appended to the original query, the neg-
ative impact of those non-scenario-specific terms begins to accu-
mulate and after a certain point the performance drops. In contrast,
the knowledge-based method appends scenario-specific terms only,
and consequently, the performance of the knowledge-based method
keeps increasing as more “useful” terms are appended.

4.3.2 The impact of weight boosting on the perfor-
mance of knowledge-based expansion

In the next experiments, we multiply a boosting factor to
the weights of knowledge-based expansion terms. The boost-
ing factor is computed using Eq. 1, under the different settings
of α = 0.25, 0.5, 0.75, 1, 1.25, 1.5. Figure 9 shows the impact
of different boosting amount on the performance of knowledge-
based expansion. Each cell in the figure shows 1) the perfor-
mance of knowledge-based expansion and 2) the improvement of
knowledge-based expansion over statistical expansion under the
same expansion size. Thick-bordered cells represent the best per-
formance within each column (i.e. under the same setting of ex-
pansion size); Shaded cells represent the best performance within
each row (i.e. under the same setting of boosting factor). The best
performance in the entire figure is highlighted in bold and italic.

The following observation can be made from these results:

• Boosting helps improve the performance of knowledge-
based expansion, under all expansion sizes. Settings α = 0.5
or = 0.75 generally yield the best boosting effect.

• Given a fixed boosting setting, having a larger expansion size
n helps improve the performance. The best performance un-
der all α settings is consistently achieved by setting n=All.



 scenario 
 treatment of a 

disease 
differential 

diagnosis of a 
symptom / 

disease 

diagnosis of a 
disease 

complication
of a disease /  
medication 

pathophysiology 
of a disease 

0 (no 
boosting) 

0.465 (3.9%) 0.444 (9.4%) 0.464 (7.5%) 0.466 (2.4%) 0.564 (0.5%) 

0.25 0.470 (5.2%) 0.444 (9.4%) 0.470 (9.0%) 0.470 (3.1%) 0.569 (1.4%) 
0.5 0.474 (5.9%) 0.439 (8.0%) 0.472 (9.4%) 0.470 (3.2%) 0.571 (1.8%) 
0.75 0.474 (6.0%) 0.434 (6.8%) 0.473 (9.7%) 0.464 (2.0%) 0.573 (2.3%) 

1 0.474 (5.9%) 0.438 (7.9%) 0.474 (9.8%) 0.466 (2.4%) 0.580 (3.4%) 
1.25 0.472 (5.4%) 0.433 (6.6%) 0.480 (11%) 0.470 (3.1%) 0.579 (3.3%) 

 
 
 

α 

1.5 0.466 (4.2%) 0.431 (6.1%) 0.475 (9.9%) 0.467 (2.6%) 0.579 (3.3%) 

 
Figure 10: The performance of knowledge-based expansion in
different scenarios. Expansion size n=All

4.3.3 Performance of knowledge-based expansion in
different scenarios

In our next experiment, we study how knowledge-based expan-
sion perform in different scenarios. To do this, we group the 57
queries according to the scenarios they ask for, and we select the
largest five groups, namely “treatment,” “diagnosis,” “pathophysi-
ology” of a disease, “differential diagnosis” of a symptom/disease
and “complications” of a disease/medication. We skip the rest of
the scenarios because each of these scenarios has too few number
of queries to derive reliable statistics. (The number of queries that
ask for each scenario is shown in Figure 6.)

We further average the performance of knowledge-based expan-
sion within each group of queries, and show the avgp results in
Figure 10. Similar to the previous figure, each cell shows 1) the per-
formance of knowledge-based expansion averaged over the corre-
sponding group of queries, and 2) the improvement of knowledge-
based expansion over statistical expansion under the same settings.
For example, the shaded cell in Figure 10 shows that, among the 35
queries that ask about the “treatment” scenario and under the boost-
ing setting of α = 0.75, knowledge-based expansion achieves an
average avgp of 0.474. This represents a 6.0% improvement over
the statistical method measured within the same group of queries.

To derive the results in Figure 10, we set the expansion size
n=All which allows the knowledge-based method to yield the best
performance.

These results generally suggest that knowledge-based expansion
performs differently for queries with different scenarios. More
specifically, the method yields more improvements in the “treat-
ment,” “differential diagnosis” and “diagnosis” scenarios. In con-
trast, it yields less improvements in the “complication” and “patho-
physiology” scenarios. A possible explanation lies in the different
knowledge structures for these five scenarios. In the relationship
graphs defined for the latter two scenarios (i.e. “complication”
and “pathophysiology”), there are more relevant Semantic Types
than those in the former three scenarios (Figure 7). As a conse-
quence, when handling queries with the latter two scenarios, the
knowledge-based method keeps more concepts as scenario-specific
expansion concepts during the filtering step. Thus the expansion
result of the knowledge-based method resembles that of the statis-
tical expansion method, leading to close performance between the
two methods.

5. RELATED WORKS
Query expansion, as an effective method to ameliorate the query-

document mismatch problem, has been studied for decades. An
overview of various query expansion techniques can be found
in [8]. The basic idea behind all techniques is to supplement the
original query with additional terms related to the original query
topic, so that the modified query has a better chance to match rel-
evant documents. The following specific techniques, in a broader

sense, fall underneath the general umbrella of query expansion.
• Manual expansion. A human expert or the user manually

looks at the original query and selects from a knowledge
source (e.g. WordNet) the best terms to expand [30, 31].

• Relevance feedback. The expansion terms are selected from
a few top-ranked documents that are manually marked by
the user as relevant answers [25, 26]. In certain cases, terms
from those documents marked as irrelevant will also be “sub-
tracted” from the original query.

• Statistical expansion (or automatic expansion). The expan-
sion terms are automatically selected either from a term co-
occurrence thesaurus [13, 14, 15, 32] or pseudo-relevance
feedback results [21, 22, 23, 24, 32, 16].

These past research efforts do not attempt to automatically ex-
ploit a domain-specific knowledge source to refine the query ex-
pansion results and provide scenario-specific expansion.

Recently with the emergence of UMLS, a full-fledged knowl-
edge source in the medical domain, methods have been proposed
to automatically utilize this knowledge source in query expansion.
Aronson et al. [33] proposed to use MetaMap [17], a program that
maps medical free text to UMLS concepts, to first identify con-
cepts mentioned by the original query. Their approach further ex-
pands synonyms of the original query concepts, with the guidance
of UMLS. Hersh et al. [27] proposed to expand the parent and child
concepts of the original query concepts, based on the concept hi-
erarchy defined in the UMLS Metathesaurus (e.g. Figure 3). Our
research differs from these works in the following aspects:
• Our research targets one type of medical queries, namely

scenario-specific queries, that have been shown to be pre-
dominant among medical users’ search requests [1, 2, 3, 4,
5]. In dealing with such queries, it is often too narrow to ex-
pand just the synonyms or parent/child concepts without con-
sidering the scenario information embedded in the original
query. For example, previous methods will exclude “lung ex-
cision” from the expansion list for query “lung cancer, treat-
ment,” simply because “lung excision” is neither a synonym
nor a parent/child concept of any original query concept.

In contrast, our method explores the scenario information in
the original query, relates that information to certain knowl-
edge structures in UMLS (more specifically, the UMLS Se-
mantic Network) and uses the identified knowledge structure
to guide the selection of scenario-specific concepts. The re-
sulting expansion will have a much broader scope than just
synonyms and/or parent/child concepts.

• Previous works only compare against a baseline generated by
no query expansion. To the best of our knowledge, we are the
first to compare against statistical expansion. Since statistical
expansion has also been shown to be effective in improving
retrieval performance [13, 14, 15, 21, 22, 23, 24, 32, 16],
it is crucial to make the second type of comparison in order
to study the true impact of a knowledge source in query ex-
pansion. (In our experiments we also observe that statistical
expansion outperforms the no-expansion method by at least
5% in most of the cases.) Our study shows that even when
comparing with statistical expansion, the knowledge-based
method yields reasonable improvements.

In fact, the same dataset (OHSUMED) has been used in both
our study and that of Hersh et al. [27]. However, Hersh et
al. reported degrading performance by their query expan-
sion approach compared to the no-expansion method. We
attribute the differences between our results and theirs to two
factors: 1) We study a subset of OHSUMED queries that are



scenario-specific; 2) We apply a knowledge-based method
that is designed to effectively handle such scenario-specific
queries.

6. CONCLUSION
Scenario-specific queries represent a special type of queries that

frequently appear in medical free-text retrieval. In this research, we
have proposed a knowledge-based query expansion method to im-
prove the retrieval performance for such queries. More specifically,
the contributions of this work are the following:
• We have designed a method that automatically exploits

the knowledge structures in the UMLS Semantic Network
and the UMLS Metathesaurus to identify concepts that are
specifically related to the scenario(s) in the original query.
Appending such identified concepts to the original query re-
sults in scenario-specific expansion.

• Given that a knowledge-source is usually incomplete in han-
dling all scenarios appearing in real queries, we have pro-
posed a methodology to supplement the knowledge source.

• We have performed extensive experimental evaluation of the
knowledge-based method by comparing against the statisti-
cal expansion method. Our experimental study has shown
that:

– Our proposed knowledge-based method is able to cre-
ate scenario-specific query expansion, and yields im-
provements over statistical expansion when handling
scenario-specific queries.

– Since knowledge-based expansion tends to expand
terms with smaller weights into the original query,
boosting the weights of these terms is necessary to
generate reasonable improvements over the statistical
method.

– The knowledge-based expansion method performs dif-
ferently for different query scenarios. This happens be-
cause the knowledge structures defined for these sce-
narios exhibit different characteristics.
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