
Under consideration for publication in Knowledge and Information
Systems

Designing Triggers with
Trigger-By-Example

Dongwon Lee1, Wenlei Mao2, Henry Chiu3 and Wesley W. Chu2

1School of Information Sciences and Technology, Penn State University, PA, USA;
2Department of Computer Science, University of California at Los Angeles, CA, USA;
3IBM Silicon Vally Lab, CA, USA

Abstract. One of the obstacles that hinder database trigger systems from their wide
deployment is the lack of tools that aid users in creating trigger rules. Similar to un-
derstanding and specifying database queries in SQL3, it is difficult to visualize the
meaning of trigger rules. Furthermore, it is even more difficult to write trigger rules
using such text-based trigger rule language as SQL3. In this paper, we propose TBE
(Trigger-By-Example) to remedy such problems in writing trigger rules visually by us-
ing QBE (Query-By-Example) ideas. TBE is a visual trigger rule composition system
that helps the users understand and specify active database triggers. TBE retains bene-
fits of QBE while extending features to support triggers. Hence, TBE is a useful tool for
novice users to create simple triggers in a visual and intuitive manner. Further, since
TBE is designed to hide the details of underlying trigger systems from users, it can be
used as a universal trigger interface.

Keywords: Active Database, Triggers, Query-By-Example, Visual Querying

1. Introduction

Triggers provide a facility to autonomously react to database events by evaluating
a data-dependent condition and by executing a reaction whenever the condition
is satisfied. Such triggers are regarded as an important database feature and are
implemented by most major database vendors. Despite their diverse potential
usages, one of the obstacles that hinder the triggers from their wide deployment
is the lack of tools that aid users in creating complex trigger rules. In many
environments, the correctness of the written trigger rules is crucial since the

Received xxx
Revised xxx
Accepted xxx

2 D. Lee et al

semantics encoded in the trigger rules are shared by many applications. Although
the majority of the users of triggers are DBAs or savvy end-users, writing correct
and complex trigger rules is still a daunting task.

On the other hand, QBE (Query-By-Example) has been very popular since
its introduction decades ago and its variants are currently being used in most
modern database products. As it is based on domain relational calculus, its
expressive power proves to be equivalent to that of SQL, which is based on tuple
relational calculus (Codd, 1972). As opposed to SQL, in which the user must
conform to the phrase structure strictly, QBE users may enter any expression as
an entry insofar as it is syntactically correct. That is, since the entries are bound
to the table skeleton, the user can only specify admissible queries (Zloof, 1977).
We proposed TBE (Trigger-By-Example) (Lee et al., 2000b) as a novel graphical
interface for writing triggers. Since most trigger rules are complex combinations
of SQL statements, by using QBE as a user interface for triggers the user may
create only admissible trigger rules. TBE uses QBE in a declarative fashion for
writing the procedural trigger rules (Cochrane et al., 1996). In this paper, we
discuss the design and implementation issues of TBE. Further, we present a
design to make TBE a universal trigger rule formation tool that hides much of
the peculiarity of the underlying trigger systems. However, it is worthwhile to
point out that, in this paper, we do not address other important and arguably
harder problems related to triggers (e.g., precise semantics of composite triggers,
complex interaction among multiple triggers). A preliminary discussion of our
work appeared in Lee et al. (2000a,b). This paper unifies and integrates these
two research results.

To facilitate discussion, we shall briefly review SQL3 triggers and QBE in the
following subsections.

1.1. SQL3 Triggers

Triggers play an important role in monitoring and reacting to specific changes
that occur to database systems. In SQL3, triggers, also known as event-condition-
action rules (ECA rules), consist of three parts: event, condition, and action. We
base our discussion on the ANSI X3H2 SQL3 working draft (Melton (ed.), 1999).
The following is a definition of SQL3:

Example 1: SQL3 triggers definition.

<SQL3-trigger> ::= CREATE TRIGGER <trigger-name>

{AFTER | BEFORE} <trigger-event> ON <table-name>

[REFERENCING <references>]

[FOR EACH {ROW | STATEMENT}]

[WHEN <SQL-statements>]

<SQL-procedure-statements>

<trigger-event> ::= INSERT | DELETE | UPDATE [OF <column-names>]

<reference> ::= OLD [AS] <old-value-tuple-name> |
NEW [AS] <new-value-tuple-name> |
OLD TABLE [AS] <old-value-table-name> |
NEW TABLE [AS] <new-value-table-name>

Designing Triggers with Trigger-By-Example 3

1.2. QBE (Query-By-Example)

QBE is a query language as well as a visual user interface. In QBE, programming
is done within two-dimensional skeleton tables. This is accomplished by filling in
an example of the answer in the appropriate table spaces (thus the name “by-
example”). Another two-dimensional object is the condition box , which is used to
express one or more desired conditions difficult to express in the skeleton tables.
By QBE convention, variable names are lowercase alphabets prefixed with “ ”,
system commands are uppercase alphabets suffixed with “.”, and constants are
denoted without quotes unlike SQL3. Let us see a QBE example. The following
schema is used throughout the paper.

Example 2: Define the emp and dept relations with keys underlined. emp.DeptNo
and dept.MgrNo are foreign keys referencing dept.Dno and emp.Eno attributes,
respectively.

emp(Eno, Ename, DeptNo, Sal)

dept(Dno, Dname, MgrNo)

Example 3 shows two equivalent representations of the query in SQL3 and QBE.

Example 3: Who is being managed by the manager Tom?

SELECT E2.Ename

FROM emp E1, emp E2, dept D

WHERE E1.Ename = ′Tom′ AND E1.Eno = D.MgrNo AND E2.DeptNo = D.Dno

emp Eno Ename DeptNo Sal

e Tom
P. d

dept Dno Dname MgrNo

d e

The rest of this paper is organized as follows. Section 2 gives a detailed descrip-
tion of TBE. Then, Section 3 illustrates a few complex TBE examples. The design
and implementation of TBE, especially its translation algorithms, are discussed
in Section 4. Section 5 presents the design of some extensions that we are plan-
ning for the TBE. Related work and concluding remarks are given in Sections 6
and 7, respectively.

2. TBE: Trigger-By-Example

We propose to use QBE as a user interface for writing trigger rules. Our tool
is called Trigger-By-Example (TBE) and has the same spirit as that of QBE.
The philosophy of QBE is to require the user to know very little in order to get
started and to minimize the number of concepts that he or she subsequently has
to learn to understand and use the whole language (Zloof, 1977). By using QBE
as an interface, we attain the same benefits for creating trigger rules.

4 D. Lee et al

2.1. Difficulty of Expressing Procedural Triggers in
Declarative QBE

Triggers in SQL3 are procedural in nature. Trigger actions can be arbitrary
SQL procedural statements, allowing not only SQL data statements (i.e., select,
project, join) but also transaction, connection, session statements.1 Also, the
order among action statements needs to be obeyed faithfully to preserve the
correct semantics. On the contrary, QBE is a declarative query language. While
writing a query, the user does not have to know if the first row in the skeleton
tables must be executed before the second row or not. That is, the order is
immaterial. Also QBE is specifically designed as a tool for only 1) data retrieval
queries (i.e., SELECT), 2) data modification queries (i.e., INSERT, DELETE,
UPDATE), and 3) schema definition and manipulation queries. Therefore, QBE
cannot really handle other procedural SQL statements such as transaction or
user-defined functions in a simple manner. Thus, our goal is to develop a tool
that can represent the procedural SQL3 triggers in its entirety while retaining
the declarative nature of QBE as much as possible.

In what follows, we shall describe how QBE was extended to be TBE, what
design options were available, and which option was chosen by what rationale,
etc.

2.2. TBE Model

SQL3 triggers use the ECA (Event, Condition and Action) model. Therefore,
triggers are represented by three independent E, C, and A parts. In TBE, each
E, C, and A part maps to the corresponding skeleton tables and condition boxes
separately. To differentiate among these three parts, each skeleton table name is
prefixed with its corresponding flags, E., C., or A.. The condition box in QBE is
extended similarly. For instance, a trigger condition statement can be specified
in the C. prefixed skeleton table and/or condition box.

C.emp Eno Ename DeptNo Sal C.conditions

SQL3 triggers allow only INSERT, DELETE, and UPDATE as legal event types.
QBE uses I., D., and U. to describe the corresponding data manipulations. TBE
thus uses these constructs to describe the trigger event types. Since INSERT
and DELETE always affect the whole tuple, not individual columns, I. and D.
must be filled in the leftmost column of the skeleton table. Since UPDATE event
can affect individual columns, U. must be filled in the corresponding columns.
Otherwise, U. is filled in the leftmost column to represent that UPDATE event
is monitored on all columns. Consider the following example.

1 The SQL3 triggers definition in Melton (ed.) (1999) leaves it implementation-defined whether
the transaction, connection, or session statements should be contained in the action part or
not.

Designing Triggers with Trigger-By-Example 5

Example 4: Skeleton tables (1) and (2) depict INSERT and DELETE events
on the dept table, respectively. (3) depicts UPDATE event of columns Dname
and MgrNo. Thus, changes occurring on other columns do not fire the trigger. (4)
depicts UPDATE event of any columns on the dept table.

(1)
E.dept Dno Dname MgrNo

I.
(2)

E.dept Dno Dname MgrNo

D.

(3)
E.dept Dno Dname MgrNo

U. U.
(4)

E.dept Dno Dname MgrNo

U.

Note also that since the SQL3 triggers definition requires that each trigger rule
monitors only one event, there cannot be more than one row having an I., D.,
or U. flag. Therefore, the same trigger action for different events (e.g., “abort
when either INSERT or DELETE occurs”) needs to be expressed as separate
trigger rules in SQL3 triggers.

2.3. Trigger Name

A unique name for each trigger rule needs to be set in a special input box, called
the name box , where the user can fill in an arbitrary identifier as shown below:

<TriggerRuleName>

Typically, the user first decides the trigger name and then proceeds to the sub-
sequent tasks. There are often cases when multiple trigger rules are written to-
gether in a single TBE query. For such cases, the user needs to provide a unique
trigger name for each rule in the TBE query separately. In what follows, when
there is only a single trigger rule in the example, we take the liberty of not
showing the trigger name in the interest of briefness.

2.4. Triggers Activation Time and Granularity

The SQL3 triggers have a notion of the event activation time that specifies if
the trigger is executed before or after its event and the granularity that defines
how many times the trigger is executed for the particular event.

1. The activation time can have two modes, before and after . The before mode
triggers execute before their event and are useful for conditioning the input
data. The after mode triggers execute after their event and are typically used
to embed application logic (Cochrane et al., 1996). In TBE, two corresponding
constructs, BFR. and AFT., are introduced to denote these modes. The “.” is
appended to denote that these are built-in system commands.

2. The granularity of a trigger can be specified as either for each row or for each
statement , referred to as row-level and statement-level triggers, respectively.
The row-level triggers are executed after each modification to tuple, whereas
the statement-level triggers are executed once for an event regardless of the
number of the tuples affected. In TBE notation, R. and S. are used to denote
the row-level and statement-level triggers, respectively.

6 D. Lee et al

Consider the following illustrating example.

Example 5: SQL3 and TBE representation for a trigger with after activation
time and row-level granularity.

CREATE TRIGGER AfterRowLevelRule

AFTER UPDATE OF Ename, Sal ON emp FOR EACH ROW

E.emp Eno Ename DeptNo Sal

AFT.R. U. U.

2.5. Transition Values

When an event occurs and values change, trigger rules often need to refer to
the before and after values of certain attributes. These values are referred to
as the transition values. In SQL3, these transition values can be accessed by
either transition variables (i.e., OLD, NEW) or tables (i.e., OLD TABLE, NEW TABLE)
depending on the type of triggers, whether they are row-level or statement-
level. Furthermore, in SQL3, the INSERT event trigger can only use NEW or
NEW TABLE, while the DELETE event trigger can only use OLD or OLD TABLE
to access transition values. However, the UPDATE event trigger can use both
transition variables and tables. We have considered the following two approaches
to introduce the transition values in TBE.

1. Using the new built-in functions: Special built-in functions (i.e., OLD TABLE()
and NEW TABLE() for statement-level, OLD() and NEW() for row-level) are in-
troduced. The OLD TABLE() and NEW TABLE() functions return a set of tuples
with values before and after the changes, respectively. Similarly the OLD() and
NEW() return a single tuple with values, before and after the change, respec-
tively. Therefore, applying aggregate functions such as CNT. or SUM. to the
OLD() or NEW() is meaningless (i.e., CNT.NEW(s) is always 1 or SUM.OLD(s)
is always same as s). Using the new built-in functions, for instance, the event
“every time more than 10 new employees are inserted” can be represented as
follows:

E.emp Eno Ename DeptNo Sal

AFT.I.S. n

E.conditions

CNT.ALL.NEW TABLE(n) > 10

Also, the event “when salary is doubled for each row” can be represented as
follows:

E.emp Eno Ename DeptNo Sal

AFT.U.R. s

E.conditions

NEW(s) > OLD(s) * 2

It is not possible to apply the NEW() or NEW TABLE() to the variable de-
fined on the DELETE event. This is also true for the application of OLD() or
OLD TABLE() to the variable defined on the INSERT event. Asymmetrically, it
is redundant to apply the NEW() or NEW TABLE() to the variable defined on the

Designing Triggers with Trigger-By-Example 7

INSERT event. Similarly, it is not possible to apply the OLD() or OLD TABLE()
to the variable defined on the DELETE event. For instance, in the above event
“every time more than 10 new employees are inserted”, n and NEW TABLE(n)
are equivalent. Therefore, the condition expression at the condition box can
be rewritten as “CNT.ALL. n > 10”. It is ambiguous, however, to simply refer
to the variable defined in the UPDATE event without the built-in functions.
That is, in the event “when salary is doubled for each row”, s can refer to
values both before and after the UPDATE. That is, “ s > s * 2” at the
condition box would cause an error due to its ambiguity. Therefore, for the
UPDATE event case, one needs to explicitly use the built-in functions to access
transition values.

2. Using modified skeleton tables: Depending on the event type, skeleton tables are
modified accordingly; additional columns may appear in the skeleton tables.2
For the INSERT event, a keyword NEW is prepended to the existing column
names in the skeleton table to denote that these are newly inserted ones. For
the DELETE event, a keyword OLD is prepended similarly. For the UPDATE
event, a keyword OLD is prepended to the existing column names whose values
are updated in the skeleton table to denote values before the UPDATE. At the
same time, additional columns with a keyword NEW appear to denote values
after the UPDATE. If the UPDATE event is for all columns, then OLD column-
name and NEW column-name appear for all columns.
Consider an event “when John’s salary is doubled within the same depart-
ment”. Here, we need to monitor two attributes – Sal and DeptNo. First, the
user may type the event activation time and granularity information at the
leftmost column as shown in the first table. Then, the skeleton table changes
its format to accommodate the UPDATE event effect, as shown in the second
table. That is, two more columns appear and the U. construct is relocated to
the leftmost column.

E.emp Eno Ename DeptNo Sal

AFT.R. U. U.

E.emp Eno Ename OLD DeptNo NEW DeptNo OLD Sal NEW Sal

AFT.U.R.

Then, the user fills in variables into the proper columns to represent the con-
ditions. For instance, “same department” is expressed by using same variable
d in both OLD DeptNo and NEW DeptNo columns.

2 We have also considered modifying tables, instead of columns. For instance, for the INSERT
event, a keyword NEW is prepended to the table name. For the UPDATE event, a keyword OLD
is prepended to the table name while new table with a NEW prefix is created. This approach,
however, was not taken because we wanted to express column-level UPDATE event more
explicitly. That is, for an event “update occurs at column Sal”, we can add only OLD Sal
and NEW Sal attributes to the existing table if we use the “modifying columns” approach.
If we take the “modifying tables” approach, however, we end up with two tables with all
redundant attributes whether they are updated or not (e.g., two attributes OLD emp.Ename
and NEW emp.Ename are unnecessarily created; one attribute emp.Ename is sufficient since no
update occurs for this attribute).

8 D. Lee et al

E.emp Eno Ename OLD DeptNo NEW DeptNo OLD Sal NEW Sal

AFT.U.R. John d d o n

E.conditions

n > o * 2

We chose the approach using new built-in functions to introduce transition values
into TBE. Although there is no difference with respect to the expressive power
between two approaches, the first one does not incur any modifications to the
skeleton tables, thus minimizing cluttering of the user interface.

2.6. The REFERENCING Construct

SQL3 allows the renaming of transition variables or tables using the REFERENCING
construct for the user’s convenience. In TBE, this construct is not needed since
the transition values are directly referred to by the variables filled in the skeleton
tables.

2.7. Procedural Statements

When arbitrary SQL procedural statements (i.e., IF, CASE, assignment state-
ments, etc.) are written in the action part of the trigger rules, it is not straight-
forward to represent them in TBE due to their procedural nature. Because their
expressive power is beyond what the declarative QBE, and thus TBE described
so far, can achieve, we instead provide a special kind of box, called statement
box , similar to the condition box. The user can write arbitrary SQL procedural
statements delimited by “;” in the statement box. Since the statement box is only
allowed for the action part of the triggers, the prefix A. is always prepended. For
example,

A.statements

IF (X > 10)
ROLLBACK;

2.8. The Order among Action Trigger Statements

SQL3 allows multiple action statements in triggers, each of which is executed
according to the order they are written. To represent triggers whose semantics
depend on the assumed sequential execution, TBE uses an implicit agreement;
like Prolog, the execution order follows from top to bottom. Special care needs
to be taken in translation time for such action statements as follows:

– The action skeleton tables appearing before are translated prior to that ap-
pearing after.

– In the same action skeleton tables, action statements written at the top row
are translated prior to those written at the bottom one.

Designing Triggers with Trigger-By-Example 9

2.9. Expressing Conditions in TBE

In most active database triggers languages, the event part of the triggers lan-
guage is exclusively concerned with what has happened and cannot perform tests
on values associated with the event. Some triggers languages (e.g., Ode (Agrawal
and Gehani, 1989), SAMOS (Gatziu and Dittrich, 1998), Chimera (Ceri et al.,
1996)), however, provide filtering mechanisms that perform tests on event pa-
rameters (see Paton (ed.) (1998), chapter 4). Event filtering mechanisms can be
very useful in optimizing trigger rules; only events that passed the parameter
filtering tests are sent to the condition module to avoid unnecessary expensive
condition evaluations.

In general, we categorize condition definitions of the triggers into 1) parameter
filter (PF) type and 2) general constraint (GC) type. SQL3 triggers definition
does not have PF type; event language specifies only the event type, activation
time and granularity information, and all conditions (both PF and GC types)
need to be expressed in the WHEN clause. In TBE, however, we decided to allow
users to be able to differentiate PF and GC types by providing separate condition
boxes (i.e., E. and C. prefixed ones) although it is not required for SQL3. This
is because we wanted to support other trigger languages that have both PF and
GC types in future.

1. Parameter Filter Type: Since this type tests the event parameters, the condi-
tion must use the transition variables or tables. Event examples such as “every
time more than 10 new employees are inserted” or “when salary is doubled”
in Section 2.5 are these types. In TBE, this type is typically represented in the
E. prefixed condition box.

2. General Constraint Type: This type expresses general conditions regardless of
the event type. In TBE, this type is typically represented in the C. prefixed
condition boxes. One such example is illustrated in Example 6.

Example 6: When an employee’s salary is increased more than twice within

the same year (a variable CURRENT YEAR contains the current year value),
log changes into the log(Eno, Sal) table. Assume that there is another table
sal-change(Eno, Cnt, Year) to keep track of the employee’s salary changes.

CREATE TRIGGER TwiceSalaryRule AFTER UPDATE OF Sal ON emp

FOR EACH ROW

WHEN EXISTS (SELECT * FROM sal-change WHERE Eno = NEW.Eno

AND Year = CURRENT YEAR AND Cnt >= 2)

BEGIN ATOMIC

UPDATE sal-change SET Cnt = Cnt + 1

WHERE Eno = NEW.Eno AND Year = CURRENT YEAR;

INSERT INTO log VALUES(NEW.Eno, NEW.Sal);

END

E.emp Eno Ename DeptNo Sal

AFT.R. n U. s

C.sal-change Eno Cnt Year

NEW(n) c CURRENT YEAR

10 D. Lee et al

C.conditions

c >= 2

A.sal-change Eno Cnt Year

U. c + 1
NEW(n) c CURRENT YEAR

A.log Eno Sal

I. NEW(n) NEW(s)

Here, the condition part of the trigger rule (i.e., WHEN clause) checks the Cnt value
of the sal-change table to check how many times salary was increased in the same
year, and thus, does not involve testing any transition values. Therefore, it makes
more sense to represent such a condition as GC type, not PF type. Note that
the headers of the sal-change and condition box have the C. prefixes.

3. TBE Examples

3.1. Integrity Constraint Triggers

A trigger rule to maintain the foreign key constraint is shown below.

Example 7: When a manager is deleted, all employees in his or her department
are deleted too.

CREATE TRIGGER ManagerDelRule AFTER DELETE ON emp

FOR EACH ROW

DELETE FROM emp E1 WHERE E1.DeptNo =

(SELECT D.Dno FROM dept D WHERE D.MgrNo = OLD.Eno)

E.emp Eno Ename DeptNo Sal

AFT.D.R. e

A.dept Dno Dname MgrNo

d e

A.emp Eno Ename DeptNo Sal

D. d

In this example, the WHEN clause is deliberately missing; that is, the trigger rule
does not check if the deleted employee is in fact a manager or not because the rule
deletes only the employee whose manager is just deleted. Note how e variable
is used to join the emp and dept tables to find the department whose manager
is just deleted. The same query could have been written with a condition test in
a more explicit manner as follows:

E.emp Eno Ename DeptNo Sal

AFT.D.R. e

C.dept Dno Dname MgrNo

d m

C.conditions

OLD(e) = m

A.emp Eno Ename DeptNo Sal

D. d

Designing Triggers with Trigger-By-Example 11

Another example is shown below.

Example 8: When employees are inserted into emp table, abort the transaction
if there is one violating the foreign key constraint.

CREATE TRIGGER AbortEmp AFTER INSERT ON emp

FOR EACH STATEMENT

WHEN EXISTS (SELECT * FROM NEW TABLE E WHERE NOT EXISTS

(SELECT * FROM dept D WHERE D.Dno = E.DeptNo))

ROLLBACK

E.emp Eno Ename DeptNo Sal

AFT.I.S. d

C.dept Dno Dname MgrNo

¬ d

A.statements

ROLLBACK

In this example, if the granularity were R. instead of S., then the same TBE query
would represent different SQL3 triggers. That is, row-level triggers generated
from the same TBE representation would have been:

CREATE TRIGGER AbortEmp AFTER INSERT ON emp

FOR EACH ROW

WHEN NOT EXISTS

(SELECT * FROM dept D WHERE D.Dno = NEW.DeptNo)

ROLLBACK

We believe that this is a good example illustrating why TBE is useful in writing
trigger rules. That is, when the only difference between two rules is the trigger
granularity, a simple change between R. and S. is sufficient in TBE. However, in
SQL3, users should devise quite different rule syntaxes as demonstrated above.

3.2. View Maintenance Triggers

Suppose a company maintains the following view derived from the emp and dept
schema.

Example 9: Create a view HighPaidDept that has at least one “rich” employee
earning more than 100K.

CREATE VIEW HighPaidDept AS

SELECT DISTINCT D.Dname

FROM emp E, dept D

WHERE E.DeptNo = D.Dno AND E.Sal > 100K

The straightforward way to maintain the views upon changes to the base tables
is to re-compute all views from scratch. Although incrementally maintaining the
view is more efficient than this method, for the sake of trigger example, let us
implement the naive scheme below. The following is only for an UPDATE event
case.

12 D. Lee et al

Example 10: Refresh the HighPaidDept when UPDATE occurs on emp table.

CREATE TRIGGER RefreshView AFTER UPDATE OF DeptNo, Sal ON emp

FOR EACH STATEMENT

BEGIN ATOMIC

DELETE FROM HighPaidDept;

INSERT INTO HighPaidDept

(SELECT DISTINCT D.Dname FROM emp E, dept D

WHERE E.DeptNo = D.Dno AND E.Sal > 100K);

END

E.emp Eno Ename DeptNo Sal

AFT.S. U. U.

A.emp Eno Ename DeptNo Sal

d > 100K

A.dept Dno Dname MgrNo

d n

A.HighPaidDept Dname

D.
I. n

By the implicit ordering of TBE, the DELETE statement executes prior to the
INSERT statement.

3.3. Replication Maintenance Triggers

Now let us consider the problem of maintaining replicated copies in synchroniza-
tion with the original copy. Suppose that all changes are made to the primary
copy while the secondary copy is asynchronously updated by triggering rules.
Actual changes to the primary copy are recorded in Delta tables. Then, deltas
are applied to the secondary copy. This logic is implemented by five trigger
rules below. The first three rules monitor the base table for INSERT, DELETE,
UPDATE events, respectively, and the last two rules implement the actual syn-
chronization.

Example 11: Maintain the replicated copy dept copy when the original dept
table changes.

Rule 1: CREATE TRIGGER CaptureInsertRule

AFTER INSERT ON dept FOR EACH STATEMENT

INSERT INTO PosDelta (SELECT * FROM NEW TABLE)

Rule 2: CREATE TRIGGER CaptureDeleteRule

AFTER DELETE ON dept FOR EACH STATEMENT

INSERT INTO NegDelta (SELECT * FROM OLD TABLE)

Rule 3: CREATE TRIGGER CaptureUpdateRule

AFTER UPDATE ON dept FOR EACH STATEMENT

BEGIN ATOMIC

INSERT INTO PosDelta (SELECT * FROM NEW TABLE);

INSERT INTO NegDelta (SELECT * FROM OLD TABLE);

END

Designing Triggers with Trigger-By-Example 13

Rule 4: CREATE TRIGGER PosSyncRule

AFTER INSERT ON PosDelta FOR EACH STATEMENT

INSERT INTO dept copy (SELECT * FROM PosDelta)

Rule 5: CREATE TRIGGER NegSyncRule

AFTER INSERT ON NegDelta FOR EACH STATEMENT

DELETE FROM dept copy WHERE Dno IN

(SELECT Dno FROM NegDelta)

E.dept Dno Dname MgrNo

AFT.I.S. i1 i2 i3
AFT.D.S. d1 d2 d3
AFT.U.S. u1 u2 u3

A.PosDelta Dno Dname MgrNo

I. i1 i2 i3
I. NEW TABLE(u1) NEW TABLE(u2) NEW TABLE(u3)

A.NegDelta Dno Dname MgrNo

I. d1 d2 d3
I. OLD TABLE(u1) OLD TABLE(u2) OLD TABLE(u3)

E.PosDelta Dno Dname MgrNo

AFT.I.S. p1 p2 p3

E.NegDelta Dno Dname MgrNo

AFT.I.S. n1

A.dept copy Dno Dname MgrNo

I. p1 p2 p3
D. n1

Note how multiple trigger rules (i.e., 5 rules) can be written in a unified TBE rep-
resentation. This feature is particularly useful to represent multiple yet “related”
trigger rules. The usage of the distinct variables for different trigger rules (e.g.,
i1, d1, u1) enables the user to distinguish different trigger rules in rule gener-
ation time. However, it is worthwhile to point out that TBE does not currently
support ordering among multiple trigger rules.

4. Translation Algorithm

A preliminary version of TBE prototype is implemented in Java using jdk 1.2.1
and swing 1.1 as shown in Figure 1. More discussion about implementation-
related issues can be found in Lee et al. (2000a).

Our algorithm is an extension of the algorithm by McLeod (1976), which
translates from QBE to SQL. Its input is a list of skeleton tables and the condi-
tion boxes, while its output is a SQL query string. Let us denote the McLeod’s
algorithm as qbe2sql(<input>) and ours as tbe2triggers.

14 D. Lee et al

Fig. 1. The screen dump of the TBE prototype.

4.1. The qbe2sql Algorithm

We have implemented basic features of the qbe2sql algorithm in McLeod (1976),
in the exception of queries having the GROUP-BY construct. The algorithm
first determines the type of query statement. The basic cases involve operators,
such as SELECT, UPDATE, INSERT, and DELETE. Special cases use UNION,
EXCEPT, and INTERSECT where the statements are processed recursively.
General steps of the translation implemented in TBE are as follows:

1. Duplicate tables are renamed. (e.g., “FROM supply, supply” is converted into
“FROM supply S1, supply S2”)

2. SELECT clause (or other type) is printed by searching through TBETables’
fields for projection (i.e., P. command). Then, FROM clause is printed from
TBETable table names.

3. Example variables are extracted from TBETables by searching for tokens start-
ing with “ ”. Variables with the same names indicate table joins; table names
and corresponding column names of the variables are stored.

4. Process conditions. Variables are matched with previously extracted variables
and replaced with corresponding table and column names. (e.g., a variable n
at column Eno of the table emp is replaced to emp.Eno). Constants are handled
accordingly as well.

Designing Triggers with Trigger-By-Example 15

4.2. The tbe2triggers Algorithm

Let us assume that var is an example variable filled in some column of the
skeleton table. colname(var) is a function to return the column name given
the variable name var. Skeleton tables and condition or statement boxes are
collectively referred to as entries.

1. Preprocessing: This step does two tasks: 1) reducing the TBE query to an equiv-
alent, but simpler form by moving the condition box entries to the skeleton
tables, and 2) partitioning the TBE query into distinct groups when multiple
trigger rules are written together. This can be done by comparing variables
filled in the skeleton tables and collecting those entries with the same variables
being used in the same group. Then, apply the following steps 2, 3, and 4 to
each distinct group repeatedly to generate separate trigger rules.

2. Build event clause: Input all the E. prefixed entries. The “CREATE TRIGGER
<trigger-name>” clause is generated by the trigger name <trigger-name>
filled in the name box. By checking the constructs (e.g., AFT., R.), the system
can determine the activation time and granularity of the triggers. The event
type can also be detected by constructs (e.g., I., D., U.). If U. is found in the
individual columns, then the “AFTER UPDATE OF <column-names>” clause is
generated by enumerating all column names in an arbitrary order. Then,

(a) Convert all variables vari used with I. event into NEW(vari) (if row-level)
or NEW TABLE(vari) (if statement-level) accordingly.

(b) Convert all variables vari used with D. event into OLD(vari) (if row-level)
or OLD TABLE(vari) (if statement-level) accordingly.

(c) If there is a condition box or a column having comparison operators (e.g.,
<, ≥) or aggregation operators (e.g., AVG., SUM.), gather all the related
entries and pass them over to step 3.

3. Build condition clause: Input all the C. prefixed entries as well as the E.
prefixed entries passed from the previous step.

(a) Convert all built-in functions for transition values and aggregate operators
into SQL3 format. For instance, OLD(var) and SUM. var are converted
into OLD.name and SUM(name) respectively, where name = colname(var).

(b) Fill P. command in the table name column (i.e., leftmost one) of all the
C. prefixed entries unless they already contain P. commands. This will
result in creating “SELECT table1.*, ..., tablen.* FROM table1, ...,
tablen” clause.

(c) Gather all entries into the <input> list and invoke the qbe2sql(<input>)
algorithm. Let the returned SQL string as <condition-statement>. For
row-level triggers, create a “WHEN EXISTS (<condition-statement>)” clause.
For statement-level triggers, create “WHEN EXISTS (SELECT * FROM NEW TABLE
(or
OLD TABLE) WHERE (<condition-statement>))”

4. Build action clause: Input all the A. prefixed entries.

(a) Convert all built-in functions for transition values and aggregate operators
into the SQL3 format like in step 3.(a).

(b) Partition the entries into distinct groups. That is, gather entries with iden-
tical variables being used in the same group. Each group will have one data

16 D. Lee et al

TBE System

TBE Input

Trigger Rule

SQL3 Oracle ...

SQL3
syntax
rule

SQL3
comp.
rule

 Oracle
syntax
rule

 Oracle
comp.
rule

Meta Rules

Fig. 2. The architecture of TBE as a universal triggers construction tool.

modification statement such as INSERT, DELETE, or UPDATE. Preserve
the order among partitioned groups.

(c) For each group Gi, invoke the qbe2sql(< Gi >) algorithm according to
the order in step 4.(b). Let the resulting SQL string for Gi be <action-
statement>i. The contents in the statement box are literally copied to
<action-statement>i. Then, final action statements for triggers would be
“BEGIN ATOMIC <action-statement>1; ..., <action-statement>n; END”.

5. TBE as a Universal Trigger Rule Formation Tool

At present, TBE supports only SQL3 triggers syntax. Although SQL3 is close to
its final form, many database vendors are already shipping their products with
their own proprietary triggers syntax. When multiple databases are intercon-
nected or integrating one database to another, these diversities can introduce
significant problems. To remedy this problem, one can use TBE as a universal
triggers construction tool. The user can create trigger rules using the TBE in-
terface and save them as TBE’s internal format. When there is a need to change
one database to another, the user can reset the target system (e.g., from Oracle
to DB2) to re-generate new trigger rules.

Ideally, we would like to be able to add new types of database triggers in
a declarative fashion. That is, given a new triggers system, a user needs only
to describe what kind of syntax the triggers use. Then, TBE should be able to
generate the target trigger rules without further intervention from the user. Two
inputs to TBE are needed to add new database triggers: the trigger syntax rule
and trigger composition rule. In a trigger syntax rule, a detailed description of
the syntactic aspect of the triggers is encoded by the declarative language. In
a trigger composition rule, information as to how to compose the trigger rule
(i.e., English sentence) using the trigger syntax rule is specified. The behavior
and output of TBE conforms to the specifics defined in the meta rules of the
selected target trigger system. When a user chooses the target trigger system
in the interface, corresponding trigger syntax and composition rules are loaded
from the meta rule database into the TBE system. The high-level overview is
shown in Figure 2.

Designing Triggers with Trigger-By-Example 17

5.1. Trigger Syntax Rule

TBE provides a declarative language to describe trigger syntax, whose EBNF is
shown below:

<Trigger-Syntax-Rule> ::= <event-rule> | <condition-rule> | <action-rule>

<event-rule> ::= ’event’ ’has’ <event-rule-entry> (’,’ <event-rule-entry>)* ’;’

<event-rule-entry> ::= <structure-operation> ’on’ (’row’ | ’attribute’) |
<activation-time> | <granularity> | <evaluation-time>

<structure-operation> ::= (’I.’ | ’D.’ | ’U.’ | ’RT.’) ’as’ <value>

<activation-time> ::= (’BFR.’ | ’AFT.’ | ’ISTD.’) ’as’ <value>

<granularity> ::= (’R.’ | ’S.’) ’as’ <value>

<value> ::= <identifier> | ’ <identifier> ’ | ’null’ | ’true’

<condition-rule> ::= ’condition’ ’has’ <condition-rule-entry> (’,’ <condition-rule-entry>)* ’;’

<condition-rule-entry> ::= <condition-role> | <condition-context>

<condition-role> ::= ’role’ ’as’ (’mandatory’ | ’optional’)

<condition-context> ::= ’context’ ’as’

’(’ (’NEW | ’OLD | ’NEW TABLE | ’OLD TABLE) ’as’ <value> ’)’

<action-rule> ::= ’action’ ’has’ <action-rule-entry> (’,’ <action-rule-entry>)* ’;’

<action-rule-entry> ::= <structure-operation> | <evaluation-time>

<evaluation-time> ::= (’DFR.’ | ’IMM.’ | ’DTC.’) ’as’ <value>

Although the detailed discussion of the language constructs is beyond the scope
of this paper, the essence of the language has the form “command as value”,
meaning the trigger feature command is supported and represented by the key-
word value. For instance, a clause NEW TABLE as INSERTED for Starburst system
would mean that “Starburst supports statement-level triggering and uses the
keyword INSERTED to access transition values”.

Example 12: SQL3 trigger syntax can be described as follows:

event has (
I. as INSERT on row, D. as DELETE on row,
U. as UPDATE on attribute,
BFR. as BEFORE, AFT. as AFTER, R. as ROW, S. as STATEMENT

) ;
condition has (

role as optional,
transition as (NEW as NEW, OLD as OLD,

NEW_TABLE as NEW_TABLE, OLD_TABLE as OLD_TABLE)
) ;
action has (

I. as INSERT, D. as DELETE, U. as UPDATE
) ;

The interpretation of this meta rule should be self-describing. For instance, the
fact that there is no clause S. as ... implies that SQL3 triggers do not sup-
port event monitoring on the selection operation. In addition, the clause T. as
STATEMENT implies that SQL3 triggers support table-level event monitoring using
the keyword “FOR EACH STATEMENT”.

The partial comparison of the trigger syntax of SQL3, Starburst, Postgres,
Oracle and DB2 system is shown in Table 1. The leftmost column contains TBE
commands while other columns contain equivalent keywords of the corresponding

18 D. Lee et al

TBE SQL3 Starburst Postgres Oracle DB2

I. INSERT INSERTED INSERT INSERT INSERT
D. DELETE DELETED DELETE DELETE DELETE
U. UPDATE UPDATED UPDATE UPDATE UPDATE

RT. N/A N/A RETRIEVE N/A N/A
BFR. BEFORE N/A N/A BEFORE BEFORE
AFT. AFTER true true AFTER AFTER
ISTD. N/A N/A INSTEAD N/A N/A

R. ROW N/A TUPLE ROW ROW
S. STATEMENT true N/A true STATEMENT

NEW NEW N/A NEW NEW NEW
OLD OLD N/A CURRENT OLD OLD

NEW TABLE NEW TABLE INSERTED, N/A N/A NEW TABLE
NEW-UPDATED

OLD TABLE OLD TABLE DELETED, N/A N/A OLD TABLE
OLD-UPDATED

Table 1. Syntax comparison of five triggers using the trigger syntax rule. The leftmost column
contains TBE commands while other columns contain equivalent keywords of the corresponding
trigger system. “N/A” means the feature is not supported and “true” means the feature is
supported by default.

trigger system. “N/A” means the feature is not supported and “true” means the
feature is supported by default. Using the language constructs defined above,
these syntax can be easily encoded into the trigger syntax rule. Note that our
language is limited to triggers based on the ECA and the relational data model.

5.2. Trigger Composition Rule

After the syntax is encoded, TBE still needs information on how to compose En-
glish sentences for trigger rules. This logic is specified in the trigger composition
rule. In a trigger composition rule, a macro variable is surrounded by the $ sign
and substituted with actual values during rule generation time.

Example 13: The following is a SQL3 trigger composition rule:

CREATE TRIGGER $trigger-name$
$activation-time$ $structure-operation$ ON $table$
FOR EACH $granularity$
WHEN $condition-statement$
BEGIN ATOMIC

$action-statement$
END

In rule generation time, for instance, variable $activation-time$ is replaced with
the value either BEFORE or AFTER since those two are the only valid values accord-
ing to the trigger syntax rule in Example 12. In addition, variables $condition-
statement$ and $action-statement$ are replaced with statements generated by
the translation algorithm in Section 4.

6. Related Work

Past active database research has focused on active database rule languages
(Agrawal and Gehani, 1989), rule execution semantics (Cochrane et al., 1996),
or rule management and system architecture issues (Simon and Kotz-Dittrich,

Designing Triggers with Trigger-By-Example 19

1995). In addition, research on visual querying has been done in traditional
database research (Embley, 1989; Zloof, 1977; Benzi et al., 1999). To a greater
or lesser extent, all of this research focused on devising novel visual querying
schemes to replace the data retrieval aspects of SQL language. Although some
have considered data definition aspects (Collet and Brunel, 1992) or manip-
ulation aspects, none have extensively considered the trigger aspects of SQL,
especially from the user interface point of view.

Other work, such as IFO2 (Teisseire et al., 1994) or IDEA (Ceri et al., 1996),
have attempted to build graphical triggers description tools, too. Using IFO2,
one can describe how different objects interact through events, thus giving pri-
ority to an overview of the system. Argonaut from the IDEA project (Ceri et al.,
1996) focused on the automatic generation of active rules that correct integrity
violation based on declarative integrity constraint specification and active rules
that incrementally maintain materialized views based on view definition. TBE,
on the other hand, tries to help users directly design active rules with minimal
learning.

Other than QBE skeleton tables, forms have been popular building blocks for
visual querying mechanism as well (Yao et al., 1984; Embley, 1989). For instance,
Embley (1989) proposes the NFQL as a communication language between hu-
mans and database systems. It uses forms in a strictly nonprocedural manner
to represent query. Other work using forms focused on the querying aspect of
the visual interface (Collet and Brunel, 1992). To the best of our knowledge, the
only work that is directly comparable to ours is RBE (Chang and Chen, 1997).
TBE is different from RBE in the following aspects:

– Since TBE is designed with SQL3 triggers in mind, it is capable of creating all
the complex SQL3 trigger rules. Since RBE’s capability is limited to OPS5-
style production rules, it cannot express the subtle difference of the trigger
activation time or granularity.

– Since RBE focuses on building an active database system in which RBE is
only a small part, no evident suggestion of QBE as a user interface to trig-
ger construction is given. On the contrary, TBE is specifically aimed for that
purpose.

– The implementation of RBE is tightly coupled with the underlying rule system
and database so that it cannot easily support multiple heterogeneous database
triggers. Since TBE implementation is a thin layer utilizing a translation from
a visual representation to the underlying triggers, it is loosely coupled with
the database.

7. Conclusion

In this paper, we presented the design and implementation of TBE, a visual trig-
ger rule specification interface. QBE was extended to handle features specific to
ECA trigger rules. TBE extends the visual querying mechanism from QBE and
applies it to triggers construction applications. Examples were given to demon-
strate SQL3-based trigger rule generation procedures as well as the TBE to SQL3
trigger translation algorithm. Extension of TBE toward universal trigger rule in-
terface was also included. For a trigger system T , we can declaratively specify
the syntax mapping between TBE and T , so that TBE can be used not only as

20 D. Lee et al

a trigger rule formation tool, but also as a universal intermediary translations
between supported systems.

Acknowledgements. We thank anonymous reviewers for their very useful comments
and suggestions. Part of this work was done while Dongwon Lee and Henry Chiu were
at UCLA.

References

Agrawal, R., Gehani, N., 1989. Ode (Object Database and Environment): The
Language and the Data Model. In: ACM SIGMOD. Portland, OR.

Benzi, F., Maio, D., Rizzi, S., 1999. VISIONARY: a Viewpoint-Based Visual
Language for Querying Relational Databases. J. Visual Languages and Com-
puting (JVLC) 10 (2), 117–145.

Ceri, S., Fraternali, P., Paraboschi, S., Tanca, L., 1996. Active Rule Manage-
ment in Chimera. In Active Database Systems: Triggers and Rules for Active
Database Processing, Morgan Kaufmann, pp. 151–176.

Chang, Y.-I., Chen, F.-L., 1997. RBE: A Rule-by-example Action Database Sys-
tem. Software – Practice and Experience 27, 365–394.

Cochrane, R., Pirahesh, H., Mattos, N., 1996. Integrating Triggers and Declar-
ative Constraints in SQL Database Systems. In: VLDB. Mumbai (Bombay),
India.

Codd, E. F., 1972. Relational Completeness Of Data Base Languages. Data Base
Systems, Courant Computer Symposia Serie 6, 65–98.

Collet, C., Brunel, E., 1992. Definition and Manipulation of Forms with FO2..
In: IFIP Working Conf. on Visual Database Systems (VDB).

Embley, D. W., 1989. NFQL: The Natural Forms Query Language. ACM Trans.
on Database Systems (TODS) 14 (2), 168–211.

Gatziu, S., Dittrich, K. R., 1998. SAMOS. In Active Rules In Database Systems,
Springer-Verlag, Ch. 12, pp. 233–248.

Lee, D., Mao, W., Chiu, H., Chu, W. W., 2000a. TBE: A Graphical Interface for
Writing Trigger Rules in Active Databases. In: IFIP Working Conf. on Visual
Database Systems (VDB). Fukuoka, Japan.

Lee, D., Mao, W., Chu, W. W., 2000b. TBE: Trigger-By-Example. In: Int’l Conf.
on Conceptual Modeling (ER). Salt Lake City, UT, USA.

McLeod, D., 1976. The Translation and Compatibility of SEQUEL and Query
by Example. In: Int’l Conf. on Software Engineering (ICSE). San Francisco,
CA.

Melton (ed.), J., Mar. 1999. ANSI/ISO Working Draft) Foundation
(SQL/Foundation). Tech. rep., ANSI X3H2-99-079/WG3:YGJ-011,
ftp://jerry.ece.umassd.edu/isowg3/dbl/BASEdocs/public/sql-foundation-wd-
1999-03.pdf.

Paton (ed.), N. W., 1998. Active Rules in Database Systems. Springer-Verlag.
Simon, E., Kotz-Dittrich, A., 1995. Promises and Realities of Active Database

Systems. In: VLDB. Zurich, Switzerland.
Teisseire, M., Poncelet, P., Cichetti, R., 1994. Towards Event-Driven Modelling

for Database Design. In: VLDB. Santiago de Chile, Chile.

Designing Triggers with Trigger-By-Example 21

Yao, S. B., Hevner, A. R., Shi, Z., Luo, D., 1984. FORMANAGER: An Office
Forms Management System. ACM Trans. on Information Systems (TOIS)
2 (3), 235–262.

Zloof, M. M., 1977. Query-by-Example: a data base language. IBM System J.
16 (4), 342–343.

A. Appendix

McLeod (1976) has a QBE to SQL translation algorithm in notations somewhat
different (and obsolete) from what most current DB textbooks use. In this sec-
tion, we clear up those confusions and re-write all example queries in the paper in
a familiar notation. This is necessary since our tbe2triggers algorithm is based on
the McLeod’s qbe2sql algorithm. First, examples are based on following schema:

emp(Ename, Sal, Mgr, Dept)
sales(Dept, Item)
supply(Item, Supplier)
type(Item, Color, Size)

In what follows, both the recommended QBE and SQL representations of the
given query are presented. Note that there could be many other representations
equivalent to what is presented here. We only showed here what we believe to
be the most reasonable ones.

A.1. Simple Queries

In this section, basic QBE queries and their SQL translation are introduced. The
first qbe2sql implementation needs to be able to handle at least all the simple
queries in this section.

Query 1: Print the red items.

type Item Color

P. red

SELECT Item
FROM type
WHERE Color = ′red′

Query 2: Find the departments that sell items supplied by parker.

sales Dept Item

P. i

supply Item Supplier

i parker

SELECT S.Dept
FROM sales S, supply T
WHERE S.item = T.item AND T.supplier = ′parker′

Query 3: Find the names of employees who earn more than their manager.

emp Name Sal Mgr

P. e1 m
m e2

conditions

e1 > e2

SELECT E1.Name

22 D. Lee et al

FROM emp E1, emp E2
WHERE E1.Mgr = E2.Name AND E1.Sal > E2.Sal

Query 4: Find the departments that sell pens and pencils.

sales Dept Item

P. d pen
d pencil

SELECT S1.Dept
FROM sales S1, sales S2
WHERE S1.Dept = S2.Dept AND S1.Item = ′pen′ AND S2.Item = ′pencil′

In QBE, the same query can be expressed using a condition box as follows.

sales Dept Item

P. i

conditions

i = (pen AND pencil)

Note that this query should not be translated into the following SQL:

SELECT Dept
FROM sales
WHERE Item = ′pen′ AND Item = ′pencil′

Instead, the following SQL using INTERSECT is the correct translation.

(SELECT Dept FROM sales WHERE Item = ′pen′)
INTERSECT
(SELECT Dept FROM sales WHERE Item = ′pencil′)

Query 5: Find the departments that sell pens or pencils.

sales Dept Item

P. d1 pen
P. d2 pencil

(SELECT Dept FROM sales WHERE Item = ′pen′)
UNION
(SELECT Dept FROM sales WHERE Item = ′pencil′)

In QBE, the same query can be expressed using a condition box as follows.

Query 6: Same query as Query 5.

sales Dept Item

P. i

conditions

i = (pen OR pencil)

SELECT Dept
FROM sales
WHERE Item = ′pen′ OR Item = ′pencil′

Query 7: Print all the department and supplier pairs such that the department
sells an item that the supplier supplies.

sales Dept Item

P. d i

supply Item Supplier

i P. s

SELECT S.Dept, T.Supplier
FROM sales S, supply T
WHERE S.Item = T.Item

Query 8: List all the items except the ones which come in green.

Designing Triggers with Trigger-By-Example 23

type Item Color

P. ¬ green

SELECT Item
FROM type
WHERE Color <> ′green′

All following QBE and SQL expressions are equivalent.

type Item Color

P. i
¬ i green

type Item Color

P. i
¬ i green

(SELECT Item FROM type)
EXCEPT
(SELECT Item FROM type WHERE Color = ′green′)

SELECT Item FROM type WHERE Item NOT IN
(SELECT Item FROM type WHERE Color = ′green′)

Query 9: Find the departments that sell items supplied by parker and bic.

sales Dept Item

P. d i1
d i2

supply Item Supplier

i1 parker
i2 bic

SELECT S1.Dept
FROM sales S1, sales S2, supply T1, supply T2
WHERE S1.Dept = S2.Dept AND S1.Item = T1.Item AND S2.Item = T2.Item

AND T1.Supplier = ′parker′ AND T2.supplier = ′bic′

This could have been written using [] notation (i.e., set) as follows:

sales Dept Item

P. d [i1, i2]

supply Item Supplier

[i1, i2] [parker,bic]

Query 10: Find the departments that sell items each of which is supplied by parker
and bic.

sales Dept Item

P. d i

supply Item Supplier

i [parker,bic]

SELECT S.Dept
FROM sales S, supply T1, supply T2
WHERE S.Item = T1.Item AND S.Item = T2.Item

AND T1.Supplier = ′parker′ AND T2.supplier = ′bic′

A.2. Grouping Queries

In this section, more complex QBE queries and their SQL translations are introduced
using grouping and aggregation on the groups. Queries are ordered according to their
complexities.

Query 11: Count employees by departments and manager.

emp Name Dept Mgr

P.CNT.ALL. n P.G. P.G.

SELECT Dept, Mgr, COUNT(Name)
FROM emp

24 D. Lee et al

GROUP BY Dept, Mgr

In QBE, aggregate operators (i.e., CNT., SUM., AVG., MIN., MAX.) can only be applied to “set”.
Hence, CNT.All. n is used instead of CNT. n, where ALL. ensures returning a set of employee
names. In addition, in QBE, duplicates are automatically eliminated unless stated otherwise. Since
the query asks the total number of all the employees regardless of their names being identical, we
add ALL. to ensure not to eliminate duplicates.

Query 12: Among all departments with total salaries greater than 22,000, find
those which sell pens.

emp Sal Dept

s P.G. d

sales Dept Item

d pen

conditions

SUM.ALL. s > 22000

SELECT E.Dept
FROM emp E, sales S
WHERE E.Dept = S.Dept AND S.Item = ′pen′

GROUP BY E.Dept
HAVING SUM(E.Sal) > 22000

Query 13: List the name and department of each employee such that his depart-
ment sells less than three items.

emp Name Dept

P. P. d

sales Dept Item

G. d i

conditions

CNT.UNQ.ALL. i < 3

SELECT E.Dept, E.Name
FROM emp E, sales S
WHERE E.Dept = S.Dept
GROUP BY S.Dept
HAVING COUNT(DISTINCT S.Item) < 3

To count the distinct names of the department, since QBE automatically eliminates duplicates,
CNT. i should be enough. However, CNT. operator can only be applied to a set, we need to append
UNQ.ALL. after CNT. operator.

Query 14: Find the departments that sell all the items of all the suppliers.

We need to check two conditions: 1) the item being sold by the department is actually supplied by
some supplier, and 2) the total number of items being sold by the department is the same as the
total number of items of all the suppliers.

sales Dept Item

P.G. d i1

supply Item Supplier

i1
i2

conditions

CNT.UNQ.ALL. i1 = CNT.UNQ.ALL. i2

SELECT S.Dept
FROM sales S, supply T
WHERE S.Item = T.Item
GROUP BY S.Dept
HAVING COUNT(DISTINCT S.Item) =

(SELECT COUNT(DISTINCT Item) FROM supply)

Query 15: Find the departments that sell all the items supplied by parker (and
possibly some more).

sales Dept Item

P.G. [ALL. i,*]

supply Item Supplier

ALL. i parker

Designing Triggers with Trigger-By-Example 25

This query first finds all the items supplied by parker. ALL. ensures that duplicates are kept (i.e.,
multi-set). Then, for each dept (i.e., G.), find department who has items that contain all the items
supplied by the parker (i.e., i) and some more (i.e., *). We can translate this into two different
SQL expressions as follows: 1. When CONTAINS operator is supported:

SELECT Dept
FROM sales
GROUP BY Dept
HAVING Item CONTAINS

(SELECT Item FROM supply WHERE Supplier = ′parker′)

2. When CONTAINS operator is not supported: use the equivalence that “A contains
B” is same as “not exists (B except A)”. Since CONTAINS operator is not part of
the standard SQL and supported by only a few vendors, this case should be a default.

SELECT Dept
FROM sales
GROUP BY Dept
HAVING NOT EXISTS

((SELECT Item FROM supply WHERE Supplier = ′parker′) EXCEPT (Item))

Query 16: Find the departments that sell all the items supplied by parker (and
nothing more).

sales Dept Item

P.G. ALL. i

supply Item Supplier

ALL. i parker

Here, we need to express set equality situation. To express “A = B”, we can use “A−B = ∅ and
B − A = ∅”.

SELECT Dept
FROM sales
GROUP BY Dept
HAVING COUNT((SELECT Item FROM supply WHERE Supplier = ′parker′)

EXCEPT (Item)) = 0
AND COUNT((Item) EXCEPT

(SELECT Item FROM supply WHERE Supplier = ′parker′)) = 0

Query 17: Find the departments that sell all the items supplied by Hardware dept
(and possibly more).

sales Dept Item

P.G. d [ALL. i,*]
Hardware ALL. i

conditions

d <> Hardware

Similar to Query 15, the set containment concept needs to be used. Here, we show only the SQL
using the CONTAINS operator and omit the SQL without using it for briefness.

SELECT Dept
FROM sales
GROUP BY Dept
HAVING Dept <> ′Hardware′ AND Item CONTAINS

(SELECT Item FROM sales WHERE Dept = ′Hardware′)

26 D. Lee et al

Author Biographies

Dongwon Lee received his B.S. from Korea University, Seoul, Korea in
1993, his M.S. from Columbia University, New York, USA in 1995, and his
Ph.D from UCLA, Los Angeles, USA in 2002, all in Computer Science. He
is currently Assistant Professor in the School of Information Sciences and
Technology at Penn State University, USA. His research interests include
Web and XML Databases, Semantic Web, Digital Library, and Intelligent
Information Systems. His homepage is at http://nike.psu.edu/dongwon/.

Wenlei Mao received his B.S. in Physics from Peking University, China
in 1992, and his M.S. in Computer Science from the College of William
and Mary, Virginia in 1996. He is currently working towards his Ph.D. de-
gree in Computer Science at UCLA. His current research interests include
Knowledge-based Information Retrieval and Intelligent Active Database
Systems.

Henry Chiu received a B.S. degree in 2000 and M.S. degree in 2001
from the University of California at Los Angeles. He is currently a soft-
ware engineer at IBM, developing database synchronization middleware
for mobile devices.

Wesley W. Chu is a professor of Computer Science and was the past
chairman (1988 - 1991) of the Computer Science Department at the
University of California, Los Angles. His current research interest is in
the areas of distributed processing, knowledge-based information systems,
and intelligent web-based databases He was the conference chair of the
16th International Conference on Conceptual Modeling (ER’97). He is
also currently a member of the Editorial Board of the Journal on Very
Large Data Bases and an Associate Editor for the Journal of Data and
Knowledge Engineering. Dr. Chu is a Fellow of IEEE.

Correspondence and offprint requests to: Dongwon Lee, School of Information Sciences and

Technology, Penn State University, PA 16802, USA. Email: dongwon@psu.edu

