
Using a Compact Tree to Index and Query XML Data
Qinghua Zou, Shaorong Liu, Wesley W. Chu

Computer Science Department
University of California – Los Angeles

{zou,sliu,wwc}@cs.ucla.edu

ABSTRACT
Indexing XML is crucial for efficient XML query processing. We
propose a compact tree (Ctree) for XML indexing, which provides
not only concise path summaries at group level but also detailed
child-parent relationships at element level. Based on Ctree, we are
able to measure how well XML data is structured. We also
propose a three-step query processing method. Its efficiency is
achieved by: (1) summarizing large XML data structures into a
condensed Ctree; (2) pruning irrelevant groups to significantly
reduce the search space; (3) eliminating join operations between
the matches for value predicates and those for structure
constraints and (4) using Ctree properties such as regular groups
to reduce query processing time. Our experiments reveal that
Ctree is an effective data structure for managing XML data.

Categories and Subject Descriptors
E.1 [Data Structures]: trees

General Terms
Algorithms, Measurement, Design, Performance

Keywords
Path summary, compact tree, XML index, XQuery processing,
early pruning, inverted file clustering

1. INTRODUCTION
XML indexing is the key to the efficiency of XML query
processing. The semi-structured nature of XML data and the
flexible mechanisms of XML queries introduce new challenges to
the existing database indexing methods. In this paper, we propose:
(1) A novel compact tree, called Ctree, for indexing XML
structures. Ctree is a two-level tree which provides a concise
structure summary at its group level and detailed child-parent
links at its element level which can provide fast access to
elements’ parents. Thus Ctree is an efficient index for processing
the structure constraints of XML queries. (2) Group-based
element reference instead of using global IDs. This enables us to
cluster the entries in value inverted files by groups, which
provides efficient evaluation of value predicates on a relevant
Ctree group. The group-based element reference also facilitates
the differentiation of the heterogeneous XML values by their
groups and enables us to cluster similar element values and index
them accordingly. (3) A Ctree-based query processing method. It
can speed up query evaluation and prune search space at the
earliest processing stage.

2. CTREE
We model an XML document as an ordered labeled tree where
nodes correspond to elements, and edges represent element-
inclusion relationships. A node is represented by a triple (id, label,
value), where id, label and value represent the node’s identifier,
tag name, and optional value respectively. For example, Figure 1
shows a sample XML data tree which has 19 nodes with
identifiers in the circles and labels beside the circles. To
differentiate values from sub-elements, we link a value to its
corresponding node by a dotted line.

For a data tree D, a path summary [1] is a tree in which each node
corresponds to exactly one label path and contains all the
equivalent nodes that share the label path. For example, a path
summary for the XML data tree in Figure 1 is shown in Figure 2a.
Each dotted box contains a group of node ids. Each group has a
label and an identifier listed above the group. For example, data
nodes 2, 13, 16 are in group 1 since their label paths are the same:
dblp.article. Every data tree has a unique path summary [3].

As shown in past research, a path summary greatly facilitates the
evaluation of single-path queries. For example, for a query Q1,
/dblp/article/author, the answers are data nodes 4, 15, and 18
because their label paths satisfy Q1. Path summary, however,

Copyright is held by the author/owner(s).
CIKM’04, NOVEMBER 8-13, 2004, WASHINGTON, DC, USA.
ACM 1-58113-874-1/04/0011.

Figure 1: An Example of XML data tree T1

year

dblp

96

1

2

3 5

year

author

title

article

A B C
John

Sam

6

7 9
author

title

B C D
John

A B D

16

17 18 19
author author

title

Sam 96 John

13

14 15
author

title

B C
95

10

11 12

year title

A C D

thesis thesis article article

4 8

(b) A Ctree for T1 (a) An ordered path summary

1

2, 13, 16

9

4,15,18

7,11
2:title

1:article

0:dblp

6, 10

3, 14, 17 5, 19

8,12

5: thesis

4:year

3:author 7:author

6:title 8:year

-1

0, 0, 0

0

0,1,2

0,1
2:title

 1:article

0:dblp

0, 0

0, 1, 2 0, 2

0,1

5:thesis

4:year

3:author 7:author

6:title 8:year

Figure 2: The path summary and the Ctree for T1

does not preserve the hierarchical relationships among individual
data nodes. Therefore, it is unable to answer branch queries [2].

Thus, we propose Ctree which is a two-level tree containing a
group level and an element level. At the group level, a Ctree
provides a summarized view of hierarchical structures. At the
element level, it preserves detailed child-parent links. Each group
in a Ctree has an array mapping elements to their parents. For
example, Figure 2b is the Ctree for the T1 in Figure 1. Each group
contains an array whose values are shown in the box separated by
a comma and are indexed by nonnegative integers, called relative
element ids. A relative element id together with a group id (gid) is
called an element id. For example, the two elements in group 4
are referred to by 4:0 and 4:1, whose values 0 and 2 are relative
element references for elements 1:0 and 1:2.

Every data tree has a corresponding Ctree, which can be created in
two steps: (1) create a path summary; (2) replace node ids with the
positions of their parents. For example, in Figure 2a, the positions
of 2, 13, and 16 in group 1 are 0, 1 and 2. Thus they are mapped
to elements 1:0, 1:1 and 1:2 respectively. Similarly, 5 and 19 in
group 4 are mapped to 4:0 and 4:1. Since 16 is the parent of 19 in
Figure 1, we replace 19 (4:1) with 2 (the relative element id for
node 16) as shown in Figure 2b.

With the Ctree in Figure 2b, we can answer not only single-path
queries but also branch queries. For example, for the query
/dblp/article[title and year], elements 1:0 and 1:2 are the answers
since the relative element ids 0 and 2 are contained both in group
2 and in group 4. An element id in Ctree contains path
information (group id) which makes Ctree more efficient in query
processing than other indexing methods.

3. QUERY PROCESSING
We model an XML query Q as a tree where nodes are the tags in
Q and edges represent axes with a single arrow for a child axis “/”
and a double arrow for a descendant axis “//”. Filters in Q are
represented by value predicates of the corresponding nodes. We
assume that each query has only one return node as in the box.
For example, Figure 3 represents of the following query (Q4):

/dblp/article [contains(.//author, “John”) and year> 94]/title

In this example, a user is interested in
titles of the articles under dblp which
have descendant elements (author)
containing “John” and sub-elements
(year) with a value greater than 94.
The dotted arrow beside the node
indicates the result’s projecting
direction.

After a query is transformed into a tree Q, we can evaluate Q
using Ctree index data T in three steps as shown in Figure 4.

First, it locates a set of frames for Q, where each frame is an
assignment of Ctree groups in T to the query nodes in Q that
satisfy the structure of Q at the group-level (Line 1). The
FrameFinder (Fig 4) finds frames in a top-down fashion starting
from candidate groups for the root of the query tree down to the
leaves.For example, there is one frame consisting of groups (0, 1,
3, 4, 2) in the Ctree (Figure 2b) for Q4, which are matches to

query nodes (dblp, article, author, year, title) respectively. Notice
that by assigning gid 3 to author, we exclude other elements
which also have the tag name author (e.g. group 7) and thus
reduce search space.

Second, for each frame, the query processing algorithm evaluates
value predicates using value indexes to determine which elements
satisfy the predicates (Line 3). Value indexes support the
Search(value, gid?) operation. For example, there are two value
predicates in Q4: author=“John” and year>94. For the first
predicate, it calls Search(“John”, 3) since author is mapped to
group 3 in step 1. Elements 3:0 and 3:1, data nodes 4 and 15 in
Figure 1, are retuned. Similarly, element 4:0, data node 5, is
returned for the second value predicate.

Finally, it evaluates element level structure constraints and returns
the results. For example, the second step for Q4 determines that
elements {3:0, 3:1} and {4:0} satisfy value constraints. The
answers can be determined by projecting relevant elements from
group 3 and 4 to the target group 2. We first project groups 3 and
4 upward to group 1 and get the answer {1:0} since the element
1:0 is the parent of both 3:0 and 4:0. Then we project group 1
downward to group 2 and return the result {2:0} since element
2:0 is the only child of the element 1:0.

4. CONCLUSIONS
In this paper, we propose a compact tree, Ctree, for indexing
XML data. Ctree is a two-level representation of an XML data
tree: group level and element level. The group level provides
concise path summaries and the element level provides detailed
child-parent relationships in an XML data tree. The group-based
element reference facilitates stepwise early pruning, efficient
value processing. Furthermore, Ctree is able to capture one-to-one
parent-child relationships (the shaded box in Figure 2b) Our
experimental studies [3] reveal that Ctree significantly
outperforms other index methods in query processing.

5. REFERENCES
[1] R. Goldman and J. Widom. Dataguides: Enabling query

formulation and optimization in semistructured databases.
In VLDB, 1997.

[2] S. Liu, Q. Zou, and W. W. Chu. Configurable Indexing and
Ranking for XML Information Retrieval. In SIGIR, 2004.

[3] Q. Zou, S. Liu, and W. Chu. Ctree: A Compact Tree for
Indexing XML Data. In WIDM, 2004.

>94

dblp

article

author year title
John
Figure 3: A query tree

Projecting
direction

Input: T, a Ctree with value index
 Q, a query tree
Output: A list of elements in T that satisfy the Q.
QueryProcessor(T, Q)
1 Evaluate group level structure constraints:
 Call FrameFinder to get a list of frames.
2 For each frame, do
3 Evaluate value constraints on the frame.
4 Evaluate element level structure constraints:
 Call ElmEvaluator to a list of matched elements;
5 Output the list of elements;

Figure 4 A Ctree-based query processing algorithm

