
IndexFinder: A Knowledge-based Method for Indexing Clinical Texts

Qinghua Zou, MS, Wesley W. Chu, PhD

Dept of Computer Science,
University of California,
Los Angeles, CA 90095

Extracting key concepts from clinical texts for indexing is
an important task in implementing a medical digital
library. Several methods are proposed in the literature for
mapping free text into terms controlled by the Unified
Medical Language System (UMLS). They are, however,
not appropriate for building a fast online application.
MatMap and other methods use natural language
processing (NLP) techniques to map identified noun
phrases into concepts. We present a new algorithm for
efficiently generating all possible UMLS phrases in a text
from which key concepts are identified by using syntactic
and semantic filtering. We have implemented the algorithm
as a web-based service that provides a search interface for
researchers and computer programs. During preliminary
manual examinations of the 456 concepts for 100 topic
sentences, we noticed that our method has discovered 18
(4%) more phrases that are not obtained from one single
noun phrase, and no improper combinations are in the
results. Our empirical experiment shows that the algorithm
is effective at discovering relevant UMLS concepts while
achieving a throughput of 43K bytes text per second. The
tool can extract key concepts from clinical texts for
indexing.

INTRODUCTION

The Unified Medical Language System (UMLS) is a
collection of over 100 medical knowledge sources [1]. The
most recent edition of UMLS(2003AA ed.) contains
875,255 concepts and 2.14 million phrases [5] with lengths
ranging from 1 to 100 words, and an average of 4.5 words.
Our goal is to have a fast method to extract key UMLS
concepts automatically from clinical texts for indexing.

A significant amount of research has aimed at developing
effective methods for mapping free text into UMLS
concepts. Examples of such efforts include SENSE [1],
MicroMeSH [6], Metaphrase [7], KnowledgeMap [4],
PhraseX [2], MetaMap [3]. Many of these efforts use
natural language processing (NLP) techniques to parse
passages of free text to generate noun phrases, which in
turn are mapped into UMLS phrases. This approach
achieves some success. They are, however, some
shortcomings to this general technique:

First, some important concepts can never be discovered
through the identification of noun phrases. Table 1
provides examples of texts that reveal the shortcomings of
the use of noun phrases.

• Example 1: A word from the heading phrase with
a word from the description phrase forms the key
concept, prostate hyperplasia (C0033577).

• Example 2: A word from the subject and two
words from the location phrase combine to form
the key concept, left lung mass (C0746117).

• Example 3: Words from two sentences combine,
forming the key concept, left lung mass
(C0746117).

Secondly, deploying NLP applications is nontrivial and
typically requires significant computing resources. Most
of the NLP systems work in an offline mode. NLP
methods are not generally suitable for a real time web tool
that maps large volumes of free text into UMLS concepts.
Although MetaMap is implemented using Java, there are
no web-based interfaces to map from arbitrary free text to
UMLS concepts.

In this paper, we propose a novel approach to discover
candidate phrases in a sentence or other text unit and then
use syntactic and semantic filters specified by the user to
filter out irrelevant conceptual terms. The approach avoids
using the expensive NLP process. An empirical analysis
shows that our algorithm can process text at a throughput
of 43K bytes text per second, which is much faster than
NLP-based approaches like MetaMap. Our system can
extract conceptual terms from clinical texts and group
them by their corresponding semantic types, which can be
used for indexing in medical digital libraries.

Example Text
1 Prostate, right (biopsy)

 - fibromuscular and glandular hyperplasia

2 A small mass was found in the left hilum of the lung.

3 A large mass was identified. It is in the left side of the lung.

Table 1. Problems with mapping noun phrases individually.

BACKGROUND

Mapping of UMLS Concepts We first postulate UMLS
concepts in the form shown in table 2, which can be
calculated from UMLS normalized string table
MRXNS.ENG. Here, each
row contains a phrase that
is given as a set of words
where the ordering is
overlooked. For any text of
m distinct words, e.g.
T={A,B,C,D}, the mapping
problem is to find all the
phrases in the table that are
subsets of the text T.

For above T, for example,
the satisfied phrases are {A}, {B}, {A,B}, {C}, {B,C,D},
and {A,C}. The two phrases {A,D,E} and {E,D} are not
considered relevant since E is not in T.

Computation Complexity Since UMLS has 2.14 million
phrases, Table 2 will contain 2.14 million rows. For a text
of m distinct words, the mapping problem may be solved
in two naïve ways:

First approach: For each s of the 2m-1 non empty subsets
of the text, we determine whether s is a phrase in the table.
Let the average time for the testing of whether s is
contained in the table be a, then this approach has an
average time complexity of O(a2m).

Second approach: For each phrase of the N rows (2.14M)
in the table, we determine whether the phrase is a subset of
the text. Supposing the average time for testing whether a
phrase in the table is contained in the text equals constant
b, then the average time complexity will be O(bN).

Clearly, when m>20, both approaches require millions of
comparisons. Therefore they are not appropriate for
designing a real time web application.

In the following sections, we propose an efficient mapping
algorithm that is significantly faster than the above
approaches.

METHODS

In this section, we will first present the basic searching
idea of generating concept candidates from permuting the
set of words in the input text. Then we show how to
remove word inflections and how to add synonyms.
Finally, we present several syntactic and semantic filters to
remove the irrelevant conceptual terms introduced during
the generation of phrase candidates.

The Mapping Algorithm

Data structures The Phrase table in Table 2 can be sorted
according to the increasing number of words, as in Figure

1(a). We can then use it to populate the four indexing data
structures as shown in Figure 1(b-e).

• wordHt: a hash table mapping a word to a unique
identifier wid, as in Figure 1(b). In the UMLS
2003AA, there are 431,200 distinct words.
Suppose that the average characters per word are
10, and wid is a 4 byte integer. The total size for
the wordHt is about 6Mega bytes.

• wid2pids: an array mapping wid to a list of phrase
identifiers pids. It is an inverted index indicating
the phrase list where a word occurs, as in Figure
1(c). The average number of phrases per word in
the table is 21.3. Therefore the data size for this
table is 431200*21.3*4=36.7M.

• cuis: an array that maps pid to UMLS cui, as in
Figure 1(d). Since the total number of phrases in
UMLS is 2.14M, this array size is 2.14M* 4=
8.6M bytes.

• pLen: an array indicating the upper bond for a
given phrase length, as in Figure 1(e). For
example, the pid for phrases of length 1 will be
less than 3. Using this table, we are able to tell the
length for each pid. Since the maximal phrase
length is 100, the memory size for this array is
about 400 bytes.

Since the total memory for the above four data sets is less
than 50M bytes, they can reside in the main memory.

Searching reduces to a counting process Given the above
indexing data structures, mapping a text T into concepts
becomes a simple counting process, as shown in Figure 2.
It first adds each word into its occurring phrase’s queues,
then we output those phrases that reach the expect number
of words. More specifically, at Line 1, the text T is
tokenized into a list of words, which are transformed into
lowercase. Repeating words are dropped, as in Line 2. The
unique words in wl are mapped into wids through the hash
table wordHt, as in Line 3. At Lines 4 and 5, we use hash
table countHt to collect information for phrases and their
word lists. If the number of words for a phrase is less than
the expected length, some word of the phrase is absent,
and the phrase will be removed, as in Line 6. Finally at
Line 7, phrase identities are mapped into concepts, and we
output the results.

pno Set of
words

#word concept

1 A 1 C1
2 B 1 C2
3 A, B 2 C3
4 C 1 C4
5 B, C, D 3 C5
6 A, D, E 3 C6
7 E, D 2 C7
8 A, C 2 C8

Table 2. Phrase table

pid words # cui
0 A 1 C1
1 B 1 C2
2 C 1 C4
3 A, B 2 C3
4 A, C 2 C8
5 E, D 2 C7
6 B, C, D 3 C5
7 A, D, E 3 C6

a. Phrase table

pid cui
0 C1
1 C2
2 C4
3 C3
4 C8
5 C7
6 C5
7 C6

d. cuis

word����wid
A� 0
B� 1
C� 2
D� 3
E� 4

b. wordHt

wid pids
0 0, 3, 4, 7
1 1, 3, 6
2 2, 4, 6
3 5, 6, 7
4 5, 7

c.wid2pids

len upPid
0 0
1 3
2 6
3 8

e. pLen

Figure 1. Indexing structures for matching text to
UMLS concepts

For example, Figure 3 shows the counting process for the
input text T={A,B,C,D}. In Figure 3(b), a word is mapped
into wid and pids. For instance, word A has wid=0 and
pids={0,3,4,7} meaning that A occurs in four phrases. We
then add A to the four pid word lists in hash table countHt,
as in Figure 3(a). Figure 3(a) shows the results after
processing all the words in T. Then pid 5 and 7 are
removed since their lengths are 1 and 2 less than the
expected lengths 2 and 3, respectively.

For an input text of m distinct words, since the average
length of the phrase list of a word is 21.3, we need to
perform 21.3*m operations at Line 4-5 in Figure 3.
Therefore the average time complexity will be O(21.3m)
which is significantly lower than the complexity of the
naive approaches.

Word Normalization

Since we build indexing data using the normalized string
table MRXNS.ENG where word inflections are removed,
word inflections will not be contained in the table wordHt
as in Figure 1(b). For example, we will not find the
concept C0043209 for
women unless we normalize
it to woman.

We use two data structures
to store special word
inflections, as in Figure 4.
Hash table specialHt maps a
special word to a base. For
example, children maps to
child by bid=0; arose and
arisen map to arise.

When a word has no entry in wordHt in line 3 of Figure 2,
normalization starts. It follows these two steps:

1) If removing regular inflection, the word has an
entry in wordHt, then returns the entry; otherwise,
it continues to step 2.

2) If the word has an entry in specialHt, then return
the corresponding base word; otherwise, the word
is overlooked

Adding Synonyms

Synonym mapping is useful since people do not usually
know the exact terminologies if they are not in the field.

For example, a patient
query may consist of no
medical terms unless
synonyms are considered.
UMLS provides a synonym
list [8]; two data structures
synHt and gid2wids are
used for adding synonyms,
as shown in Figure 6. The
table synHt maps a word to a synonym group. For
example, the words eye, optic, and oclar are synonyms
since they have the same group identifier 0. The gid2wids
is an array that maps a synonym group to its member
words. Given synHt and gid2wids, it is easy to find the list
of synonyms for a given word.

Filtering

Since applications usually have a certain focus, filtering
out the results that people are not interested in is very
useful. For example, a doctor wants to know what kind of
diseases a patient suffers. Rather than returning all
concepts to the doctor, several disease-related UMLS
phrases are much more desirable. We consider six types of
filters as shown in Figure 6.

The first three filters are applied during the mapping
process. They are:

• Symbol Type filter: to specify the symbol types of
interests. For example, if a user wants to ignore
digits like MetaMap did, he can simply not check
the Digits box as in Figure 6.

• Term Length filter: to specify the length
limitation of candidate phrases.

• Coverage filter: to specify the coverage condition
for a candidate phrase. It has three options, at
least one, majority, and all. By default, it is all

word: wid: pids
A: 0: 0, 3, 4, 7
 B: 1: 1, 3, 6
 C: 2: 2, 4, 6
 D: 3: 5, 6, 7
(b) pids

pid����words
0 ���� {A}
1 ���� {B}
2 ���� {C}
3 ���� {A, B}
4 ���� {A, C}
5 � {D}
6 ���� {B, C, D}
7 � {A, D}

(a) countHt
Figure 3. Counting for each pid.

Hashing and
counting

//input: text T
//output: list of cui & phrase
1. list of words of T � wl
2. to low case & remove

repeating words in wl.
3. words in wl �wids
4. foreach wids, get pids
5. foreach pids, add countHt
6. remove if |words|<exp(pid)
7. replace pid to cui, output

Figure 2. Algorithm

bid base
0 child
1 woman
2 man
3 bring
4 arise

…
(b) base

word ����bid
children � 0
women � 1
men � 2
brought � 3
arose � 4
arisen � 4
…

(a) specialHt
Figure 4. Data structure for

removing inflection.

gid wids
0 21,34,67

…
(b) gid2wids

word: wid����gid
eye: 21 � 0
optic:34 � 0
oclar: 67 � 0
…

(a) synHt
Figure 5. Data structure for

adding synonyms.

Figure 6. Configuration options.

where every word in a candidate phrase should be
present in the input text.

The latter three filters are used for further pruning the
candidate phrases.

• Subset filter: to remove phrases if they are subsets
of some other phrases. For example, if results are
{lung cancer} and {cancer}, then {cancer} will
be removed since it is a subset of the former.

• Range filter: to remove a phrase if the phrase is
found from words in the input text to exceed a
specific distance. We can set the filter within
one sentence.

• Semantic filter: to remove the phrases of semantic
types that the user is not interested in. In UMLS,
134 semantic types are defined and each concept
maps to one or several semantic types. For
example, the user can select Disease or Syndrome
and its two sub types, as shown in Figure 6, so
that the resulting phrases will be of these three
types. As a result, the filter also eliminates those
irrelevant phrases from the set of phrase
candidates. Note that UMLS ISA relationship
may also be used to filter out more general
phrases.

RESULTS

We have implemented the algorithm as a web-based
service named IndexFinder that provides web interfaces
for users and programs at the following links respectively:

• http://fargo.cs.ucla.edu/umls/search.aspx
• http://fargo.cs.ucla.edu/umls/service.asmx

Our experiment shows that IndexFinder can process 43K
bytes text per second. Our preliminary manual
examination shows no irrelevant phrases were returned.
IndexFinder, written in C#, is running at the above sites on
a 1.2GHz PC machine with 512MB main memory.

Example Figure 7 shows the web interface for users.
There are two windows on the web page, one for input text
and the other for output results. Three buttons for adding
synonyms, removing inflection, and configuring options
are at the top of the input window. When a user clicks the
IFinder Search button below the input window, results will
show up. Figure 8 shows 18 phrases found when no filters
were applied. Each line has a UMLS concept identifier,
phrase text, and corresponding semantic type.

Filtering Figure 8 shows filtering result for the sample
input in Figure 7, also shown in the top of Figure 8. When
a subset filter is used, 8 phrases are returned.

Input of text unit
 Prostate, right (biopsy)
 - fibromuscular and glandular hyperplasia
 - focal acute inflammation

- no evidence of malignancy
Filtering Phrases

Subset C0194804:biopsy prostate
C0033577:prostate hyperplasia
C0035621:right
C0259776:hyperplasia fibromuscular
C0334000:hyperplasia glandular
C0522570:inflammation focal
C0333361:inflammation acute
C0391857:no malignancy evidence

Pathologic Function
(T046)

C0033577:prostate hyperplasia
C0259776:hyperplasia fibromuscular
C0334000:hyperplasia glandular
C0333361:inflammation acute

Body parts & Spatial
(T023, T082)

C0033572:prostate
C0205234:focal

Diagnostic Procedure
(T060)

C0194804:biopsy prostate

If Pathologic Function is selected, four answers will be
returned. The two phrases prostate and focal will be given
if the user wants to know body parts or spatial
characteristics. There is only one diagnostic procedure
used, which is prostate biopsy.

Throughput Experiment We tested the web service using
5,783 reports of 128 patients from the UCLA Hospital.
The total size of the documents is 10,8M bytes. The
service was called for each document when no filter was
applied. There are 910K concepts found in 254 seconds.
Therefore, the throughput is about 42.7 K bytes per
second.

Relevance Evaluation We manually examined the
mapping results for 100 topic sentences from the above
reports one at a time. A phrase is considered relevant to a
sentence if the sentence implies the phrase when ignoring
negation. For example, both “evidence” and “no evidence”
are relevant to the input “no evidence of malignancy” since
negation is ignored. There are total 456 UMLS phrases
found for the 100 topic sentences. We noticed that 18
concepts are not from a single noun phrase and there are
no irrelevant phrases.

Figure 8. Result filtering.

Figure 7. Concept finder web interface.

Output window

Input window

Figure 7. IndexFinder web interface.

APPLICATION

As a specific clinical application for this research, we have
focused on using the IndexFinder to intelligently identify
the key terms in an electronic medical record for
documents that specifically mention brain tumor related
content. These documents consist of primary care clinical
notes, specialist clinical notes, pathology reports,
laboratory results, radiology reports, and surgical notes.
Figure 9 shows an excerpt from a radiology report.

Since our interests focus on brain tumor related concepts,
we can specify a semantic filter worklist of pertinent
documents based on brain tumor characteristics including:
cancer type, anatomical location, and medical
interventions. These characteristics are then mapped to
relevant UMLS semantic types as shown in Table 3 to
define semantic filters.
Brain Tumor

Characteristics
Relevant
 UMLS semantic types

Specific Cancer Neoplastic Proccess
Medical Intervention Therapeutic Procedure
Anatomical location Body Part, Organ or Organ Component

Table 3. Using UMLS semantic type to define interests.

A clinician looking for specific documents that address a
certain type of brain tumor (i.e. meningioma) would have
to carefully search the individual documents. With
IndexFinder, only two key terms, meningioma and
encephalomalacia, are returned for the above text excerpt
as shown in Table 4. The two concepts, in fact, are
important in the excerpt and thus are good terms for
indexing.

Table 4. Output from IndexFinder for the text in Figure 9.

CONCLUSION

In this paper, we proposed a new efficient approach for
generating the conceptual phrase candidates in clinical
texts and identifying important phrases for indexing. The
method uses a set of data structures to reduce the problem
of searching UMLS concepts to a simple counting process.
Syntatic and semantic filters are used to eliminate the
irrelevant candidates. Our experiment shows that it can

process free text at a speed of about 43K bytes text per
second. As a result, IndexFinder is able to extract key
UMLS concepts from clinical texts in real time.
Preliminary manual evaluation shows that no irrelevant
concepts are returned. IndexFinder can be used for
indexing of clinical texts for a medical digital library.

ACKNOWLEDGEMENTS

This research is supported by NIC/NIH Grant #4442511-
33780.

REFERENCES

1. Yuri L. Zieman and Howard L. Bleich. Conceptual
Mapping of User’s Queries to Medical Subject
Headings. Proc AMIA 1997.

2. Suresh Srinivasan, Thomas C. Rindflesch, William T.
Hole, Alan R. Aronson, and James G. Mork. Finding
UMLS Metathesaurus Concepts in MEDLINE. Proc
AMIA 2002.

3. Alan R. Aronson, Effective Mapping of Biomedical Text
to the UMLS Metathesaurus: The MetaMap Program.
Proc AMIA 2001.

4. Joshua C. Denny, Jeffrey D. Smithers, Anderson
Spickard, III, Randolph A. Miller. A New Tool to
Identify Key Biomedical Concepts in Text Documents.
Proc AMIA 2002.

5. National Library of Medicine. Documentation, UMLS
Knowledge Sources, 14 th Edition, January 2003.

6. Elkin PL, Cimino JJ, Lowe HJ, Aronow DB, Payne TH,
Pincetl PS and Barnett GO. Mapping to MeSH: The art
of trapping MeSH equivalence from within narrative
text. Proc 12th SCAMC, 185-190, 1988.

7. Tuttle MS, Olson NE, Keck KD, Cole WG, Erlbaum
MS, Sherertz DD et al. Metaphrase: an aid to the clinical
conceptualization and formalization of patient problems
in healthcare enterprises. Methods Inf Med. 1998
Nov;37(4-5):373-83.

8. Hole W. T, Srinivasan S. Discovering Missed Synonymy
in a Large Concept-Oriented Metathesaurus. Proc AMIA
Symp 2000:354-358

9. Morioka CA, El-Saden S, Duckwiler, G. et al, Workflow
Management of HIS/RIS Textual Documents with PACS
Image Studies for Neuroradiology, Proc AMIA Symp
2003 (submitted for publication).

Semantic Descriptor ULMS code
T191:Neoplastic Process C0025286:meningioma
T047:Disease or Syndrome C0014068:encephalomalacia

“The right frontal convexity meningioma is slightly
larger now than on the prior examination. The left
frontal meningioma is unchanged. There are three
other small enhancing nodules seen along the frontal
convexities bilaterally, as described above. There are
no new lesions seen. There is no mass effect caused by
these lesions. There is bifrontal encephalomalacia.”

Figure 9. Free-text excerpt from a radiology report.

