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Extracting key concepts from clinical texts for indexing is 
an important task in implementing a medical digital 
library.  Several methods are proposed in the literature for 
mapping free text into terms controlled by the Unified 
Medical Language System (UMLS). They are, however, 
not appropriate for building a fast online application.  
MatMap and other methods use natural language 
processing (NLP) techniques to map identified noun 
phrases into concepts. We present a new algorithm for 
efficiently generating all possible UMLS phrases in a text 
from which key concepts are identified by using syntactic 
and semantic filtering. We have implemented the algorithm 
as a web-based service that provides a search interface for 
researchers and computer programs. During preliminary 
manual examinations of the 456 concepts for 100 topic 
sentences, we noticed that our method has discovered 18 
(4%) more phrases that are not obtained from one single 
noun phrase, and no improper combinations are in the 
results. Our empirical experiment shows that the algorithm 
is effective at discovering relevant UMLS concepts while 
achieving a throughput of 43K bytes text per second. The 
tool can extract key concepts from clinical texts for 
indexing. 

INTRODUCTION 

The Unified Medical Language System (UMLS) is a 
collection of over 100 medical knowledge sources [1]. The 
most recent edition of UMLS(2003AA ed.) contains 
875,255 concepts and 2.14 million phrases [5] with lengths 
ranging from 1 to 100 words, and an average of 4.5 words.  
Our goal is to have a fast method to extract key UMLS 
concepts automatically from clinical texts for indexing.   

A significant amount of research has aimed at developing 
effective methods for mapping free text into UMLS 
concepts.  Examples of such efforts include SENSE [1], 
MicroMeSH [6], Metaphrase [7], KnowledgeMap [4], 
PhraseX [2], MetaMap [3].  Many of these efforts use 
natural language processing (NLP) techniques to parse 
passages of free text to generate noun phrases, which in 
turn are mapped into UMLS phrases. This approach 
achieves some success. They are, however, some 
shortcomings to this general technique: 

First, some important concepts can never be discovered 
through the identification of noun phrases. Table 1 
provides examples of texts that reveal the shortcomings of 
the use of noun phrases.   

•  Example 1: A word from the heading phrase with 
a word from the description phrase forms the key 
concept, prostate hyperplasia (C0033577). 

•  Example 2:  A word from the subject and two 
words from the location phrase combine to form 
the key concept, left lung mass (C0746117). 

•  Example 3:  Words from two sentences combine, 
forming the key concept, left lung mass 
(C0746117). 

 
 
 
 
 
 
 
 

Secondly, deploying NLP applications is nontrivial and 
typically requires significant computing resources.  Most 
of the NLP systems work in an offline mode.  NLP 
methods are not generally suitable for a real time web tool 
that maps large volumes of free text into UMLS concepts. 
Although MetaMap is implemented using Java, there are 
no web-based interfaces to map from arbitrary free text to 
UMLS concepts.   

In this paper, we propose a novel approach to discover 
candidate phrases in a sentence or other text unit and then 
use syntactic and semantic filters specified by the user to 
filter out irrelevant conceptual terms. The approach avoids  
using the expensive NLP process. An empirical analysis 
shows that our algorithm can process text at a throughput 
of 43K bytes text per second, which is much faster than 
NLP-based approaches like MetaMap.  Our system can 
extract conceptual terms from clinical texts and group 
them by their corresponding semantic types, which can be 
used for indexing in medical digital libraries.  

Example Text 
1 Prostate, right (biopsy) 

  - fibromuscular and glandular hyperplasia 

2 A small mass was found in the left hilum of the lung. 

3 A large mass was identified. It is in the left side of the lung. 

Table 1. Problems with mapping noun phrases individually. 



BACKGROUND 

Mapping of UMLS Concepts We first postulate UMLS 
concepts in the form shown in table 2, which can be 
calculated from UMLS normalized string table 
MRXNS.ENG. Here, each 
row contains a phrase that 
is given as a set of words 
where the ordering is 
overlooked.  For any text of 
m distinct words, e.g. 
T={A,B,C,D}, the mapping 
problem is to find all the 
phrases in the table that are 
subsets of the text T.  

For above T, for example, 
the satisfied phrases are {A}, {B}, {A,B}, {C}, {B,C,D}, 
and {A,C}.  The two phrases {A,D,E} and {E,D} are not 
considered relevant since E is not in T.   

Computation Complexity Since UMLS has 2.14 million 
phrases, Table 2 will contain 2.14 million rows.  For a text 
of m distinct words, the mapping problem may be solved 
in two naïve ways: 

First approach: For each s of the 2m-1 non empty subsets 
of the text, we determine whether s is a phrase in the table.  
Let the average time for the testing of whether s is 
contained in the table be a, then this approach has an 
average time complexity of O(a2m). 

Second approach: For each phrase of the N rows (2.14M) 
in the table, we determine whether the phrase is a subset of 
the text.  Supposing the average time for testing whether a 
phrase in the table is contained in the text equals constant 
b, then the average time complexity will be O(bN).   

Clearly, when m>20, both approaches require millions of 
comparisons.  Therefore they are not appropriate for 
designing a real time web application.  

In the following sections, we propose an efficient mapping 
algorithm that is significantly faster than the above 
approaches.  

METHODS 

In this section, we will first present the basic searching 
idea of generating concept candidates from permuting the 
set of words in the input text. Then we show how to 
remove word inflections and how to add synonyms. 
Finally, we present several syntactic and semantic filters to 
remove the irrelevant conceptual terms introduced during 
the generation of phrase candidates. 

The Mapping Algorithm 

Data structures The Phrase table in Table 2 can be sorted 
according to the increasing number of words, as in Figure 

1(a). We can then use it to populate the four indexing data 
structures as shown in Figure 1(b-e).      
 
 
 
 
 
 
 
 
 
 
 
 

•  wordHt: a hash table mapping a word to a unique 
identifier wid, as in Figure 1(b). In the UMLS 
2003AA, there are 431,200 distinct words.  
Suppose that the average characters per word are 
10, and wid is a 4 byte integer. The total size for 
the wordHt is about 6Mega bytes.  

•  wid2pids: an array mapping wid to a list of phrase 
identifiers pids.  It is an inverted index indicating 
the phrase list where a word occurs, as in Figure 
1(c).  The average number of phrases per word in 
the table is 21.3.  Therefore the data size for this 
table is 431200*21.3*4=36.7M.  

•  cuis: an array that maps pid to UMLS cui, as in 
Figure 1(d).  Since the total number of phrases in 
UMLS is 2.14M, this array size is 2.14M* 4= 
8.6M bytes.  

•  pLen: an array indicating the upper bond for a 
given phrase length, as in Figure 1(e).  For 
example, the pid for phrases of length 1 will be 
less than 3. Using this table, we are able to tell the 
length for each pid.   Since the maximal phrase 
length is 100, the memory size for this array is 
about 400 bytes.  

Since the total memory for the above four data sets is less 
than 50M bytes, they can reside in the main memory.  

Searching reduces to a counting process Given the above 
indexing data structures, mapping a text T into concepts 
becomes a simple counting process, as shown in Figure 2.  
It first adds each word into its occurring phrase’s queues, 
then we output those phrases that reach the expect number 
of words.  More specifically, at Line 1, the text T is 
tokenized into a list of words, which are transformed into 
lowercase. Repeating words are dropped, as in Line 2. The 
unique words in wl are mapped into wids through the hash 
table wordHt, as in Line 3.  At Lines 4 and 5, we use hash 
table countHt to collect information for phrases and their 
word lists.  If the number of words for a phrase is less than 
the expected length, some word of the phrase is absent, 
and the phrase will be removed, as in Line 6.  Finally at 
Line 7, phrase identities are mapped into concepts, and we 
output the results. 

pno Set of 
words 

#word concept

1 A 1 C1 
2 B 1 C2 
3 A, B 2 C3 
4 C 1 C4 
5 B, C, D 3 C5 
6 A, D, E 3 C6 
7 E, D 2 C7 
8 A, C 2 C8 

Table 2. Phrase table 

pid words # cui
0 A 1 C1
1 B 1 C2
2 C 1 C4
3 A, B 2 C3
4 A, C 2 C8
5 E, D 2 C7
6 B, C, D 3 C5
7 A, D, E 3 C6

a. Phrase table 

pid cui
0 C1
1 C2
2 C4
3 C3
4 C8
5 C7
6 C5
7 C6

d. cuis 

word����wid
A� 0 
B� 1 
C� 2 
D� 3 
E� 4 

b. wordHt 

wid pids 
0 0, 3, 4, 7 
1 1, 3, 6 
2 2, 4, 6 
3 5, 6, 7 
4 5, 7 

c.wid2pids 

len upPid
0 0 
1 3 
2 6 
3 8 

e. pLen 

Figure 1. Indexing structures for matching text to 
UMLS concepts 



 
 
 
 
 
 
 
 
 
 
 
For example, Figure 3 shows the counting process for the 
input text T={A,B,C,D}.  In Figure 3(b), a word is mapped 
into wid and pids.  For instance, word A has wid=0 and 
pids={0,3,4,7} meaning that A occurs in four phrases.  We 
then add A to the four pid word lists in hash table countHt, 
as in Figure 3(a).  Figure 3(a) shows the results after 
processing all the words in T.  Then pid 5 and 7 are 
removed since their lengths are 1 and 2 less than the 
expected lengths 2 and 3, respectively. 

For an input text of m distinct words, since the average 
length of the phrase list of a word is 21.3, we need to 
perform 21.3*m operations at Line 4-5 in Figure 3.  
Therefore the average time complexity will be O(21.3m) 
which is  significantly lower than the complexity of the 
naive approaches. 
 

Word Normalization 

Since we build indexing data using the normalized string 
table MRXNS.ENG where word inflections are removed, 
word inflections will not be contained in the table wordHt 
as in Figure 1(b).  For example, we will not find the 
concept C0043209 for 
women unless we normalize 
it to woman.  

We use two data structures 
to store special word 
inflections, as in Figure 4. 
Hash table specialHt maps a 
special word to a base.  For 
example, children maps to 
child by bid=0; arose and 
arisen map to arise.  

When a word has no entry in wordHt in line 3 of Figure 2, 
normalization starts.  It follows these two steps: 

1) If removing regular inflection, the word has an 
entry in wordHt, then returns the entry; otherwise, 
it continues to step 2. 

2) If the word has an entry in specialHt, then return 
the corresponding base word; otherwise, the word 
is overlooked 

Adding Synonyms 

Synonym mapping is useful since people do not usually 
know the exact terminologies if they are not in the field. 

For example, a patient 
query may consist of no 
medical terms unless 
synonyms are considered.  
UMLS provides a synonym 
list [8]; two data structures 
synHt and gid2wids are 
used for adding synonyms, 
as shown in Figure 6.  The 
table synHt maps a word to a synonym group.  For 
example, the words eye, optic, and oclar are synonyms 
since they have the same group identifier 0.  The gid2wids 
is an array that maps a synonym group to its member 
words.  Given synHt and gid2wids, it is easy to find the list 
of synonyms for a given word. 

Filtering 

Since applications usually have a certain focus, filtering 
out the results that people are not interested in is very 
useful.  For example, a doctor wants to know what kind of 
diseases a patient suffers. Rather than returning all 
concepts to the doctor, several disease-related UMLS 
phrases are much more desirable.  We consider six types of 
filters as shown in Figure 6. 

 
 
The first three filters are applied during the mapping 
process.  They are: 

•  Symbol Type filter:  to specify the symbol types of 
interests.  For example, if a user wants to ignore 
digits like MetaMap did, he can simply not check 
the Digits box as in Figure 6.  

•  Term Length filter:  to specify the length 
limitation of candidate phrases. 

•  Coverage filter: to specify the coverage condition 
for a candidate phrase.  It has three options, at 
least one, majority, and all. By default, it is all 

word:  wid: pids 
A:  0:  0, 3, 4, 7 
 B:  1:  1, 3, 6 
 C:  2:  2, 4, 6 
 D:  3:  5, 6, 7 
(b) pids 

pid����words 
0 ���� {A} 
1 ���� {B} 
2 ���� {C} 
3 ���� {A, B} 
4 ���� {A, C} 
5 � {D} 
6 ���� {B, C, D} 
7 � {A, D} 

(a) countHt 
Figure 3. Counting for each pid. 

Hashing and 
counting 

//input:  text T 
//output: list of cui & phrase 
1. list of words of T � wl 
2. to low case & remove 

repeating words in wl.  
3. words in wl �wids 
4. foreach wids, get pids 
5.    foreach pids, add countHt 
6. remove if |words|<exp(pid) 
7. replace pid to cui, output 

Figure 2. Algorithm 

bid base 
0 child 
1 woman
2 man 
3 bring 
4 arise 

… 
(b) base 

word ����bid 
children  � 0 
women  � 1 
men � 2 
brought � 3 
arose � 4 
arisen � 4 
… 

(a) specialHt 
Figure 4. Data structure for 

removing inflection. 

gid wids 
0 21,34,67

… 
(b) gid2wids 

word: wid����gid
eye:  21 � 0 
optic:34 � 0 
oclar: 67 � 0 
… 

(a) synHt 
Figure 5. Data structure for 

adding synonyms. 

Figure 6.  Configuration options. 



where every word in a candidate phrase should be 
present in the input text.   

The latter three filters are used for further pruning the 
candidate phrases.   

•  Subset filter: to remove phrases if they are subsets 
of some other phrases.  For example, if results are 
{lung cancer} and {cancer}, then {cancer} will 
be removed since it is a subset of the former.   

•  Range filter: to remove a phrase if the phrase is 
found from words in the input text to exceed a 
specific distance.    We can set the filter within 
one sentence.  

•  Semantic filter: to remove the phrases of semantic 
types that the user is not interested in. In UMLS, 
134 semantic types are defined and each concept 
maps to one or several semantic types. For 
example, the user can select Disease or Syndrome 
and its two sub types, as shown in Figure 6, so 
that the resulting phrases will be of these three 
types.  As a result, the filter also eliminates those 
irrelevant phrases from the set of phrase 
candidates.  Note that UMLS ISA relationship 
may also be used to filter out more general 
phrases. 

RESULTS 

We have implemented the algorithm as a web-based 
service named IndexFinder that provides web interfaces 
for users and programs at the following links respectively: 

•  http://fargo.cs.ucla.edu/umls/search.aspx 
•  http://fargo.cs.ucla.edu/umls/service.asmx 

Our experiment shows that IndexFinder can process 43K 
bytes text per second. Our preliminary manual 
examination shows no irrelevant phrases were returned. 
IndexFinder, written in C#, is running at the above sites on 
a 1.2GHz PC machine with 512MB main memory.  

 

 
Example Figure 7 shows the web interface for users.  
There are two windows on the web page, one for input text 
and the other for output results.  Three buttons for adding 
synonyms, removing inflection, and configuring options 
are at the top of the input window.  When a user clicks the 
IFinder Search button below the input window, results will 
show up.  Figure 8 shows 18 phrases found when no filters 
were applied.  Each line has a UMLS concept identifier, 
phrase text, and corresponding semantic type.    

Filtering Figure 8 shows filtering result for the sample 
input in Figure 7, also shown in the top of Figure 8. When 
a subset filter is used, 8 phrases are returned.    

Input of text unit 
  Prostate, right (biopsy) 
  - fibromuscular and glandular hyperplasia 
  - focal acute inflammation 

- no evidence of malignancy 
Filtering Phrases 

Subset C0194804:biopsy prostate 
C0033577:prostate hyperplasia 
C0035621:right 
C0259776:hyperplasia fibromuscular 
C0334000:hyperplasia glandular 
C0522570:inflammation focal 
C0333361:inflammation acute 
C0391857:no malignancy evidence 

Pathologic Function 
(T046) 

C0033577:prostate hyperplasia 
C0259776:hyperplasia fibromuscular 
C0334000:hyperplasia glandular 
C0333361:inflammation acute 

Body parts & Spatial 
(T023, T082) 

C0033572:prostate  
C0205234:focal  

Diagnostic Procedure 
(T060) 

C0194804:biopsy prostate 

 
If Pathologic Function is selected, four answers will be 
returned.  The two phrases prostate and focal will be given 
if the user wants to know body parts or spatial 
characteristics.  There is only one diagnostic procedure 
used, which is prostate biopsy.  

Throughput Experiment We tested the web service using 
5,783 reports of 128 patients from the UCLA Hospital. 
The total size of the documents is 10,8M bytes.  The 
service was called for each document when no filter was 
applied.  There are 910K concepts found in 254 seconds.  
Therefore, the throughput is about 42.7 K bytes per 
second.   

Relevance Evaluation We manually examined the 
mapping results for 100 topic sentences from the above 
reports one at a time.  A phrase is considered relevant to a 
sentence if the sentence implies the phrase when ignoring 
negation. For example, both “evidence” and “no evidence” 
are relevant to the input “no evidence of malignancy” since 
negation is ignored.  There are total 456 UMLS phrases 
found for the 100 topic sentences. We noticed that 18 
concepts are not from a single noun phrase and there are 
no irrelevant phrases.   

Figure 8.  Result filtering. 

Figure 7.  Concept finder web interface. 

Output window

Input window

Figure 7.  IndexFinder web interface. 



APPLICATION 

As a specific clinical application for this research, we have 
focused on using the IndexFinder to intelligently identify 
the key terms in an electronic medical record for 
documents that specifically mention brain tumor related 
content.  These documents consist of primary care clinical 
notes, specialist clinical notes, pathology reports, 
laboratory results, radiology reports, and surgical notes.  
Figure 9 shows an excerpt from a radiology report. 

Since our interests focus on brain tumor related concepts, 
we can specify a semantic filter worklist of pertinent 
documents based on brain tumor characteristics including: 
cancer type, anatomical location, and medical 
interventions.   These characteristics are then mapped to 
relevant  UMLS semantic types  as shown in Table 3 to 
define semantic filters. 
Brain Tumor 

Characteristics 
Relevant  
     UMLS semantic types 

Specific Cancer Neoplastic Proccess 
Medical Intervention Therapeutic Procedure 
Anatomical location Body Part, Organ or Organ Component 

Table 3. Using UMLS semantic type to define interests. 

A clinician looking for specific documents that address a 
certain type of brain tumor (i.e. meningioma) would have 
to carefully search the individual documents.  With 
IndexFinder, only two key terms, meningioma and 
encephalomalacia, are returned for the above text excerpt 
as shown in Table 4.  The two concepts, in fact, are 
important in the excerpt and thus are good terms for 
indexing. 

Table 4. Output from IndexFinder for the text in Figure 9. 

CONCLUSION 

In this paper, we proposed a new efficient approach for 
generating the conceptual phrase candidates in clinical 
texts and identifying important phrases for indexing.  The 
method uses a set of data structures to reduce the problem 
of searching UMLS concepts to a simple counting process.  
Syntatic and semantic filters are used to eliminate the 
irrelevant candidates. Our experiment shows that it can 

process free text at a speed of about 43K bytes text per 
second. As a result, IndexFinder is able to extract key 
UMLS concepts from clinical texts in real time.    
Preliminary manual evaluation shows that no irrelevant 
concepts are returned.  IndexFinder can be used for 
indexing of clinical texts for a medical digital library.  
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Semantic Descriptor ULMS code 
T191:Neoplastic Process C0025286:meningioma            
T047:Disease or Syndrome C0014068:encephalomalacia      

“The right frontal convexity meningioma is slightly 
larger now than on the prior examination. The left 
frontal meningioma is unchanged. There are three 
other small enhancing nodules seen along the frontal 
convexities bilaterally, as described above. There are 
no new lesions seen. There is no mass effect caused by 
these lesions. There is bifrontal encephalomalacia.” 

Figure 9. Free-text excerpt from a radiology report. 


