

Mining Frequent Patterns via Pattern Decomposition

Qinghua Zou
Department of Computer Science

University of California
Los Angeles, CA 90095

USA
voice: 310-206-4561

fax: 310-206-0068
email: zou@cs.ucla.edu

Wesley Chu
Department of Computer Science

University of California
Los Angeles, CA 90095-1596

USA
voice: 310-825-2047

fax: 310-825-2273
email: wwc@cs.ucla.edu

Mining Frequent Patterns via Pattern Decomposition

Qinghua Zou and Wesley W. Chu, UCLA, USA

INTRODUCTION

Pattern decomposition is a data mining technology that uses known frequent or

infrequent patterns to decompose a long itemset into many short ones. It finds frequent

patterns in a dataset in a bottom-up fashion and reduces the size of the dataset in each

step. The algorithm avoids the process of candidate set generation and decreases the time

for counting supports due to the reduced dataset.

BACKGROUND

A fundamental problem in data mining is the process of finding frequent itemsets

(FI) in a large dataset which enables essential data mining tasks such as discovering

association rules, mining data correlations, and mining sequential patterns. Three main

classes of algorithms have been proposed:

� Candidates generation and test (Agrawal, Srikant, 1994; Heikki, Toivonen,

Verkamo, 1994; Zaki et al., 1997;): starting at k=0, it first generates candidate

k+1 item sets from known frequent k item sets and then counts the supports of the

candidates to determine frequent k+1 item sets which meet a minimum support

requirement.

� Sampling technique (Toivonen, 1996): uses a sampling method to select a random

subset of a dataset for generating candidate itemsets and then test these candidates

to identify frequent patterns. In general, the accuracy of this approach is highly

dependant on the characteristics of the dataset and the sampling technique which

has been used.

� Data transformation: transforms an original dataset to a new one which contains a

smaller search space than the original dataset. FP-tree-based (Han, Pei, and Yin,

2000) mining first builds a compressed data representation from a dataset and

then mining tasks are performed on the FP-tree rather than on the dataset. It has

performance improvements over Apriori (Agrawal, Srikant, 1994) since

infrequent items do not appear on the FP-tree and thus the FP-tree has a smaller

search space than the original dataset. However, FP-tree can not further reduce

the search space by using infrequent 2-item or longer itemsets.

What distinguishes pattern decomposition (Zou et al., 2002) from most previous

works is that it reduces the search space of a dataset in each step of its mining process.

MAIN THRUST OF THE CHAPTER

Both the technology and application will be discussed to help clarify the meaning

of pattern decomposition.

Search Space Definition

Let N=X:Y be a transaction where X, called the head of N, is the set of required

items and Y, called the tail of N, is the set of optional items. The set of possible subsets

of Y is called the power set of Y, denoted by P(Y).

Definition 1 For N=X:Y, the set of all the itemsets obtained by concatenating X with the

itemsets in P(Y) is called the search space of N, denoted as {X:Y}. That is,

)}(|{}:{ YPVVXYX ∈∪= .

For example, the search space {b:cd} includes four itemsets b, bc, bd, and bcd.

The search space {:abcde} includes all subsets of abcde.

By definition 1, we have {X:Y}={X:Z} where Z=Y-X, referring to the set of items

contained in Y but not in X. Thus we will assume Y does not contain any item in X when

{X:Y} is mentioned in this paper.

Definition 2 Let S, S1, and S2 be search spaces. The set {S1, S2} is a partition of S if and

only if S= S1 ∪ S2 and S1 ∩ S2=φ . The relationship is denoted by S=S1+S2 or S1= S-S2 or

S2= S-S1. We say S is partitioned into S1 and S2. Similarly, a set {S1, S2, …, Sk} is a

partition of S if and only if S= S1 ∪ S2 ∪ … ∪ Sk and Si ∩ Sj=φ for i,j∈ [1..k] and i ≠ j. We

denote it as S=S1+S2+…+Sk.

Let a be an item where aX is an itemset by concatenating a with X.

Theorem 1 For a∉ X,Y, the search space {X:aY} can be partitioned into {Xa:Y} and {X:Y}

by item a, i.e., {X:aY}={Xa:Y}+{X:Y}.

Proof: It follows from the fact that each itemset of {X:aY} either contains a , i.e. {Xa:Y},

or does not contain a, i.e. {X:Y}. ■

For example, we have {b:cd}={bc:d}+{b:d}.

Theorem 2 Partition search space: Let a1, a2, …, ak be distinct items and a1a2…akY be

an itemset, the search space of {X: a1a2…akY} can be partitioned into

,}:{}:{
1

1∑
=

+ +
k

i
kii YXYaaXa � where .,YXai ∉

Proof: It follows by partitioning the search space via items a1,a2,…,ak sequentially as in

theorem 1. ■

For example, we have {b:cd}={bc:d}+{bd:}+{b:} and {a:bcde}= {ab:cde}

+{ac:de}+{a:de}.

Let {X:Y} be a search space and Z be a known frequent itemset. Since Z is

frequent, all subset of Z will be frequent, i.e. every itemset of {:Z} is frequent. Theorem

3 shows how to prune the space {X:Y} by Z.

Theorem 3 Pruning search space: if Z does not contain the head X, the space {X:Y} can

not be pruned by Z, i.e., {X:Y}-{:Z}={X:Y}. Otherwise, the space can be pruned as

{X:Y}-{:Z} =∑
=

+ ∩
k

i
kii ZYaaXa

1
1)}(...:{ , a1a2…ak=Y-Z.

Proof: If Z does not contain X, no itemset in {X:Y} is subsumed by Z. Therefore,

knowing that Z is frequent, we can not pruned any part of the search space {X:Y}.

Otherwise, when X is a subset of Z, we have {X:Y}= VXVaaXa
k

i
kii :}...:{

1
1 +∑

=
+ ,

where V=Y ∩ Z. The head in the first part is Xai where ai is a member of Y-Z. Since Z

does not contain ai, the first part can not be pruned by Z. For the second part, we have

{X:V}-{:Z}={X:V}-{X:(Z-X)}. Since X ∩ Y=φ , we have V ⊆ Z-X. Therefore {X:V} can

be pruned away entirely. ■

For example, we have {:bcde}-{:abcd} = {:bcde}-{:bcd} = {e:bcd}. Here a is

irrelevant and is removed in the first step. Another example, {e:bcd}-{:abe} = {e:bcd}-

{:be} = {e:bcd}-{e:b} = {ec:bd}+{ed:b}.

Pattern Decomposition

Given a known frequent itemset Z, we are able to decompose the search space of

a transaction N=X:Y to N’=Z:Y’ if X is a subset of Z, where Y’ is the set of items that

appear in Y but not in Z, denoted by PD(N=X:Y|Z)= Z:Y’.

For example, if we know that an itemset abc is frequent, we can decompose a

transaction N=a:bcd into N’=abc:d. That is PD(a:bcd|abc)=abc:d.

Given a known infrequent itemset Z, we can also decompose the search space of a

transaction N=X:Y. For simplicity, we use three examples to show the decomposition by

known infrequent itemsets and leave out its formal mathematic formula in general cases.

Interested readers can refer to (Zou, Chu, Lu, 2002) for details. For example, if

N=d:abcef, and a known infrequent itemsets, then we have:

• For infrequent 1-itemset ~a, PD(d:abcef|~a) = d:bcef by dropping a from its tail.

• For infrequent 2-itemset ~ab, PD(d:abcef|~ab) = d:bcef+da:cef by excluding ab.

• For infrequent 3-itemset ~abc, PD(d:abcef|~abc) = d:bcef+da:cef+dab:ef by

excluding abc.

By decomposing a transaction t, we reduce the number of items in its tails and

thus reduce its search space. For example, the search space of a:bcd contains the

following eight itemsets {a, ab, ac, ad, abc, abd, acd, abcd}. Its decomposition result

abc:d contains only two itemsets {abc, abcd}, which is only 25% of its original search

space.

When using pattern decomposition, we find frequent patterns in a stepwise

fashion starting at step 1 for 1-item itemsets. At a step k, it first counts the support for

every possible k-item itemsets contained in the dataset Dk to find frequent k-item itemsets

Lk and infrequent k-item itemsets ~Lk. Then, using the Lk and ~Lk, Dk can be decomposed

into Dk+1, which has a smaller search space than Dk. The above steps continue until the

search space Dk becomes empty.

An Application

The motivation of our work originates from the problem of finding multi-word

combinations in a group of medical report documents, where sentences can be viewed as

transactions and words can be viewed as items. The problem is to find all multi-word

combinations that occur at least in two sentences of a document.

As a simple example, for the following text

Aspirin greatly underused in people with heart disease

DALLAS (AP) -- Too few heart patients are taking aspirin despite its widely known
ability to prevent heart attacks, according to a study released Monday.

The study, published in the American Heart Association's journal Circulation, found that
only 26 percent of patients who had heart disease and could have benefited from aspirin
took the pain reliever.

"This suggests that there's a substantial number of patients who are at higher risk of more
problems because they're not taking aspirin," said Dr. Randall Stafford, an internist at
Harvard's Massachusetts General Hospital who led the study. "As we all know, this is a
very inexpensive medication -- very affordable."

The regular use of aspirin has been shown to reduce the risk of blood clots that can block
an artery and trigger a heart attack. Experts say aspirin can also reduce the risk of a stroke
and angina, or severe chest pain.

Because regular aspirin use can cause some side effects -- such as stomach ulcers,
internal bleeding and allergic reactions – doctors are too often reluctant to prescribe it for
heart patients, Stafford said.

"There's a bias in medicine toward treatment and within that bias we tend to underutilize
preventative services -- even if they've been clearly proven," said Marty Sullivan, a
professor of cardiology at Duke University in Durham, N.C.

Stafford's findings were based on 1996 data from 10,942 doctor visits by people with
heart disease. The study may underestimate aspirin use; some doctors may not have
reported instances in which they recommended patients take over-the-counter
medications, he said.

He called the data "a wake-up call" to doctors who focus too much on acute medical
problems and ignore general prevention.

We can find frequent 1-word 2-word, 3-word, 4-word, 5-word combinations. For

instance, we found 14 4-word combinations

heart aspirin use regul, aspirin they take not, aspirin patient take not, patient doct use
some, aspirin patient study take, patient they take not, aspirin patient use some, aspirin
doct use some, aspirin patient they not, aspirin patient they take, aspirin patient doct
some, heart aspirin patient too, aspirin patient doct use, heart aspirin patient study.

Multi-word combinations are effective for document indexing and summarization.

The work in (Johnson et al., 2002) shows that multi-word combinations can index

documents more accurately than using single-word indexing terms. Multi-word

combinations can delineate the concepts or content of a domain specific document

collection more precisely than single word. For example, from the frequent 1-word table,

we may infer that “heart,” “aspirin,” and “patient” are the most important concepts in the

text since they occur more often than others. For the frequent 2-word table, we see a

large number of 2-word combinations with “aspirin,” i.e. “aspirin patient,” “heart

aspirin,” “aspirin use,” “aspirin take,” etc. This infers that the document emphasizes

“aspirin” and “aspirin related” topics more than any other words.

FUTURE TRENDS

There is a growing need for mining frequent sequence patterns from human

genome datasets. There are 23 pairs of human chromosomes, approximately 30,000

genes, and more than one million proteins. The above discussed pattern decomposition

method can be used to capture sequential patterns with some small modifications.

When the frequent patterns are long, mining frequent itemsets (FI) is infeasible

because of the exponential number of frequent itemsets. Thus, algorithms mining

frequent closed itemset (FCI) (Pasquier, Bastide, Taouil, and Lakhal 1999; Zaki and

Hsiao, 1999; Pei, Han, and Mao, 2000) are proposed since FCI is enough to generate

association rules. However, FCI could also be as exponentially large as the FI. As a

result, many algorithms for mining maximal frequent itemset (MFI) are proposed such as

Mafia (Burdick, Calimlim, and Gehrke, 2001) and GenMax (Gouda, and Zaki, 2001) and

SmartMiner (Zou, Chu, Lu, 2002).

The main idea of pattern decomposition is also used in SmartMiner except that

SmartMiner uses tail information (frequent itemsets) to decompose the search space of a

dataset rather than the dataset itself. While pattern decomposition avoids candidate set

generation, SmartMiner avoids superset checking, which is a time-consuming process.

CONCLUSION

We propose to use pattern decomposition to find frequent patterns in large

datasets. The PD algorithm shrinks the dataset in each pass so that the search space of the

dataset is reduced. Pattern decomposition avoids the costly candidate set generation

procedure and using reduced datasets greatly decreases the time for support counting.

ACKNOWLEDGEMENT

This research is supported by NSF IIS ITR 0313283 and NIH PPG Grant

#4442511-33780.

REFERENCES

Agrawal, R. & Srikant, R. (1994). Fast algorithms for mining association rules. In

Proceedings of the 1994 International Conference on Very Large Data Bases,

487-499.

Burdick, D., Calimlim, M., & Gehrke, J. (2001). MAFIA: a maximal frequent itemset

algorithm for transactional databases. In Proceedings of International Conference

on Data Engineering.

Gouda, K. & Zaki, M. J. (2001). Efficiently Mining Maximal Frequent Itemsets. In

Proceedings of the IEEE International Conference on Data Mining, San Jose,

2001.

Han, J., Pei, J., & Yin, Y. (2000). Mining Frequent Patterns without Candidate

Generation, In Proceedings of the 2000 ACM International Conference on

Management of Data, Dallas, TX.

Heikki, M., Toivonen, H., & Verkamo, A. I. (1994). Efficient algorithms for discovering

association rules. In Usama M. Fayyad and Ramasamy Uthurusamy, editors, In

Proceedings of the AAAI Workshop on Knowledge Discovery in Databases, 181-

192, Seattle, Washington.

Johnson, D., Zou, Q., Dionisio, J.D., Liu, Z., Chu, W. W. (2002). "Modeling Medical

Content for Automated Summarization" Annals of the New York Academy of

Sciences.

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999). Discovering frequent closed

itemsets for association rules. In Proceedings of the 7th International Conference

on Database Theory, January.

Pei, J., Han, J., & Mao, R. (2000). Closet: An efficient algorithm for mining frequent

closed itemsets. In Proceedings of SIGMOD International Workshop on Data

Mining and Knowledge Discovery.

Toivonen, H. (1996). Sampling Large Databases for Association Rules. In Proceedings of

the 22nd International Conference on Very Large Data Bases, Bombay, India,

September.

Zaki, M. J. & Hsiao, C. (1999). Charm: An efficient algorithm for closed association rule

mining. In Technical Report 99-10, Computer Science, Rensselaer Polytechnic

Institute.

Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W. (1997). New Algorithms for Fast

Discovery of Association Rules. In Proceedings of the Third International

Conference on Knowledge Discovery in Databases and Data Mining, 283-286.

Zou, Q., Chu, W., Johnson, & D., Chiu, H. (2002). Using Pattern Decomposition (PD)

Methods for Finding All Frequent Patterns in Large Datasets. Journal Knowledge

and Information Systems (KAIS).

Zou, Q., Chu, W., Lu, B. (2002). SmartMiner: A Depth First Algorithm Guided by Tail

Information for Mining Maximal Frequent Itemsets. In Proceedings of the IEEE

International Conference on Data Mining, Japan, December

TERMS AND THEIR DEFINITION

Frequent Itemset (FI): An itemset whose support is greater than or equal to the minimal

support.

Infrequent Pattern: An itemset that is not a frequent pattern.

Minimal Support (minSup): A user given number which specifies the minimal number

of transactions in which an interested pattern should be contained.

Pattern Decomposition: A technique that uses known frequent or infrequent patterns to

reduce the search space of a dataset.

Transaction: An instance which usually contains a set of items. In this paper, we extend

a transaction to a composition of a head and a tail, i.e., N=X:Y, where the head represents

a known frequent itemset and the tail is the set of items for extending the head for new

frequent patterns.

Support of an itemset x: The number of transactions that contains x.

Search Space: The union of the search space of every transaction in a dataset.

Search Space of a transaction N=X:Y: The set of unknown frequent itemsets contained

by N. Its size is decided by the number of items in the tail of N, i.e. Y.

