
Ctree: A Compact Tree for Indexing XML Data
Qinghua Zou Shaorong Liu

Computer Science Department
University of California – Los

Angeles
{zou,sliu,wwc}@cs.ucla.edu

Wesley W. Chu

Abstract
In this paper, we propose a novel compact tree (Ctree) for XML
indexing, which provides not only concise path summaries at the
group level but also detailed child-parent links at the element
level. Group level mapping allows efficient pruning of a large
search space while element level mapping provides fast access to
the parent of an element. Due to the tree nature of XML data and
queries, such fast child-to-parent access is essential for efficient
XML query processing. Using group-based element reference,
Ctree enables the clustering of inverted lists according to groups,
which provides efficient join between inverted lists and structural
index group extents. Our experiments reveal that Ctree is efficient
for processing both single-path and branching queries with
various value predicates.

Categories and Subject Descriptors
E.1 [Data Structures]: trees

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
XML index, path summary, XQuery evaluation, value index,
Ctree

1. Introduction
With the growing popularity of XML, an increasing amount of
information is being stored and exchanged in the XML format.
XML is essentially a textual representation of the hierarchical
(tree-like) data where a meaningful piece of data is bounded by
matching tags, such as <name> and </name>. To cope with the
tree-like structures in the XML model, several XML-specific
query languages have been proposed recently (e.g., XPath,
XQuery) to provide flexible query mechanisms. An XML query
typically consists of two parts: structure constraints and value
predicates. Structure constraints are usually represented by a tree,
which can have either a single-path or multiple branches. Value
predicates can be comparison predicates (e.g., >, <, =) or
containment predicates (e.g., contains).
XML indexing is the key to the efficiency of XML query

processing. The semi-structured nature of XML data and the
flexible mechanisms of XML queries introduce new challenges to
the existing database indexing methods.
First, it is expected that a structure index is to be a covering index
such that it alone can answer both single-path and branching
queries without consulting the XML data. Many previous
approaches can be classified into the following three categories:
1) Path indexing [7][6][5][3], creates a path summary from XML
data. Path indexing speeds up the evaluation of single-path
queries. Path indexing greatly speeds up the evaluation of single-
path queries but needs expensive join operations for processing
queries with multiple branches. 2) Node indexing [13][23],
indexes each data node by some numbering schemes. The
structure relationship between a pair of nodes can be determined
in constant time in node indexing, but relying on the pair-wised
comparisons to answer a query sometimes is inefficient. 3)
Sequence-based indexing [20][17], transforms both XML
documents and queries into sequences, and evaluates queries
based on sequence matching. It supports flexible queries without
join operations, but false alarms may exist in query results since a
sequence match is not necessarily a tree match.
Second, values in XML documents are usually heterogeneous,
including many types of data such as date, number, and text.
Little research has been done on using a variety of indexing types
for the heterogeneous XML values. Some approaches index a
value as an entire string, and some use stemming words and build
inverted files for value indexing. Such uniform value processing
is not suitable for the heterogeneous nature of XML values. For
example, while stemming is applicable to the text of an article,
stemming authors’ names will produce undesirable results.
Finally, using global IDs such as pre-orders to refer to elements
requires join operations between the matches for value predicates
and structure constraints. Such references do not carry any
semantic meaning, i.e., a pre-order itself does not give any
information about its label path and tag name.
To address the above challenges, we propose:

• A novel compact tree, called Ctree, for indexing XML
structures. Ctree is a two-level tree which provides a
concise structure summary at its group level and detailed
child-parent links at its element level which can provide
fast access to elements’ parents. Thus Ctree is an efficient
index for processing the structure constraints of XML
queries.

• Group-based element reference instead of using global
IDs. This enables us to cluster the entries in value
inverted files by groups, which provides efficient
evaluation of value predicates on a relevant Ctree group.
The group-based element reference also facilitates the
differentiation of the heterogeneous XML values by their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WIDM’04, November 12–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-978-0/04/0011...$5.00.

groups and enables us to cluster similar element values
and index them accordingly.

• We propose a Ctree-based query processing method that
can speed up query evaluation and prune search space at
the earliest processing stage.

We have conducted a set of experiments to compare the
effectiveness of Ctree with path indexing and node indexing
approaches. Our study reveals that Ctree is about an order of
magnitude faster on most test queries.
The paper is organized as follows. Section 2 introduces our XML
data model and the definition of Ctree. In Section 3 we present
Ctree properties. In Section 4 we overview a framework for
building the Ctree index. Section 5 gives the Ctree-base query
processing method. In Section 6 we present experimental results
which show the effectiveness of Ctree. Section 7 reviews related
works.

2. Introduction of Ctree
In this section, we will first present the XML data model and path
summary, and then introduce Ctree.

2.1 XML Data Model
We model an XML document as an ordered labeled tree where
nodes correspond to elements, and edges represent element-
inclusion relationships. A node is represented by a triple (id,
label, [value]), where id, label and value represents its identifier,
tag name, and optional value respectively.
For example, Figure 1 shows a sample XML data tree which has
19 nodes with identifiers in the circles and labels beside the
circles. To differentiate values from sub-elements, we link a value
to its corresponding node by a dotted line.

We now introduce the definitions of a label path and equivalent
nodes, which are useful for describing a path summary and a
Ctree.

Definition 1 A label path for a node v in an XML data tree D,
denoted by L(v), is a sequence of dot-separated labels of the nodes
on the path from the root node to v.
For example, node 8 in Figure 1 can be reached from the root
node 1 through the path: 1 6 8. Therefore the label path for
node 8 is dblp.thesis.author.
Definition 2 Nodes in an XML data tree D are equivalent if they
have the same label path.
For example, nodes 8 and 12 in Figure 1 are equivalent since their
label paths are the same dblp.thesis.author.

The parents of equivalent nodes share the same label path and
thus are equivalent. For example, the parent nodes of 8 and 12 are
nodes 6 and 10 respectively, which are equivalent.

2.2 Path Summary
For a data tree D, a path summary as in [7][2] is a tree on which
each node is called a group and corresponds to exactly one label
path l in D. The group contains all the equivalent nodes in D
sharing the label path l. We call a path summary an ordered path
summary if the equivalent nodes in every group are sorted by their
pre-order identifiers.
For example, an ordered path summary for the XML data tree in
Figure 1 is shown in Figure 2a. Each dotted box represents a
group and the numbers in the box are the identifiers of equivalent
data nodes. Each group has a label and an identifier listed above
the group. For example, data nodes 2, 13, 16 are in group 1 since
their label paths are the same: dblp.article. Every data tree has a
unique path summary [7].

As shown in past research, a path summary greatly facilitates the
evaluation of single-path queries. For example, for a query Q1,
/dblp/article/author, the answers are data nodes 4, 15, and 18
because their label paths satisfy Q1.
The path summary, however, does not preserve the hierarchical
relationships among individual data nodes. Therefore, the path
summary is unable to answer branching queries. For example, in
Figure 2a, there is no information to indicate which data node in
group 1 is the parent of data node 4 in group 3. Such node-level
relationships are important for answering branching queries. For
example, for a query “find articles under dblp with both title and
year,” i.e. /dblp/article[title and year] (Q2), the path summary
(Figure 2a) indicates that elements in group 1 are candidate
answers but does not provide the information about which
elements in the group actually have both title and year.
This motivated us to propose an index structure which provides
not only a path summary but also detailed element-level
relationships.

2.3 The data structure of Ctree
Ctree is a bi-level tree containing a group level and an element
level. At the group level, Ctree provides a summarized view of
hierarchical structures. At the element level, Ctree preserves
detailed child-parent links. Each group in Ctree has an array
mapping elements to their parents.

Definition 3 A Ctree is a rooted tree where each node g, called a
group, contains an array of elements denoted as g.pid[] such that:

Figure 2: The path summary and the Ctree for T1

(b) A Ctree T1 (a) An ordered path summary

1

2, 13, 16

9

4,15,18

7,11
2:title

1:article

0:dblp

6, 10

3, 14, 17 5, 19

8,12

5: thesis

4:year

3:author 7:author

6:title 8:year

-1

0, 0, 0

0

0,1,2

0,1
2:title

 1:article

0:dblp

0, 0

0, 1, 2 0, 2

0,1

 5:thesis

4:year

3:author 7:author

6:title 8:year

Figure 1: An example of XML data tree T1

year

dblp

96

1

2

3 5

year

author

title

article

A B C
John

Sam

6

7 9
author

title

B C D
John

A B D

16

17 18 19
author author

title

Sam 96 John

13

14 15
author

title

B C
95

10

11 12

year title

A C D

thesis thesis article article

4 8

1) Each group g is associated with an identifier and a name,
denoted by g.id and g.name respectively.
2) Edge directions are from the root to the leaves. If there is an
edge from g1 to g2, then g1 is called the parent of g2 and g2 is
called a child of g1. If there is a path from g1 to g3, then g1 is
called an ancestor of g3 and g3 is called a descendant of g1.
3) An array index k of g.pid[] represents an element in g, denoted
by g:k. The value of g.pid[k] points to an element in g’s parent gp;
and gp:g.pid[k] is called the parent element of g:k.
4) For any two elements g:k1 and g:k2, if k1<k2, then g.pid[k1] ≤
g.pid[k2].
An ordered Ctree is a Ctree where sibling groups are ordered.□
In Ctree, the groups carry semantic meanings (label paths) and the
array in a group stores child-parent links which provides fast
access to the parents of a list of elements. This is in contrast to
using individual child-to-parent pointers which will be very time
consuming for a large XML data tree.

Definition 4 For referring an element k in group g, g:k is called a
absolute reference and k is called a relative reference.
For example, Figure 2b is a sample Ctree. There is an array in
each group. The array values are shown in the box separated by a
comma. The array indexes are the positions of the values
numbered starting from 0. The two elements in group 4 are
referred to by 4:0 and 4:1, whose values are 0 and 2 which are
relative references for elements 1:0 and 1:2.

Theorem 1 Every data tree D has a unique Ctree TD.
Proof: We can construct a TD in the following three steps:
1) Create a path summary S for D.
2) Replace the collection C of equivalent nodes in every group g
of S with a array g.pid[] of the same size as C and build the
mapping M: d g:k where d is a data node and k is its position in
C.
3) Build element level pointers. Given d is the parent of d’ in D,
if d g1:k1 and d’ g2:k2, then let g2:k2 point to g1:k1, i.e.,
g2.pid[k2]= k1.
Using the above steps, only one TD can be constructed. From
Section 2.2, we know there is a unique path summary S for D in
step 1. In step 2, the mapping M is uniquely determined. Since
every node d’ has at most one parent, step 3 has only one
assignment for each elements. Thus Theorem 1 holds. □
For example, in Figure 2a, the positions of 2, 13, and 16 in group
1 are 0, 1 and 2. Thus they are mapped to 1:0, 1:1 and 1:2
respectively. Similarly, 5 and 19 in group 4 are mapped to 4:0 and
4:1. Since 16 is the parent of 19 in Figure 1, we let 4:1 (19) point
to 1:2 (16) in Figure 2b, i.e., the value of 4:1 is 2.
With the Ctree in Figure 2b, we can answer not only single-path
queries but also branching queries. For example, for the query
/dblp/article[title and year], elements 1:0 and 1:2 are the answers
since the boxes in groups 2 and 4 contain values 0 and 2. A Ctree
has parent-child edges at the group level and provides child-
parent links at its element level. Such a bidirectional tree makes
Ctree better than other indexing methods.

3. Ctree Properties
3.1 Monotonic relationship
By the definition of Ctree, we know that the elements in a group
are arranged in consistent with the order of their parents. In other
words, for two elements i and j in a group g, if i precedes j, then
i’s children precedes j’s in every child group of g.

Observation 1 Monotonic property: The values of a group’s array
are arranged in increasing order. That is, if i<j, then g.pid[i] ≤
g.pid[j].
This property enables us to use a binary search to locate the child
elements of a given element. It also results in the contiguous
property.

Theorem 2 Contiguous property: Let g’ be a descendant group of
g and E be a list of contiguous elements in g, then the descendant
elements of E are contiguous in g’.
Proof Let y=anc(x) be the
function of mapping an element x in
g’ to its ancestor y in g as shown in
Figure 3. Suppose Theorem 2 is not
true, then there exists d1<d<d2 and
anc(d) is not in the range a1 to a2.
Recursively applying the monotonic
property, we know anc is an increasing function, i.e., a1≤anc(d)≤
a2. It conflicts with the assumption. Thus Theorem 2 holds.□
In a situation where we want to find the descendants of a large
number of contiguous elements, we only need to determine the
upper and lower bounds of the descendants. For example, if we
know d1 and d2 are descendants of a1 and a2, then all elements in
the range of d1 to d2 are the descendants of the elements a1 to a2.

3.2 Regular and irregular group

Let g be a group and gc be one of its child groups.

Definition 6 If every element in g has the same number of
children in gc, then gc is called a regular group. Otherwise, gc is
called irregular group.
For example, in Figure 2b, groups 1, 2, 3, 5, 6, and 7 are regular
groups. Group 4 and 8 are non-regular groups. The root group
(group 0) is a regular group since it has no parent.
Such information is useful for query optimization. For example,
for a query “find article elements that have child elements title
and child elements year”, i.e. //article[title and author](Q3), the
Ctree directly returns all elements in group 1 as answers without
further checking the element-level links since groups 2 and 3 are
regular groups.
The array in a regular group can be removed since the content of
the array can be inferred from group sizes (number of elements in
a group). Therefore, a Ctree not only provides more information
but is also smaller in size than a path summary. In Figure 2b, we
only need to keep the 3 numbers in group 4 and group 8 and can
remove the 16 numbers in the other 6 groups (shaded). This
significantly reduces the size of a Ctree. As we will see in Section
6, regular groups are common in XML datasets.

Figure 3: y=anc(x) is an
increasing function.

g'

d1

d2

g

a1
a2

y=anc(x)

3.3 Group-based element reference scheme

Most previous approaches use global pre-orders for referring
elements. In contrast, Ctree uses group-based element reference
(i.e.., g:k) which provides the following advantages:

• Feasible in supporting stepwise early pruning of a large search
space. To determine a candidate answer g:k, we can first
determine a relevant group g to eliminate irrelevant groups and
then determine a relative reference k.

• Efficient in processing of value predicates. Value inverted files
can be sorted by g:k, i.e., first by g and then by k, so that values
of equivalent nodes are clustered together. Many previous
methods, however, sort inverted files by pre-orders, which
requires a scan of all the elements in an inverted file to
determine which elements satisfy a given label path.

• Ease in differentiating the heterogeneous XML values. Values
of the elements in a group are usually of the same type. For
example, the values for the elements in group 4
(dblp.article.year) are all numbers, while the values for
dblp.article.title are all strings.

• Efficient in maintaining XML data updates. Inserting an
element e into a group g in a Ctree affects only the elements
after e in g and has no effect on other groups. Using the global
pre-order approach, inserting an element e into XML data
incurs updating the identifiers of all the elements after e.

3.4 Element ordering in Ctree

Since XML data are usually stored in files, we need to know the
element ordering in a Ctree. For two elements k1 and k2 in the
same group g, we know g:k1 precedes g:k2 in D if k1<k2. Suppose
g1:k1 and g2:k2 are from different groups, let g:k1’ and g:k2’ be
their ancestors in group g which is the lowest common ancestor
group of g1 and g2. The ordering of the two elements can be
determined by the following definition.

Definition 5 g1:k1 precedes g2:k2, denoted as g1:e1«g2:e2, if
1) k1’<k2’, or
2) k1’=k2’ and g1.gid<g2.gid.

For example, in Figure 2b, 2:0«4:0 since they have the same
ancestor 1:0 and 2 is less than 4; 4:0«2:1 since 4:0’s ancestor
(1:0) precedes 2:1’s (1:1).
By definition 5, an ordered Ctree implies a total ordering of
elements. In the case that elements from different groups have the
same ancestor, we use group IDs to infer the ordering of elements.
In the situation that equivalent data nodes have inconsistent
ordering of sub-elements, the inferred ordering may be incorrect.
For example, if one article has a sub-element title before a sub-
element author but another article has the reverse order, then no
ordered Ctree can be built because we cannot assign gids to the
two sub-groups author and title. In such cases, we can use
elements’ start positions (see section 4) for determining their
ordering.

4. Building Ctree Index
We first present a framework for building Ctree index. Then we
briefly discuss Ctree index data and value index searching.

4.1 A framework for building Ctree index

XML data contains not only heterogeneous values but also tags
with different purposes such as semantic tags (e.g., title, author)
and presentation tags (e.g., bold, italic). Thus we use a
configurable indexing framework to build Ctree index, which
allows user to specify index options such as ignorable tags, value
treatments and value indexing types.
Figure 4 shows the system structure for the Ctree index which
consists of three function parts (Scan, IndexBuilder, and Query
Processor) and three data parts (XML Data and optional schema,
Spreadsheet, and Ctree Index Data).

Note that the user is not required to set indexing options since the
default indexing options are automatically generated based on
some rules of data statistics. Ctree index can be built in three
steps.

1. The Scan module collects the structure and value
characteristics from an XML dataset and extracts
schema information if it exists. The Scan also proposes
indexing options for each group of equivalent data
nodes based on data features and schema.

2. A user reviews the proposed indexing options and
makes proper adjustments to finalize the index
configurations.

3. Based on the index configurations, the Index Builder
constructs a Ctree and builds value indexes for the
XML dataset.

When a query arrives, Query Processor evaluates the query based
on Ctree Index Data which includes both structure index and five
value indexes, and returns query results to the user. We present a
Ctree-based query evaluation process in Section 5.

4.2 Ctree index data

Ctree index data can be modeled in relational tables so that it can
be implemented in relational database. For the simplicity of
tabular data, Ctree can also be transformed into native XML
databases or be stored in disk files with the B+ index for fast
access.
Ctree structure index can be mapped into four tables: Elements,
Groups, CtreeDB, and ElmPosLen. The Elements table stores the
mappings from elements to their parents. The Groups table stores
the group-level tree by gid, sub_num(the number of descendant
groups), level (the depth of the group), and pgid (parent group). It
also stores the group name and the label path (lp). The CtreeDB

 Scan

IndexBuilder

Configuration
Spreadsheet

Query
Processor

Configure

Results

Figure 4: System structure of Ctree index

Query

Human

Ctree Invert

List DTime Number

ID

Ctree Index Data

XML Data

Schema

table has one row for each Ctree describing the main features of
the Ctree including the Ctree name, the file group (fgrp), the
number of groups, and elements. The fgrp indicates in which
group the element IDs are the same as XML file IDs. In other
words, each element in the fgrp is associated with an XML
document. The ElmPosLen table records the position and length
of each element, which is useful for retrieving the element.
The various data types in XML data require multiple value
indexing types. Therefore we propose five types of value indexes
(Invert, List, Number, DTime and ID) which can be extended for
new requirements. The Invert uses the table Words to map a word
to an identifier (wid) which minimizes storage overhead by
eliminating replicated strings and computational overhead by
eliminating expensive string comparisons. The table Hits stores
the occurrences and positions (pos) of words (wid) in XML
elements (gid:eid). Similarly, we use two tables Phrases and List
for the value type List. For Number, DTime, and ID, we use three
tables Number, DTime, and Idref respectively to record element
values which are transformed to the corresponding types in the
indexing phase.
The XMLfiles stores all the XML documents of the Ctree which
are required if a user wants to look up the source of an element.

4.3 Value index searching

All the five value indexes support a search(value, gid?) operation
where the question mark indicates an optional input parameter,
and the value and gid corresponds to a specific value and a certain
group respectively. The search operation returns a list of absolute
elements (when the gid is not specified) or relative elements
(when the gid is specified). Since the Invert value index is
clustered by (wid, gid, eid), the operation search(wid, gid) can be
computed very efficiently once the value is mapped to a wid. For
Ctree-based query processing, we first determine gid to eliminate
irrelevant groups by group-level structure mapping and then
evaluate value predicates (Section 5). Thus, the returned answers
and the I/O cost are reduced.
In order to examine the details of XML elements, we need to refer
to the XML source. We are able to retrieve an element from an
XML document since Ctree stores the elements’ location in the
document.

5. Query Processing
There are many possible ways to evaluate a query on a Ctree. For
example, previous query processing based on a node index is also
applicable to Ctree since the table ElmPosLen provides the
position and length for each element. To take full advantages of
Ctree characteristics, we propose a Ctree-based query processing
method. Let us first introduce our query model.
We model an XML query Q
as a tree where nodes are
the tags in Q and edges
represent axes with a single
arrow for a child axis “/”
and a double arrow for a
descendant axis “//”. Filters
in Q are represented by
value predicates of the

corresponding nodes. We assume that each query has only one
query node returned, target node, which is emphasized with a
box. For example, Figure 5 is a tree representation of the
following query (Q4):
/dblp/article [contains (.//author, “John”) and year > 94]/title
In this example, a user is interested in titles of the articles under
dblp which have descendant elements (author) containing “John”
and sub-elements (year) with a value greater than 94. The dotted
arrow beside the node indicates the result’s projecting direction
(Section 5.3).

5.1 Ctree-based query processing

After a query is transformed into a tree Q, we can evaluate it
using Ctree index data T in three steps as shown in Figure 6.

First, it locates a set of frames matching Q’s tree structure, where
each frame is an assignment of Ctree groups in T to the query
nodes in Q that satisfy the structure of Q at the group-level (Line
1). For example, there is one frame consisting of groups (0, 1, 3,
4, 2) in the Ctree (Figure 2b) for Q4, which match query nodes
(dblp, article, author, year, title) respectively. Notice that by
assigning gid 3 to the query node author, we exclude other
elements which also have the tag name author (e.g. elements in
group 7) and thus reduce search space. The FrameFinder finds
frames in a top-down fashion starting from candidate groups for
the root of the query tree down to the leaves.
Second, for each frame, it evaluates value predicates using value
indexes to determine which elements satisfy the predicates (Line
3). As discussed in Section 4, all value types support the
Search(value, gid?) operation. For example, there are two value
predicates in Q4: author=“John” and year>94. For the first
predicate, it calls Search(“John”, 3) since the query node author
is mapped to group 3 in step 1. Elements 3:0 and 3:1 (i.e. data
nodes 4 and 15 in Figure 1) are retuned. Similarly, element 4:0
(i.e. data node 5) is returned for the second value predicate.
Finally, it evaluates element level structure constraints and returns
the query results to the user. For example, for the frame (0, 1, 3,
4, 2) for Q4, the second step of our query processor determines
that elements {3:0, 3:1} and {4:0} satisfy value constraints. Now
the last step is to determine which elements in the target group 2
can answer Q4. The answers can be determined by projecting
relevant elements from other nodes to the target node. The
projecting direction for a query node can be either downward or
upward depending on its position in the query tree. If a query
node is an ancestor of the target node, its projecting direction is

>94

dblp

article

author year title
John

Figure 5: A query tree

Projecting
direction

Input: T, a Ctree with value index
 Q, a query tree
Output: A list of elements in T that satisfy the Q.
QueryProcessor(T, Q)
1 Evaluate group level structure constraints:
 Call FrameFinder to get a list of frames.
2 For each frame, do
3 Evaluate value constraints on the frame.
4 Evaluate element level structure constraints:
 Call ElmEvaluator to a list of matched elements;
5 Output the list of elements;

Figure 6: A Ctree-based query processing algorithm

downward. Otherwise, it is upward. For example, in Figure 5, the
projecting directions for dblp, article, and title are downward
while those for author and year are upward. Since Ctree stores
detailed child-to-parent relationships, upward projecting is
straight forward by joining common parent elements. Downward
projecting can be done similar to upward projecting by keeping
track of children.
The proposed Ctree-based query processing algorithm has the
following advantages:

• Locating frames at the group level prunes a large number of
irrelevant groups at an early stage. If there is no group-
level match, it returns empty answer in step 1. For example,
for a query //article[author =”John”]/address on DBLP, it
will return no matches at the first step since the path
//article/address does not exist in the Ctree of the DBLP
dataset. Many previous approaches, however, require a set
of expensive join operations to return the no answer.

• Evaluating a value predicate based on a group significantly
reduces the possible matches and improves the efficiency
of combining the matches for value predicates and structure
constraints.

• Using an array for fast mapping elements to their parents
facilitates the evaluation of element level structure
constraints. Such a fast access to elements’ parents is
essential for efficient XML query processing since the tree
nature of XML data and queries is rooted on sharing
common parents.

6. Performance Evaluation
To validate the efficiency of Ctree in XML indexing, we tested
two datasets DBLP [11] and XMARK[25], and compared the
performance of Ctree with that of some previous methods. We
implemented Ctree and several other methods in C# for XML
indexing. Experiments were run on a 2.8 GHz PC-compatible
machine with 1GB of RAM running Windows XP.
Ctree and value indexes can be resided in relation database or
disks as in [24] where we have used Ctree to index INEX’03. In
our experiment, Ctree and value indexes are compiled into objects
which reside in memory, and thus queries can be answered
without any I/O access. For comparison purpose, we have
implemented a path index method similar to Index Fabric [6] and
a node index method similar to XISS [13] where values are
indexed by inverted files. We load each index data into the RAM
before testing so that no IO operations for reading the index data
are required.

6.1 XML test dataset characteristics

Table 1 shows the properties of the two datasets DBLP and
XMARK. The configuration files for specifying index options can
be downloaded from our website. The main characteristics of
these datasets are illustrated below.

DBLP is a popular computer science bibliography dataset with a
maximal depth of 6 and over 3.7 million of elements. XMARK is
a synthetic on-line auction dataset which is relatively deep and
contains over 2 million elements.

It is interesting to note that there are about half the elements in the
two datasets belonging to regular groups (43.9% for DBLP and
64.8% for MARK). Regular groups reduce index size and
optimize query processing.
Table 2 shows the space requirements for three indexing
approaches: Ctree, Index Fabric and XISS. We noticed that XISS
requires slightly more space on both datasets than Index Fabric.

Ctree requires significantly less space than Index Fabric and XISS
for two main reasons. First, both DBLP and XMARK have a
large number of elements in regular groups for which Ctree does
not need to keep element-level links. Second, the multiple value
index types in Ctree also reduce some space overhead. For
example, representing a string “$1,234,567.99” by a number
reduces value index size.

6.2 Experimental results on DBLP dataset

We use the same set of queries for DBLP as in ViST [20] with
some slight changes on value predicates as shown in Table 3.

The performances of the three indexing approaches are illustrated
in Figure 7. Q1 is a single path query without value predicates.
Ctree and Index Fabric have similar performances for Q1 while
XISS takes a longer time since it requires join operations.

 DBLP XMARK
Size (MB) 134 117
Max depth 6 12
Group# 119 548
Regular group# 42 164
Group name# 36 77
Elm# 3733320 2048193
Elm# in regular group 1640391 1326827
Percentage 43.9% 64.8%

Table 1: Characteristics of test datasets

 Description Answer#
Q1 /inproceedings/title 212,273
Q2 /book/author[contains(., “David”)] 27
Q2 /*/author[contains(., “David”)] 13,218
Q4 //author[contains(., “David”)] 13,218
Q5 /article[contains(./author,“David”) and ./year=1995] 258
Q6 /article[contains(./author,“David”) and ./year≥1995] 2,195

Table 3: Sample queries for DBLP

Size (MB) Ctree Index Fabric XISS
DBLP 78.1 102.9 117.5
XMARK 27.5 46.3 54.2

Table 2: Index file size (M bytes)

For the other queries, Ctree significantly outperforms Index
Fabric and XISS. One reason is that all the five queries have a
value predicate containing “David” which slows down both Index
Fabric and XISS. This is because both Index Fabric and XISS
require a join operation between the elements for author and the
elements containing “David.”
Since Q2 has only 27 answers, the clustered value inverted file
results in a speedup in the performance of Ctree by two orders of
magnitude. For Q3 and Q4, Index Fabric and XISS took 15 times
more time to get the answers than Ctree since they require many
join operations for processing the wildcard or the AD edge (“//”).
Q5 and Q6 are queries with two branches and involve numeric
predicates. Ctree again significantly outperforms the other two
methods. The smaller the answer list, the more the performance
gains Ctree achieves since the time for composing the answer list
is constant for all the methods.

6.3 Experimental results on XMARK dataset

In this set of experiments, we also tested all the 20 benchmark
queries in XMARK, and compared Ctree’s performances with
those of Index Fabric and XISS. Due to space limitations, we
randomly picked six of them as shown in Table 4. Q2 and Q4 are
designed to test the performance of ordered access with Q2 for
element indexes and Q4 for tag orders. Q15 and Q16 are to evaluate
the performance of long path traversals. Q18 is a converting
applications and Q20 is for aggregations.

As shown in Figure 8, for all six queries we randomly picked,
Ctree outperforms the other two methods by at least one order of
magnitude due to fast access to elements parents and group-based
value index. For the queries Q4, Q18 and Q20, Index Fabric and
XISS are further slowed down by the lack of proper value indexes
for numbers. This is because Ctree index creates various value
index types while the other two methods have only string data
type.

7. Related Works
Indexing and querying XML data is one of the major research
fields in recent years. There are currently three major approaches
for indexing XML data: node indexing, path indexing and
sequence-based indexing.
Node index approaches [13][23] create indexes on each node by
its positional information within an XML data tree. Such index
schemes can determine the hierarchical relationships between a
pair of nodes in constant time. Also, they use a node as a basic
query unit, which provides great query flexibility. Any tree-
structure query can be processed by matching each node in the
query tree and structurally joining these matches. Structural join
algorithms[18][4][14] have been proposed recently to support
efficient query answering.
Path index approaches create path summaries for semi-structured
data to improve query efficiency. DataGuides [7] indexes each
distinct raw data path to facilitate the evaluation of simple path
expressions. The Index Fabric approach [6] indexes frequent
query patterns which may contain “//” or “*”, in addition to raw
data paths. APEX [5] and D-(k) [3] are two adaptive path
approaches that apply data mining algorithms to mine frequent
paths in the query workload and build indexes accordingly. In
case of changes in the query workload, the structure summaries
are updated accordingly. The structure summary of D-(k) is also
adaptive to updates in XML documents. To handle all kinds of
branching path expressions, F&B index approach [1] indexes each
edge in an XML data tree both forward and backward. But it is
usually too big to be practical. To overcome this problem, F+B
approach [8] reduces index size by ignoring unimportant tags and
edges, limiting the depths of branching queries.
Sequence-based indexing approaches [20][17] transform XML
documents and queries into structure-encoded sequences. They
leverage on the well-studied sub-sequence matching techniques to
find query answers. Since sequence index approaches use the
entire query tree as the basic query unit, they avoid the expensive
join operations and support any tree-structure XML queries.

Figure 7: Performance comparison of Ctree with Index
Fabric and XISS on DBLP

Figure 8: Performance comparison of Ctree with Index
Fabric and XISS on XMARK

 Description Answer#
Q2 Return the initial increases of all open auctions. 10,830
Q4 List the reserves of those open auctions where

person18829 issued a bid before person10487.
2

Q15 Print the keywords in emphasis in annotations of
closed auctions.

180

Q16 Return the IDs of those auctions that have one or
more keywords in emphasis.

160

Q18 Convert the currency of the reserve of all open
auctions to another currency.

5,922

Q20 Group customers by their income and output the
cardinality of each group.

1

Table 4: Sample queries for XMARK

��
��
��

����
����
����

����� ��
��
��

�����
�����
�����

������

������������� ������������� ������������� ����������� �������������
��
������

�����
����� �����������

��
�������

������
������

��
��

�����
�����
������

��
��
��
��
��

����
����
����
����

�����
�����

0

50

100

150

200

Ti
m

e
(m

se
c)

Q1 Q2 Q3 Q4 Q5 Q6

���
Ctree

���
��� Index Fabric

XISS

�������������

���
���
���
���
���
���
���

����
����
����
����
����
����
����

������

����� ������������� ������������� ����������� ������ ����������� �����������

��
��
��
��

�����
�����
�����
�����

������

�����

��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����

������

0

200

400

600

800

1000

1200

Ti
m

e
(m

se
c)

Q2 Q4 Q15 Q16 Q18 Q20

����
Ctree����
Index Fabric
XISS

In addition, value indexes are essential for efficient processing
queries with value conditions. Most previous works create
inverted indexes on XML values. We also create inverted index
on values but we further cluster inverted indexes according to
their incoming label paths or groups. During our manuscript
preparation, we notice that [11][21]combine some information
retrieval techniques with XML indexing, which is similar to our
value index approach.

8. Conclusion
In this paper, we proposed a compact index tree, Ctree, for
indexing XML data. Ctree provides concise path summaries at its
group level and detailed child-parent relationships in arrays at its
element levels. The array in a group provides direct mapping from
elements to their parents. Such a fast child-to-parent access is
essential for efficient branching query processing. We proposed a
Ctree-based query processing method that enables early pruning
of a large search space. Ctree is able to capture one-to-one parent-
child relationships (regular groups) and has monotonic
relationships, which can be used to speed up query evaluation. In
addition, instead of using global IDs, we proposed group-based
element reference which facilitates stepwise early pruning,
efficient value processing, heterogeneous values differentiation,
and efficient XML data updating. We conducted a set of
experiments to evaluate the effectiveness of Ctree. Our studies
reveal that Ctree significantly outperforms Index Fabric and XISS
for all the tested queries. We have also successfully applied Ctree
index to an application example in INEX’03.

Acknowledgement
This research is supported by NSF IIS ITR Grant # 0219442.

References
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the web:

from relations to semistructured data and XML. Morgan
Kaufmann Publishers, Los Altos, USA, 1999.

[2] A. Arion, A. Bonifati, G. Costa and S. D Aguanno. Ioana
Manolescu, Andrea Pugliese: Efficient Query Evaluation
over Compressed XML Data. EDBT, 2004.

[3] Q. Chen, A. Lim, and K. Ong. D(k)-Index: An adaptive
Structural summary for graph-structured data. ACM
SIGMOD, 2003.

[4] S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C.
Zaniolo. Efficient Structural Joins on Indexed XML
Documents, VLDB, 2002.

[5] C. Chung, J. Min, and K.Shim. APEX: An adaptive path
index for XML data. ACM SIGMOD, 2002.

[6] B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and
M. Shadmon. A fast index for semistructured data. VLDB,
2001.

[7] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases.
VLDB, 1997.

[8] R. Kaushik, P.Bohannon, J. Naughton, and H. Korth.
Covering indexes for branching path queries. ACM
SIGMOD, 2002.

[9] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes.
Exploiting Local Similarity for Indexing Paths in Graph-
Structured Data. ICDE, 2002.

[10] R. Kaushik, P. Bohannon, J. F Naughton, and P. Shenoy.
Updates for Structure Indexes. VLDB, 2002.

[11] R. Kaushik, R. Krishnamurthy, J. F. Naughton and R.
Ramakrishnan. On the Integration of Structure Indexes and
Inverted Lists. SIGMOD, 2004.

[12] Michael Ley. DBLP database web site.
http://www.informatik.uni-trier.de/ley/db.

[13] Q. Li and B.Moon. Indexing and querying XML data for
regular path expressions. VLDB, 2001.

[14] H. Jiang, H. Lu, W. Wang, and B.C. Ooi. XR-Tree: Indexing
XML Data for Efficient Structural Joins. ICDE, 2003.

[15] T. Milo, and D. Suciu. Index structures for path expression.
ICDT, 1999.

[16] S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe.
Representative objects: concise representations of
semistructured, hierarchical data. ICDE, 1997.

[17] P. Rao, and B. Moon. PRIX: Indexing and querying XML
using Prunfer sequences, ICDE, 2004.

[18] D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N. Koudas, J.
M. Patel, and Y. Wu. Structural joins: A primitive for
efficient XML query pattern matching. ICDE, 2002.

[19] I. Tatarinov, Z.G. Ives, A.Y. Halevy, D.S. Weld. Updating
XML. SIGMOD, 2001.

[20] H. Wang, S. Park, W. Fan, and P. S Yu. ViST: A dynamic
index method for querying XML data by tree structures.
SIGMOD, 2003.

[21] F. Weigel, H. Meuss, F. Bry and K. U. Schulz. Content-
Aware DataGuides: Interleaving IR and DB Indexing
Techniques for Efficient Retrieval of Textual XML Data.
ECIR, 2004.

[22] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura.
XRel: A path-based approach to storage and retrieval of
XML documents using relational databases. ACM
Transaction on Internet Technology, 1(1):110-141, August
2001.

[23] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman.
On supporting containment queries in relational database
management systems. ACM SIGMOD, 2001.

[24] S. Liu, Q. Zou, W. Chu. Configurable Indexing and Ranking
for XML Information Retrieval. ACM SIGIR, 2004.

[25] XMARK(The XML-benchmark project)
http://monetdb.cwi.nl/ xml.

[26] INEX(Initiative for the Evaluation of XML Retrieval)
http://inex.is.informatik.uni-duisburg.de:2003/.

