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We propose the use of maximal frequent itemsets (MFIs) to derive associa-
tion rules from tabular datasets.  We first present an efficient method to 
derive MFIs directly from tabular data using the information from previous 
search, known as tail information. Then we utilize tabular format to derive 
MFI, which can reduce the search space and the time needed for support-
counting. Tabular data allows us to use spreadsheet as a user interface. The 
spreadsheet functions enable users to conveniently search and sort rules. To 
effectively present large numbers of rules, we organize rules into hierarchi-
cal trees from general to specific on the spreadsheet Experimental results 
reveal that our proposed method of using tail information to generate MFI 
yields significant improvements over conventional methods. Using inverted 
indices to compute supports for itemsets is faster than the hash tree counting 
method.  We have applied the proposed technique to a set of tabular data 
that was collected from surgery outcomes and that contains a large number 
of dependent attributes. The application of our technique was able to derive 
rules for physicians in assisting their clinical decisions. 

1 Introduction 

Many algorithms have been proposed on mining association rules in the 
past decade.  Most of them are based on the transaction-type dataset. In 
the real world, a huge amount of data has been collected and stored in 
tabular datasets, which usually are dense datasets with a relatively small 
number of rows but a large number of columns. To mine a tabular dataset, 
previous approaches required transforming it into a transaction-type data-
set in which column structures are removed. In contrast, we propose a new 
method that takes advantage of the tabular structure and that can mine as-
sociation rules directly from tabular data. 
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Many previous approaches take four steps to generate association rules 
from a tabular dataset: (1) transforming a tabular dataset T into a transac-
tion-type dataset D; (2) mining frequent itemsets (FI) or frequent closed 
itemsets (FCI) from D; (3) Generating rules from FI or FCI; (4) presenting 
rules to the user. This strategy achieves a certain degree of success but has 
three shortcomings:  

First, transforming a tabular dataset into a transaction-type dataset in-
creases the search space and the time required for support-counting, since 
column structures are removed.  Figure 1a shows a table with five rows 
and five distinct columns, column A to E. The Occ column indicates the 
number of occurrences of a row. Thus, the Occ value can be used to count 
support of an itemset.  For example, given a minimal support 3, “A=3” is 
a frequent item since its support is 4, which can be obtained by adding the 
Occ values of rows 3 and 4. Likewise, both “A=1” and “A=2” have a sup-
port of 2, so they are infrequent. Figure 1b shows the corresponding trans-
action-type dataset where each column value is mapped to an item, e.g. 
A=1 to a1. There are 9 frequent items in Figure 1b. Since any combination 
of the nine items can be a possible FI, FCI, or MFI, the search space is as 
large as 29=512. In contrast, by keeping column structure, the search space 
in Figure 1a can be significantly reduced to 162 (2*3*3*3*3) since the 
combinations of items on the same column can be excluded. Note that in 
Apriori-like level-wised approaches, keeping column structures reduces 
the number of candidates generated at all levels. For instance, in Figure 1b, 
Apriori-like approaches would generate b1d1d2 as a 3-item candidate since 
b1d1 and b1d2 are frequent. By using column constraints, d1d2 are in the 
same column, so any candidate containing d1d2 can be pruned. Further-
more, keeping column structure reduces the time needed for support-
counting. For example, in vertical data representation, the supports of all 
items in one column can be counted in a single scan of the column. 
 

TID Item set Occ 
1 a1 b2 c1 d1 e1

Row No. A B C D E Occ 
1 1 2 2 2 1 1 1 

 
 
 
 
 

Fig. 1. Tabular data vs. transaction data 

Second, in certain situations, mining frequent itemsets (FI) or frequent 
closed itemsets (FCI) becomes difficult since the number of FIs or FCIs 

2 a2 b1 c2 d1 e1 1 2 2 1 2 1 1 1
3 3 2 2 2 1 2
4 3 1 

3 a3 b2 c2 d2 e1 2 
4 a3 b1 c2 d2 e2 2 
5 a2 b1 c1 d2 e2 1 
Totally 9 frequent items 

(b). A transaction-type dataset 

2 2 2 2
5 2 1 1 2 2 1

Frequent item# 1 2 2 2 2  

(a). A source tabular data
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can be very large. Researchers have realized this problem and recently 
proposed a number of algorithms for mining maximal frequent itemsets 
(MFI) [3, 4, 6, 21], which achieve orders of magnitudes of improvement 
over mining FI or FCI.  When mining a dense tabular dataset, it is desir-
able to mine MFIs first and use them as a roadmap for rule mining.  

Finally, a challenging problem is how to present a large number of rules 
effectively to domain experts.  Some approaches prune and summarize 
rules into a small number of rules [10]; some cluster association rules into 
groups [14]. While reducing the number of rules or putting them into sev-
eral clusters is desirable in many situations, these approaches are incon-
venient when an expert needs to inspect more details or view the rules in 
different ways.  Other approaches [17, 11] developed their own tools or a 
new query language similar to SQL to select rules, which provides great 
flexibility in studying rules. But, in some situations, domain experts are re-
luctant to learn such a query language.  

In this Chapter, we present a new approach to address these problems.  
• We propose a method that can generate MFIs directly from tabular 

data, eliminating the need for conversion to transaction-type data-
sets. By taking advantage of column structures, our method can 
significantly reduce the search space and the support counting time. 

• We introduce a framework that uses MFIs as a roadmap for rule 
mining.  A user can select a subset of MFIs to including certain 
attributes known as targets (e.g., surgery outcomes) in rule genera-
tion.  

• To derive rules from MFIs, we propose an efficient method for 
counting the supports for the subsets of user-selected MFIs. We 
first build inverted indices for the collection of itemsets and then 
use the indices for support counting. Experimental results show 
that our approach is notably faster than the conventional hash tree 
counting method.  

• To handle the large number of rules generated, we hierarchically 
organize rules into trees and use spreadsheet to present the rule 
trees. In a rule tree, general rules can be extended into more spe-
cific rules. A user can first exam the general rules and then extend 
to specific rules in the same tree. Based on spreadsheet’s rich func-
tionality, domain experts can easily filter or extend branches in the 
rule trees to create the best view for their interest. 

The organization of this chapter is as follows. Section 1 discusses re-
lated works. Section 2 presents the framework of our proposed algorithm 
called SmartRule and the method of mining MFIs directly from tabular 
data.  A new support counting method is introduced in Section 3. Then 
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rule trees are developed in section 4 to represent a set of related rules and 
their representations on the spreadsheet user interface. Performance com-
parison with transaction datasets is given in section 5. Finally, an applica-
tion example of using this technique on a medical clinical dataset for sur-
gery consultation is given. 

1.1 Related works 

Let I be a set of items and D be a set of transactions, where each transac-
tion is an itemset. The support of an itemset is the number of transactions 
containing the itemset. An itemset is frequent if its support is at least a 
user-specified minimum support. Let FI denote the set of all frequent item-
sets. An itemset is closed if there is no superset with the same support. The 
set of all frequent closed itemsets is denoted by FCI.  A frequent itemset 
is called maximal if it is not a subset of any other frequent itemset. Let 
MFI denote the set of all maximal frequent itemsets. Any maximal fre-
quent itemset X is a frequent closed itemset since no nontrivial superset of 
X is frequent.  Thus we have .  FIFCIMFI ⊆⊆

Many algorithms for association rule mining require discovering FI be-
fore forming rules. Most methods for generating FI can be classified into 
three groups.  First is the candidate set generate-and-test approach [1, 7, 
12], which finds FI in a bottom up fashion. Second, the sampling approach 
[16] reduces computation complexity but the results are incomplete. Third 
is the data transformation approach [8, 20], which transforms a dataset to a 
new form for efficient mining.  Some algorithms [13, 19] use FCI to gen-
erate rules. 

Recently many MFI mining algorithms have been proposed. MaxMiner 
[4] uses a breadth-first search and performs look-ahead pruning on tree 
branches.  The developments in mining MFI, however, use a depth first 
search with dynamic reordering as in DepthProject [2], Mafia [3], Gen-
Max[6], and SmartMiner [21]. All of these methods for mining MFI have 
reported orders of magnitudes faster than methods mining FI/FCI. Smart-
Miner uses tail information to prune the search space without superset 
checking. Little research has been done on using MFIs for mining associa-
tion rules since no rule can be generated from MFIs.  However, MFIs can 
serve as roadmaps for rule mining. For example, given the set of MFIs, we 
can analyze many interesting properties of the dataset such as the longest 
pattern, the distribution and the overlap of the MFIs.  

Extensive research has been done on association rule mining. For exam-
ple, there has been research on mining multi-level association rules [9], on 
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selecting the right interestingness measure [15], on synthesizing high fre-
quency rules [18], etc.   

Association rule mining techniques often produce a large number of 
rules that are hard to comprehend without further processing.  Many tech-
niques [10, 11, 14, 17] are proposed to prune, cluster, or query rules.  The 
rules are usually presented in free text format, where it is easy to read a 
single rule but difficult to compare multiple rules at the same time.  In 
this chapter, we propose using spreadsheets to present hierarchically or-
ganized rules to remedy this problem. 

2 Methodology 

Figure 2 illustrates SmartRule using an Excel book (or other spreadsheet 
software) to store data and mining results. The Excel book also serves as 
an interface for interacting with users. There are three functions in the sys-
tem: TMaxMiner, InvertCount, and RuleTree. TMaxMiner directly mines 
MFIs for a given minimal support from tabular data. InvertCount builds 
the FI list contained by the user-selected MFIs and counts the supports for 
the FIs (Section 3). RuleTree is used to generate rules and to organize 
them hierarchically (Section 4).  

In this chapter, we as-
sume that our data only 
contains categorical val-
ues. In the situation that a 
column contains continu-
ous values, we use cluster-
ing technique (e.g., [5, 
22]) to partition the values 
into several groups.  

TMaxMiner:
Compute MFI 
from tabular 
data. 

• Data 
• MFI 
• Rules 
• Config 

Domain 
experts 

InvertCount:
 - MFIs FIs 
 - Count sup

RuleTree:  
 - Generate 
 - Organize

FI Supports

Excel Book
1

2

3 

4 5

6 

Fig. 2. System overview of SmartRule 

2.1 Tail Information 

Let N=X:Y  be a node where X is the head of N  and Y is the tail of N. 
Let M be known frequent itemsets and N=X:Y be a node.  The tail infor-
mation of M to N is denoted as Inf (N|M), and is defined as the tail parts of 
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the frequent itemsets in {X:Y} that can be inferred from M, that is, 
Inf (N | M) = {Y ∩ Z |∀Z ∈ M, X ⊆ Z}. 

For example, Inf (e:bcd|{abcd,abe,ace})={b,c}, which means that eb 
and ec are frequent given {abcd,abe,ace} frequent. For simplicity, we call 
tail information “information”.  

Since the tail of a node may contain many infrequent items, pure depth-
first search is inefficient.  Hence, dynamic reordering is used to prune 
away infrequent items from the tail of a node before exploring its sub 
nodes. 

2.2 Mining MFI from tabular data 

We now present TmaxMiner, which computes MFIs directly from a tabu-
lar dataset.  TMaxMiner uses tail information to eliminate superset check-
ing. TMaxMiner uses tables as its data model and selects the column with 
the least entropy for the next search. 

To process the tabular data more efficiently, we start with the column of 
the least entropy. The entropy of a column can be computed by the prob-
ability of each item in that column. For example, for column A in Figure 
4a, the probability of a3 is {P(a3)=1} where empty cells are ignored; thus 
the entropy of column A is I({P(a3)=1}) is 0.  The entropy of column B is 
I({P(b1)=0.6, P(b2)=0.4}) = -0.6*log20.6-0.4* log20.4 ≈ 0.97. So we start 
mining MFI from column A. 

As shown in Figure 3, TMaxMiner takes two parameters, a table T and 
information inf.  It returns the discovered MFI in a depth-first fashion. 
The parameter T is the current table for processing and inf specifies the 
known frequent itemsets from the previous search. The TMaxMiner algo-
rithm that uses tail information to derive MFIs is shown in Figure 3. Line 1 
computes the support for each item in T and then removes infrequent 
items. Parent equivalence pruning (PEP) [3] is defined as follows: Let x be 
a node’s head and y be an element in its tail, if any transaction containing x 
also contains y, then move item y from the tail to the head. Line 2 finds the 
PEP items that appear in every row of T and remove the corresponding 
columns.  Line 3 selects an item x in the column with the least entropy. 
Lines 4 to 10 find the MFIs containing x.  Specifically, a new table T’ is 
formed by selecting those rows of T containing x, and then removing the 
column of x.  At Line 5, the part of inf mentioned x is assigned to inf’.  
Line 6 discovers MFI in the new table T’, which is extended by the item x 
and added to mfi.  Since we discovered the MFI containing x, we can re-
move x from T as in Line 8.  Then mfi’ is added into inf to inform the 
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succeeding steps of the known frequent itemsets.  Finally, the answer is 
returned at Line 11. 
TMaxMiner(table T, inf) 
1 Count sup and remove infrequent items from T; 
2 Find pep, remove pep’s columns, update inf;; 
3 while(select x on a column of least entropy){ 
4  Rows in T containing x table T’; 
5  The part of inf relevant to T’ inf’; 
6  mfi’= TMaxMiner(T’, inf’);  
7  Add (x + mfi’) to mfi;  
8  Remove x from T;  
9  Update inf with mfi’;  
10 } 
11 return (pep + mfi); 

Fig. 3. TMaxMiner — a depth-first method that discovers MFI directly from a ta-
ble guided by tail information. 

2.3 An example of TMaxMiner 

We shall show how TMaxMiner derives MFIs from the table as shown in 
Figure 4a.  Let minimum support threshold be equal to 3, we first select 
item a3 as the first node since column A has the least entropy, and then 
yield the table T(a3), where items c2 and d2 appear in every row, i.e., 
pep=c2d2, and all other items are infrequent. Therefore we obtain MFI 
a3c2d2 for T(a3).  Removing column A from Figure 4a, we have Figure 4b 
with the tail information c2d2.  

Next, column C in Figure 4b is selected.  We find a MFI c1 from T(c1) 
and two MFIs b1c2 and c2e1 from T(c2). After removing column C, we have 
Figure 4c with the tail information {d2, b1, e1}.  The rows 4 and 5 contain 
the same items and can be combined to form a MFI b1d2e2. Then the two 
rows can be removed and the table shown in Figure 4d is formed.   

We find two more MFIs, b2e1 and d1e1, from Figure 4d and the search 
process is now completed. The final results are the union of the MFIs in 
Figure 4a~4d. They are a3c2d2, c1, b1c2, c2e1, b1d2e2, b2e1, and d1e1. 

 
 
 
 
 
 



8      Qinghua Zou1, Yu Chen1, Wesley W. Chu1, and Xinchun LuP2 

 
 
 
 
 
 
 
 
 

 

 

T(a3) 

 B C D E Occ 
3 2 2 2 1 2 
4 1 2 2 2 2 

pep=c2d2 

T(c2)

B D E Occ
2 1 1 1 1
3 2 2 1 2
4 1 2 2 2

inf=nil 
mfi=a3c2d2 

 B C D E Occ
1 2 1 1 1 2
2 1 2 1 1 1
3 2 2 2 1 2
4 1 2 2 2 2
5 1 1 2 2 1
 

(b). inf=c2d2 (a). inf=nil 

 A B C D E Occ 
1   2 1 1 1 2 
2   1 2 1 1 1 
3 3 2 2 2 1 2 
4 3 1 2 2 2 2 
5   1 1 2 2 1 
 inf=nil

mfi=c1

inf=d2
mfi= b1c2,c2e1

mfi=b1d2e2 

B D E Occ
1 2 1 1 2
2 1 1 1 1
3 2 2 1 2
4 1 2 2 2
5 1 2 2 1
 

(c). inf=d2,b1,e1 

B D E Occ
1 2 1 1 2 
2 1 1 1 1 
3 2 2 1 2 
mfi= b2e1, d1e1 

(d). inf=e1 

MFI Results  
a3c2d2  
c1, b1c2, c2e1 
b1d2e2 
b2e1, d1e1 

T(c1) 

 B D E Occ
1 2 1 1 2
5 1 2 2 1

Inf=nil 
   inf=d2 

Fig. 4. An example of TMaxMiner: discover MFI directly from the tabular data-
set. 

3 Counting support for targeted association rules 

Domain experts often wish to derive rules that contain a particular attrib-
ute. This can be accomplished by selecting a set of MFIs that contain such 
a target column.  When the MFIs are very long, columns of less interest 
can be excluded. 

The counting itemset C can be formed from the selected MFIs. For ex-
ample, if the target column is column E in Figure 1a, we can select the 
MFIs containing e1 or e2 and have {b1d2e2, b2e1, c2e1, d1e1}.  Then the 
counting itemsets C are all the subsets of the selected MFIs, C={ b1, b2, c2, 
d1, d2, e1, e2, b1d2, b1e2, b2e1, c2e1, d1e1, d2e2, d2b1e2}. 
In order to generate rules, we need to count the support 
for the counting itemsets C from the source table T.  
There are two ways to determine which itemsets in C are 
contained in a row i in T: (1) for each subset s of i, check 
if s exists in C; (2) for each itemset c in C, check if c is 
contained in i.  Clearly, both approaches are not effi-
cient. 

To solve this problem, some previous works build a 
hash tree from a prefix tree for the counting itemsets C.  
Figure 5 shows the prefix tree containing all the 14 item-
sets in C. Then a hash table is added to each internal node 

e2

e1

e2

e2d2

b2 e1

c2 e1

d1 e1

d2

∅

e2

b1

Fig. 5. Prefix 
tree for count-
ing FIs 
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to facilitate the search for a particular child. To find the itemset in C con-
tained in a row i in T, we need to determine all the nodes in the prefix tree 
that match i. This approach is faster than the above two approaches, but the 
tree operations are relatively expensive. 

We propose an algorithm InvertCount for counting supports that use 
only native CPU instructions such as “+1” and “mov”. 

Figure 6 illustrates that InvertCount employs inverted indices to count 
supports. Figure 6a shows the 14 itemsets for counting where the column 
len is the number of items in an item-
set.  The column sup stores the current 
counting results.  The column cnt re-
sets to 0 whenever the counting for one 
row is done.  Figure 6b is the inverted 
indices itm2ids that map an item to a 
list of itemsets’ identifiers ids.   

For a given row i, we can quickly de-
termine the itemsets contained in i and 
increase their support by Occ(i). For 
example, for the first row of Figure 1a, 
i=a1b2c1d1e1, we get the inverted indi-
ces (b2:1, 9), (d1:3, 11), and (e1:5, 9, 10, 
11). There is no inverted index for a1 
and c1. Then we use the column cnt to 
count the occurrence of each id in the 
above three indices, e.g., 9 occurring 
twice.  Finally we determine that 
itemsets 1, 3, 5, 9, 11 are contained in i 
since their occurrences are equal to the values on column len (itemsets’ 
lengths).  Therefore we increase their support by Occ(i), i.e. 2, as shown 
on the column sup. 

The algorithm InvertCount (shown in Figure 7) counts the support for 
itemsets in C from source tabular data T without any expensive function 
calls.  Line 1 builds the data structure as shown in Figure 6. For each row 
i in T, we first find the itemsets in C that are contained in i and then in-
crease their support by Occ(i).  Specifically, Lines 3 and 4 count the oc-
currence of ids in the inverted lists of the items in i. Line 7 increases the 
support of an itemset by Occ(i) if the itemset is a subset of i.  Line 8 
clears the count for item id in FI-table for later use.  We return the count-
ing results at Line 9. 

Our preliminary experimental results reveal that InvertCount is notably 
faster than previous hash tree counting.   

Fi
cient com

g. 6. Example of InvertCount for effi-
puting FI supports. 

item ids id itemset sup len cnt
b1 0, 7, 8, 13 
b2 1, 9 
c2 2, 10 
d1 3, 11 
d2 4, 7, 12, 13 
e1 5, 9, 10, 11 
e2 6, 8, 12, 13 

b. itm2ids 

0 b1 4 1
1 b2 4 1 1
2 c2 5 1  
3 d1 3 1 1
4 d2 5 1
5 e1 5 1 1
6 e2 3 1
7 b1d2 3 2  
8 b1e2 3 2  
9 b2e1 4 2 2
10 c2e1 3 2 1
11 d1e1 3 2 2
12 d2e2 3 2
13 b1d2e2 3 3

Example: 
Count from row 1: 
 a1b2c1d1e1: occ=2 
Get inverted index 
 b2: 1, 9 
 d1: 3, 11 
 e1: 5, 9, 10, 11 

a. FI-table 
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InvertCount(table T, C) 
1 build FI-table F and itm2ids from C; 
2 foreach(row i in T) do 
3  foreach(item x in i) do 
4   foreach(id in itm2ids[x].ids) do 
F.cnt[id]++;   
5  foreach(item x in i) do 
6   foreach(id in itm2ids[x].ids) do 
7    if(F.cnt[id]>=F.len[id]) 
F.sup[id]+=Occ(i); 
8    F.cnt[id]=0;  
9 return F.sup; 

Fig. 7. The InvertCount Algorithm — using inverted indices to count supports for 
the itemsets in C 

4   Generating Rule Trees  

Using the final support counting results, we are able to generate associa-
tion rules. For example, Figure 6a shows the final counting results in the 
column sup. Since we are looking for rules with e1 or e2 as rule head, we 
can build a rule for every itemset containing e1 or e2. For instance, for 
itemset b1d2e2 containing e2, a rule b1d2 e2 is created. Figure 8 shows the 
list of rules created from Figure 6a. 

The support and confidence of a rule can be 
easily derived from the final counting result. For 
example, for the itemset d1e1 in Figure 6a, we cre-
ated a rule d1→e1 whose support is 3 and whose 
confidence is the support of d1e1 divided by that of 
d1, which is equal to 1.0.  

Association rule mining usually generates too 
many rules for the user to comprehend, so we 
need to organize rules into a hierarchical structure 
so that users can study the rules at different levels 
with varying degrees of specificity. Trees are built 

from the list of rules, where each tree represents rules sharing the same 
rule head.  The hierarchical relationship on a tree is determined by the 
containment relationship among rules’ bodies.  A rule r1 is an ancestor of 
r2 if and only if the head of r1 is equal to the head of r2 and where the body 
of r1 is a subset of the body of r2. 

id rule Sup Conf 
5  nil e1 5 1.0 
6  nil e2 3 1.0 
8  b1 e2 3 0.75 
9  b2 e1 4 1.0 
10  c2 e1 3 0.6 
11  d1 e1 3 1.0 
12  d2 e2 3 0.6 
13  b1d2 e2 3 1.0 
Fig. 8. A table of rules 
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Figure 9 shows the algorithm TreeRule that takes a list of rules R as in-
put, sorted by increasing length, and returns trees with hierarchically or-
ganized rules.  Specifically, it builds a tree for each target column value, 
as shown in Lines 2 and 3 where rules have empty bodies.   For a rule 
with a non-empty body, we add it into the tree corresponding with its head, 
as shown in Lines 4 to 5. 

 
vector TreeRule(List R) 
1 int i=0; 
2 for(; R[i].body.len==0; i++) //nil h 
3  new Tree(R[i])  tr[R[i].head]; 
4 for(; i<R.Count; i++)   
5  tr[R[i].head].AddRule(R[i]); 
6 return tr; 

Fig. 9. TreeRule — building a forest of trees from a list of rules   

Figure 10 shows a recursive method AddRule that adds a rule r into a 
tree.  If a more specific rule r has similar support and confidence with the 
current rule node referred by this, then we simply add the extra items as 
optional items (optItms) without creating a new node as in Lines 1 to 3. 

If the rule r is not similar to the current rule node, then we add r into 
sub-trees of this whose bodies are subsets of r.body as in Lines 5 and 6.  
If no such sub tree exists, we create a new tree and add it into this.subTree 
as in Lines 7 to 9.  Line 10 returns the updated tree r.  

 
AddRule(rule r) 
1 if(r.sup, r.conf)≈(this.sup, this.conf); 
2  this.optItms += r.body-this.body;  
3  return; 
4 r.body -= this.optItms; 
5 foreach(subtree t & t.body is a subset of 
r.body)   
6  t.AddRule(r); 
7 if(no such a subtree) 
8  t’=new Tree(r); 
9  Add t’ to this.subTrees; 
10 return; 

Fig. 10. AddRule — recursively adding a rule into a rule tree 
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Rules Sup Conf Depth Num 
 nil e1 5 1.0 0 0 
 b2 e1 4 1.0 1 1 
 d1 e1 3 1.0 1 2 
 c2 e1 3 0.6 1 3 
 nil e2 3 1.0 0 4 
 b1 e2 3 0.75 1 5 
b1d2 e2 3 1.0 2 6 
 d2 e2 3 0.6 1 7 

 a. Example of rule trees.

b2 e1 (sup=4, conf=1.0) 
d1 e1 (sup=3, conf=1.0) 
c2 e1 (sup=3, conf=0.6) 

b1d2 e2 (sup=3,conf=1.0) 
d2 e2 (sup=3, conf=0.6) 

b1 e2 (sup=4, conf=1.0) 

nil e1 (sup=5, conf=1.0)

nil e2 (sup=3, conf=1.0)

b. Rule trees represented by node 
Depth and Number  

Fig. 11. Example of rule trees and their tabular representation 

For example, Figure 11a shows the rule trees for the rules in Figure 8. 
Two rule trees are built: one for e1 with 3 branches, another for e2 with two 
levels of children. The second level node b1→e2 is the parent of b1d2→e2 
because they both have the same head e2, and b1 is a subset of b1d2. In gen-
eral, a more specific rule gives higher confidence but lower support. Figure 
11b represents the tree in table format, in which each node is represented 
as a row with its support, confidence, node depth and number information. 
To output trees into tabular format, we number nodes in the trees by their 
preorders. The node’s number plus its depth can be used to represent the 
hierarchical relationship of the specific rules in a rule tree. 

5. Hybrid Clustering Technique for Partitioning 
Continuous Attributes 

The number of cells and the cell size will affect the clustering results and 
the data mining outcome, both in support and confidence. 

When the sample size is very small and number of attributes is large, 
conventional statistical classification techniques such as CART [22] fail to 
classify the continuous value of an attribute into cells. Using unsupervised 
clustering techniques [5] has the problem of not knowing the optimal 
number of cells to represent the variables. Therefore, we developed a hy-
brid technique that combines both statistical and data mining techniques it-
eratively in determining the optimal number of cells as well as the cell 
sizes.  

The basic idea is to use data mining technique to select a small set of 
key attributes, and then use a statistical classification technique such as 
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CART to determine the cell sizes and number of cells from the training set. 
Then we use the partitioning result for data mining. The procedure works 
as follows: 

Perform the mining on the training set, and select a set of attributes with 
high confidence and support for statistical classification.   

Perform statistical classification based on the training set for the se-
lected attributes set from step (1).  Since the attribute set is greatly re-
duced, statistical classification techniques such as CART [22] can be used 
to determine the optimal number of cells and their corresponding cell sizes 
for attribute. 

Based on the optimal cell sizes for each attribute from step (2), data 
mining algorithms can then be used to generate the rules for this set of at-
tributes. 

With this hybrid clustering approach, we are able to generate optimal 
partitioning for the set of continuous attributes. Our experimental results 
reveal that deriving rules based on such partitioning yield better mining re-
sults than conventional unsupervised clustering techniques [5]. 

6.   Performance Comparisons 

SmartRule was implemented using Microsoft .Net C# and the Office XP 
primary interop assemblies so that our program could directly read from 
and write to Excel workbooks. Experimental results have shown that 
SmartMiner is close to one order of magnitude faster than Mafia and 
Genmax in generating MFI from transaction dataset [21]. Note Smart-
Miner, Mafia and GenMax do not keep column constraints during generat-
ing MFIs. By taking advantage of column constraints in tabular data for-
mat, TmaxMiner achieves performance gains over SmartMiner as shown 
in Fig. 12. Further, we note that the gain increases as the support de-
creases. The dataset Mushroom used for performance comparison is in 
tabular format and was downloaded from the UCI machine learning re-
pository [23]. 

To evaluate the performance of InvertCount, we used the Mushroom 
dataset and selected the MFIs containing the class attributes (edible or poi-
sonous) to generate counting itemsets.  Before testing, we build a hash 
tree and inverted indices for these itemsets.  Then we compared the 
counting time of InvertCount and HashTree in the source Mushroom table.   
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Figure 13 shows the relative time of Hash Tree and InvertCount for the 

tests at varying minimal supports.  When minimal support is 10%, they 
have similar performances because of the small number of counting item-
sets.  As the minimal support decreases, MFIs become longer, which re-
sults in an increase in the number of counting itemsets. In such a case, In-
vertCount is notably faster than HashTree. 

7   An Application Example 

We have applied SmartRule to mine a set of clinical data that was col-
lected from urology surgeries during 1995 to 2002 at the UCLA Pediatric 
Urology Clinic. The dataset contains 130 rows (each row represents a pa-
tient) and 28 columns, which describe patient pre-operative conditions, 
type of surgery performed, post-op complications and final outcome of the 
surgeries.  The pre-operative conditions include patient ambulatory status 
(A), catheterizing skills (CS), amount of creatinine in the blood (Se-
rumCrPre), leak point pressure (LPP), and urodynamics, such as minimum 
volume infused into bladder when pressure reached 20 cm of water 
(20%min). The data mining goal is to derive a set of rules from the clinical 
data set (training set) that summarize the outcome based on patients’ pre-
op data.  This knowledge base can then be used to examine a given pa-
tient pre-op profile and decide which operation should be performed to 
achieve the best outcome. 

This set of clinical data represents four types of surgery operations as 
shown in Table 1.  We separate the patients into four groups based on the 
type of surgery they were treated with. For a given surgery type, we parti-
tioned the continuous value attributes, e.g., patient urodynamics data, into 
discrete intervals or cells. To achieve best mining results, an attribute may 
partition into different cell sizes for different types of operations, as shown 
in Table 2. Since our sample size is very small, especially after subgroup-
ing the dataset into different operations, we used the hybrid technique that 

Fig. 12. Comparison of TMaxMiner 
with SmartMiner 

Fig. 13. Comparison of InvertCount 
with Hashtree 
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combines both statistical and data mining techniques iteratively in deter-
mining the optimal number of cells as well as the cell sizes.  

For the training set, we are able to generate optimal partitioning for the 
set of continuous attributes from each operation type as shown in Table 2. 
Sets of rules are generated based on the discretized variables for each type 
of operation, which can be viewed as the knowledge base for this type of 
operation.  Our experimental results reveal that deriving rules based on 
such partitioning yield better mining results than conventional unsuper-
vised clustering techniques [5]. 

For a given patient with a specific set of pre-op conditions, the gener-
ated rules from the training set can be used to predict success or failure 
rate for a specific operation.  

To provide the user with a family of rules, SmartRule can organize 
matched rules into rule trees from general to specific rules. The rules 
closer to the root are more general, contain fewer constraints and yield 
higher support; the rules closer to the leaves are more specific, which con-
tain more constraints and yield lower support. In case of multiple match 
rules, the quality of the rules in terms of confidence and support may be 
used in rule selection. 

Given patient Matt’s pre-op conditions as shown in Table 3(a), since the 
attributes in the rules are represented in discrete values, the continuous 
pre-op conditions are transformed into discrete values (Table 3(b)) based 
on the partitioning done on the attributes of operation types as shown in 
Table 2.  Based on these attributes values of a given patient such as “Am-
bulatory Status=4” and “CathSkills=1”, we can search for rules from the 
knowledge base that were generated from the training set to match Matt’s 
pre-op profile as shown in Table 4. 

Table 1.  Four types of surgeries 

Operation 
Type Operation Description 

Op-1 Bladder Neck Reconstruction with Augmentation 
Op-2 Bladder Neck Reconstruction without Augmentation 
Op-3 Bladder Neck Closure without Augmentation 
Op-4 Bladder Neck Closure with Augmentation 
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Table 2. Partition of continuous variables into optimal number of discrete 
intervals (cells) and cell sizes for four types of operations. Each table presents the 
partitioning for a specific operation type. The optimal number of cells for an 
attribute is represented by the number of rows in each table. The size for each cell 
is represented in the column. Since different attributes have different optimal 
number of cells, certain attributes may contain no values in certain rows, and we 
use n/a to designate such a undefined cell sizes. 

(a) Operation Type 1 

 
 

 
 
 

Cell# LPP SerumCrPre
1 [0, 19] [0, 0.75] 
2 (19, 33.5] [0.75, 2.2] 
3 (33.5,40] n/a 
4 normal n/a  

(b) Operation Type 2 

Cell# 20%min 20%mean 30%min 30%mean LPP SerumCrPre 
1 [80, 118] [50, 77] [100, 170] [51, 51] [12, 20] [0, 0.5] 
2 [145, 178] [88, 104] [206, 241] [94, 113] [24, 36] [0.7, 1.4] 
3 [221, 264] [135, 135] n/a [135, 135] normal n/a 

(c) Operation Type 3 

Cell# 20%min 20%mean 30%min 30%mean LPP SerumCrPre 
1 [103,130] [57, 75] [129, 157] [86, 93] [6, 29] [0.3, 0.7] 
2 [156,225] [92, 105] [188, 223] [100,121] [30,40] [1.0, 1.5] 

 (d) Operation Type 4 

 
 
 

 
 
 

 

Cell# LPP 20% mean 
1 [0, 19] [0, 33.37] 
2 (19, 69] (33.37, 37.5]
3 normal (37.5, 52] 
4 n/a (52, 110] 

Table 3. (a) Patient Matt’s pre-operative conditions 

Ambulatory
Status (A) 

Cath 
Skills (CS) 

Serum 20% 20% 30% 30%
CrPre min mean(M) min mean LPP UPP 

4 1 0.5 31 20 50 33 27 unkown 
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Table 3. (b) Discretized pre-operative conditions of patient Matt’s pre-op 
conditions. The attributes not used in rule generation are denoted as n/a. 

 Ambulatory 
Status (A) 

Cath Serum 20% 20% 30% 30% 
mean LPP Skills (CS) CrPre min mean(M) min

Op-1 4 1 1 n/a n/a n/a n/a 2 
Op-2 4 1 1 <1 <1 <1 <1 2 
Op-3 4 1 1 <1 <1 <1 <1 1 
Op-4 4 1 n/a n/a 1 n/a n/a 2 

Table 4.  Rule trees selected from the knowledge base (derived form the training 
set) that match patient Matt’s pre-op profile 

Surgery Conditions Outcome Support Support(%) Confi-
dence 

CS=1 Success 10 41.67 0.77 Op-1 CS=1 and LPP=2 Success 3 12.5 0.75 
CS=1 and LPP=2 Fail 2 16.67 0.67 Op-2 20%min=1 and LPP=2 Fail 2 16.67 0.67 
CS=1 and SerumCrPre=1 Success 5 50 0.83 Op-3 CS=1, SerumCrPre=1 and LPP=1 Success 2 20 1 
A=4 Success 14 32.55 0.78 
A=4 and CS=1 Success 11 25.58 0.79 
A=4, CS=1 and LPP=2 Success 8 18.6 0.8 
A=4, CS=1 and M=1 Success 6 13.95 1 

Op-4 

A=4, CS=1, M=1 and LPP=2 Success 6 13.95 1 
 

 

A4CS1Lpp2 Success 

A4CS1M1Lpp2 Success 

sup=32.55%,conf=0.78 

sup=13.95%,conf=1 

sup=18.6%,conf=0.8 

sup=13.95%,conf=1 

sup=25.58%,conf=0.79 
A4 Success

A4CS1M1 Success 

A4CS1 Success 

(a) Represent rule trees for Op-4 by spreadsheet            (b) Rule tree for 
Op-4  

Fig. 14. Representing rules in a hierarchical structure for the example 

Based on the rule tree, we note that Operations 3 and 4 both match pa-
tient Matt’s pre-op conditions.  However, Operation 4 matches more at-
tributes in Matt’s pre-op conditions than Operation 3. Thus, Operation 4 is 
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more desirable for patient Matt.  A screen shot of the corresponding 
spreadsheet user interface is shown in Fig 14a and the corresponding rule 
tree representation is shown in Fig 14b.  We have received favorable user 
feedback in using the spreadsheet interface because of its ease in  rule 
searching and sorting.  

8 Conclusion 

In this chapter, we have proposed a method to derive association rules di-
rectly from tabular data with a large number of dependent variables. The 
SmartRule algorithm is able to use table structures to reduce the search 
space and the counting time for mining maximal frequent itemsets (MFI).  
Our experimental results reveal that using tabular data rather than trans-
forming to transaction-type data can significantly improve the performance 
of mining MFIs. Using simple data structures and native CPU instructions, 
the proposed InvertCount is faster than hash tree for support counting. Fi-
nally, SmartRule organizes rules into hierarchical rule trees and uses 
spreadsheet as a user interface to sort, filter and select rules so that users 
can browse only a small number of interesting rules that they wish to 
study. We have successfully applied SmartRule to a set of medical clinical 
data and have derived useful rules for recommending the type of surgical 
operation for patients based on their pre-operative conditions and demog-
raphy information. 
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