
Mining Association Rules from Tabular Data
Guided by Maximal Frequent Itemsets

Qinghua Zou1, Yu Chen1, Wesley W. Chu1, and Xinchun Lu2

1Computer Science Department, University of California, Los Angeles,
California, 90095 {zou,chenyu,wwc}@cs.ucla.edu
2Shandong University, Jinan, China luxc@sdu.edu.cn

We propose the use of maximal frequent itemsets (MFIs) to derive associa-
tion rules from tabular datasets. We first present an efficient method to
derive MFIs directly from tabular data using the information from previous
search, known as tail information. Then we utilize tabular format to derive
MFI, which can reduce the search space and the time needed for support-
counting. Tabular data allows us to use spreadsheet as a user interface. The
spreadsheet functions enable users to conveniently search and sort rules. To
effectively present large numbers of rules, we organize rules into hierarchi-
cal trees from general to specific on the spreadsheet Experimental results
reveal that our proposed method of using tail information to generate MFI
yields significant improvements over conventional methods. Using inverted
indices to compute supports for itemsets is faster than the hash tree counting
method. We have applied the proposed technique to a set of tabular data
that was collected from surgery outcomes and that contains a large number
of dependent attributes. The application of our technique was able to derive
rules for physicians in assisting their clinical decisions.

1 Introduction

Many algorithms have been proposed on mining association rules in the
past decade. Most of them are based on the transaction-type dataset. In
the real world, a huge amount of data has been collected and stored in
tabular datasets, which usually are dense datasets with a relatively small
number of rows but a large number of columns. To mine a tabular dataset,
previous approaches required transforming it into a transaction-type data-
set in which column structures are removed. In contrast, we propose a new
method that takes advantage of the tabular structure and that can mine as-
sociation rules directly from tabular data.

mailto:luxc@sdu.edu.cn

2 Qinghua Zou1, Yu Chen1, Wesley W. Chu1, and Xinchun LuP2

Many previous approaches take four steps to generate association rules
from a tabular dataset: (1) transforming a tabular dataset T into a transac-
tion-type dataset D; (2) mining frequent itemsets (FI) or frequent closed
itemsets (FCI) from D; (3) Generating rules from FI or FCI; (4) presenting
rules to the user. This strategy achieves a certain degree of success but has
three shortcomings:

First, transforming a tabular dataset into a transaction-type dataset in-
creases the search space and the time required for support-counting, since
column structures are removed. Figure 1a shows a table with five rows
and five distinct columns, column A to E. The Occ column indicates the
number of occurrences of a row. Thus, the Occ value can be used to count
support of an itemset. For example, given a minimal support 3, “A=3” is
a frequent item since its support is 4, which can be obtained by adding the
Occ values of rows 3 and 4. Likewise, both “A=1” and “A=2” have a sup-
port of 2, so they are infrequent. Figure 1b shows the corresponding trans-
action-type dataset where each column value is mapped to an item, e.g.
A=1 to a1. There are 9 frequent items in Figure 1b. Since any combination
of the nine items can be a possible FI, FCI, or MFI, the search space is as
large as 29=512. In contrast, by keeping column structure, the search space
in Figure 1a can be significantly reduced to 162 (2*3*3*3*3) since the
combinations of items on the same column can be excluded. Note that in
Apriori-like level-wised approaches, keeping column structures reduces
the number of candidates generated at all levels. For instance, in Figure 1b,
Apriori-like approaches would generate b1d1d2 as a 3-item candidate since
b1d1 and b1d2 are frequent. By using column constraints, d1d2 are in the
same column, so any candidate containing d1d2 can be pruned. Further-
more, keeping column structure reduces the time needed for support-
counting. For example, in vertical data representation, the supports of all
items in one column can be counted in a single scan of the column.

TID Item set Occ
1 a1 b2 c1 d1 e1

Row No. A B C D E Occ
1 1 2 2 2 1 1 1

Fig. 1. Tabular data vs. transaction data

Second, in certain situations, mining frequent itemsets (FI) or frequent
closed itemsets (FCI) becomes difficult since the number of FIs or FCIs

2 a2 b1 c2 d1 e1 1 2 2 1 2 1 1 1
3 3 2 2 2 1 2
4 3 1

3 a3 b2 c2 d2 e1 2
4 a3 b1 c2 d2 e2 2
5 a2 b1 c1 d2 e2 1
Totally 9 frequent items

(b). A transaction-type dataset

2 2 2 2
5 2 1 1 2 2 1

Frequent item# 1 2 2 2 2

(a). A source tabular data

Mining Association Rules from Tabular Data Guided by Maximal Frequent
Itemsets 3

can be very large. Researchers have realized this problem and recently
proposed a number of algorithms for mining maximal frequent itemsets
(MFI) [3, 4, 6, 21], which achieve orders of magnitudes of improvement
over mining FI or FCI. When mining a dense tabular dataset, it is desir-
able to mine MFIs first and use them as a roadmap for rule mining.

Finally, a challenging problem is how to present a large number of rules
effectively to domain experts. Some approaches prune and summarize
rules into a small number of rules [10]; some cluster association rules into
groups [14]. While reducing the number of rules or putting them into sev-
eral clusters is desirable in many situations, these approaches are incon-
venient when an expert needs to inspect more details or view the rules in
different ways. Other approaches [17, 11] developed their own tools or a
new query language similar to SQL to select rules, which provides great
flexibility in studying rules. But, in some situations, domain experts are re-
luctant to learn such a query language.

In this Chapter, we present a new approach to address these problems.
• We propose a method that can generate MFIs directly from tabular

data, eliminating the need for conversion to transaction-type data-
sets. By taking advantage of column structures, our method can
significantly reduce the search space and the support counting time.

• We introduce a framework that uses MFIs as a roadmap for rule
mining. A user can select a subset of MFIs to including certain
attributes known as targets (e.g., surgery outcomes) in rule genera-
tion.

• To derive rules from MFIs, we propose an efficient method for
counting the supports for the subsets of user-selected MFIs. We
first build inverted indices for the collection of itemsets and then
use the indices for support counting. Experimental results show
that our approach is notably faster than the conventional hash tree
counting method.

• To handle the large number of rules generated, we hierarchically
organize rules into trees and use spreadsheet to present the rule
trees. In a rule tree, general rules can be extended into more spe-
cific rules. A user can first exam the general rules and then extend
to specific rules in the same tree. Based on spreadsheet’s rich func-
tionality, domain experts can easily filter or extend branches in the
rule trees to create the best view for their interest.

The organization of this chapter is as follows. Section 1 discusses re-
lated works. Section 2 presents the framework of our proposed algorithm
called SmartRule and the method of mining MFIs directly from tabular
data. A new support counting method is introduced in Section 3. Then

4 Qinghua Zou1, Yu Chen1, Wesley W. Chu1, and Xinchun LuP2

rule trees are developed in section 4 to represent a set of related rules and
their representations on the spreadsheet user interface. Performance com-
parison with transaction datasets is given in section 5. Finally, an applica-
tion example of using this technique on a medical clinical dataset for sur-
gery consultation is given.

1.1 Related works

Let I be a set of items and D be a set of transactions, where each transac-
tion is an itemset. The support of an itemset is the number of transactions
containing the itemset. An itemset is frequent if its support is at least a
user-specified minimum support. Let FI denote the set of all frequent item-
sets. An itemset is closed if there is no superset with the same support. The
set of all frequent closed itemsets is denoted by FCI. A frequent itemset
is called maximal if it is not a subset of any other frequent itemset. Let
MFI denote the set of all maximal frequent itemsets. Any maximal fre-
quent itemset X is a frequent closed itemset since no nontrivial superset of
X is frequent. Thus we have . FIFCIMFI ⊆⊆

Many algorithms for association rule mining require discovering FI be-
fore forming rules. Most methods for generating FI can be classified into
three groups. First is the candidate set generate-and-test approach [1, 7,
12], which finds FI in a bottom up fashion. Second, the sampling approach
[16] reduces computation complexity but the results are incomplete. Third
is the data transformation approach [8, 20], which transforms a dataset to a
new form for efficient mining. Some algorithms [13, 19] use FCI to gen-
erate rules.

Recently many MFI mining algorithms have been proposed. MaxMiner
[4] uses a breadth-first search and performs look-ahead pruning on tree
branches. The developments in mining MFI, however, use a depth first
search with dynamic reordering as in DepthProject [2], Mafia [3], Gen-
Max[6], and SmartMiner [21]. All of these methods for mining MFI have
reported orders of magnitudes faster than methods mining FI/FCI. Smart-
Miner uses tail information to prune the search space without superset
checking. Little research has been done on using MFIs for mining associa-
tion rules since no rule can be generated from MFIs. However, MFIs can
serve as roadmaps for rule mining. For example, given the set of MFIs, we
can analyze many interesting properties of the dataset such as the longest
pattern, the distribution and the overlap of the MFIs.

Extensive research has been done on association rule mining. For exam-
ple, there has been research on mining multi-level association rules [9], on

Mining Association Rules from Tabular Data Guided by Maximal Frequent
Itemsets 5

selecting the right interestingness measure [15], on synthesizing high fre-
quency rules [18], etc.

Association rule mining techniques often produce a large number of
rules that are hard to comprehend without further processing. Many tech-
niques [10, 11, 14, 17] are proposed to prune, cluster, or query rules. The
rules are usually presented in free text format, where it is easy to read a
single rule but difficult to compare multiple rules at the same time. In
this chapter, we propose using spreadsheets to present hierarchically or-
ganized rules to remedy this problem.

2 Methodology

Figure 2 illustrates SmartRule using an Excel book (or other spreadsheet
software) to store data and mining results. The Excel book also serves as
an interface for interacting with users. There are three functions in the sys-
tem: TMaxMiner, InvertCount, and RuleTree. TMaxMiner directly mines
MFIs for a given minimal support from tabular data. InvertCount builds
the FI list contained by the user-selected MFIs and counts the supports for
the FIs (Section 3). RuleTree is used to generate rules and to organize
them hierarchically (Section 4).

In this chapter, we as-
sume that our data only
contains categorical val-
ues. In the situation that a
column contains continu-
ous values, we use cluster-
ing technique (e.g., [5,
22]) to partition the values
into several groups.

TMaxMiner:
Compute MFI
from tabular
data.

• Data
• MFI
• Rules
• Config

Domain
experts

InvertCount:
 - MFIs FIs
 - Count sup

RuleTree:
 - Generate
 - Organize

FI Supports

Excel Book
1

2

3

4 5

6

Fig. 2. System overview of SmartRule

2.1 Tail Information

Let N=X:Y be a node where X is the head of N and Y is the tail of N.
Let M be known frequent itemsets and N=X:Y be a node. The tail infor-
mation of M to N is denoted as Inf (N|M), and is defined as the tail parts of

6 Qinghua Zou1, Yu Chen1, Wesley W. Chu1, and Xinchun LuP2

the frequent itemsets in {X:Y} that can be inferred from M, that is,
Inf (N | M) = {Y ∩ Z |∀Z ∈ M, X ⊆ Z}.

For example, Inf (e:bcd|{abcd,abe,ace})={b,c}, which means that eb
and ec are frequent given {abcd,abe,ace} frequent. For simplicity, we call
tail information “information”.

Since the tail of a node may contain many infrequent items, pure depth-
first search is inefficient. Hence, dynamic reordering is used to prune
away infrequent items from the tail of a node before exploring its sub
nodes.

2.2 Mining MFI from tabular data

We now present TmaxMiner, which computes MFIs directly from a tabu-
lar dataset. TMaxMiner uses tail information to eliminate superset check-
ing. TMaxMiner uses tables as its data model and selects the column with
the least entropy for the next search.

To process the tabular data more efficiently, we start with the column of
the least entropy. The entropy of a column can be computed by the prob-
ability of each item in that column. For example, for column A in Figure
4a, the probability of a3 is {P(a3)=1} where empty cells are ignored; thus
the entropy of column A is I({P(a3)=1}) is 0. The entropy of column B is
I({P(b1)=0.6, P(b2)=0.4}) = -0.6*log20.6-0.4* log20.4 ≈ 0.97. So we start
mining MFI from column A.

As shown in Figure 3, TMaxMiner takes two parameters, a table T and
information inf. It returns the discovered MFI in a depth-first fashion.
The parameter T is the current table for processing and inf specifies the
known frequent itemsets from the previous search. The TMaxMiner algo-
rithm that uses tail information to derive MFIs is shown in Figure 3. Line 1
computes the support for each item in T and then removes infrequent
items. Parent equivalence pruning (PEP) [3] is defined as follows: Let x be
a node’s head and y be an element in its tail, if any transaction containing x
also contains y, then move item y from the tail to the head. Line 2 finds the
PEP items that appear in every row of T and remove the corresponding
columns. Line 3 selects an item x in the column with the least entropy.
Lines 4 to 10 find the MFIs containing x. Specifically, a new table T’ is
formed by selecting those rows of T containing x, and then removing the
column of x. At Line 5, the part of inf mentioned x is assigned to inf’.
Line 6 discovers MFI in the new table T’, which is extended by the item x
and added to mfi. Since we discovered the MFI containing x, we can re-
move x from T as in Line 8. Then mfi’ is added into inf to inform the

Mining Association Rules from Tabular Data Guided by Maximal Frequent
Itemsets 7

succeeding steps of the known frequent itemsets. Finally, the answer is
returned at Line 11.
TMaxMiner(table T, inf)
1 Count sup and remove infrequent items from T;
2 Find pep, remove pep’s columns, update inf;;
3 while(select x on a column of least entropy){
4 Rows in T containing x table T’;
5 The part of inf relevant to T’ inf’;
6 mfi’= TMaxMiner(T’, inf’);
7 Add (x + mfi’) to mfi;
8 Remove x from T;
9 Update inf with mfi’;
10 }
11 return (pep + mfi);

Fig. 3. TMaxMiner — a depth-first method that discovers MFI directly from a ta-
ble guided by tail information.

2.3 An example of TMaxMiner

We shall show how TMaxMiner derives MFIs from the table as shown in
Figure 4a. Let minimum support threshold be equal to 3, we first select
item a3 as the first node since column A has the least entropy, and then
yield the table T(a3), where items c2 and d2 appear in every row, i.e.,
pep=c2d2, and all other items are infrequent. Therefore we obtain MFI
a3c2d2 for T(a3). Removing column A from Figure 4a, we have Figure 4b
with the tail information c2d2.

Next, column C in Figure 4b is selected. We find a MFI c1 from T(c1)
and two MFIs b1c2 and c2e1 from T(c2). After removing column C, we have
Figure 4c with the tail information {d2, b1, e1}. The rows 4 and 5 contain
the same items and can be combined to form a MFI b1d2e2. Then the two
rows can be removed and the table shown in Figure 4d is formed.

We find two more MFIs, b2e1 and d1e1, from Figure 4d and the search
process is now completed. The final results are the union of the MFIs in
Figure 4a~4d. They are a3c2d2, c1, b1c2, c2e1, b1d2e2, b2e1, and d1e1.

8 Qinghua Zou1, Yu Chen1, Wesley W. Chu1, and Xinchun LuP2

T(a3)

 B C D E Occ
3 2 2 2 1 2
4 1 2 2 2 2

pep=c2d2

T(c2)

B D E Occ
2 1 1 1 1
3 2 2 1 2
4 1 2 2 2

inf=nil
mfi=a3c2d2

 B C D E Occ
1 2 1 1 1 2
2 1 2 1 1 1
3 2 2 2 1 2
4 1 2 2 2 2
5 1 1 2 2 1

(b). inf=c2d2 (a). inf=nil

 A B C D E Occ
1 2 1 1 1 2
2 1 2 1 1 1
3 3 2 2 2 1 2
4 3 1 2 2 2 2
5 1 1 2 2 1
 inf=nil

mfi=c1

inf=d2
mfi= b1c2,c2e1

mfi=b1d2e2

B D E Occ
1 2 1 1 2
2 1 1 1 1
3 2 2 1 2
4 1 2 2 2
5 1 2 2 1

(c). inf=d2,b1,e1

B D E Occ
1 2 1 1 2
2 1 1 1 1
3 2 2 1 2
mfi= b2e1, d1e1

(d). inf=e1

MFI Results
a3c2d2
c1, b1c2, c2e1
b1d2e2
b2e1, d1e1

T(c1)

 B D E Occ
1 2 1 1 2
5 1 2 2 1

Inf=nil
 inf=d2

Fig. 4. An example of TMaxMiner: discover MFI directly from the tabular data-
set.

3 Counting support for targeted association rules

Domain experts often wish to derive rules that contain a particular attrib-
ute. This can be accomplished by selecting a set of MFIs that contain such
a target column. When the MFIs are very long, columns of less interest
can be excluded.

The counting itemset C can be formed from the selected MFIs. For ex-
ample, if the target column is column E in Figure 1a, we can select the
MFIs containing e1 or e2 and have {b1d2e2, b2e1, c2e1, d1e1}. Then the
counting itemsets C are all the subsets of the selected MFIs, C={ b1, b2, c2,
d1, d2, e1, e2, b1d2, b1e2, b2e1, c2e1, d1e1, d2e2, d2b1e2}.
In order to generate rules, we need to count the support
for the counting itemsets C from the source table T.
There are two ways to determine which itemsets in C are
contained in a row i in T: (1) for each subset s of i, check
if s exists in C; (2) for each itemset c in C, check if c is
contained in i. Clearly, both approaches are not effi-
cient.

To solve this problem, some previous works build a
hash tree from a prefix tree for the counting itemsets C.
Figure 5 shows the prefix tree containing all the 14 item-
sets in C. Then a hash table is added to each internal node

e2

e1

e2

e2d2

b2 e1

c2 e1

d1 e1

d2

∅

e2

b1

Fig. 5. Prefix
tree for count-
ing FIs

Mining Association Rules from Tabular Data Guided by Maximal Frequent
Itemsets 9

to facilitate the search for a particular child. To find the itemset in C con-
tained in a row i in T, we need to determine all the nodes in the prefix tree
that match i. This approach is faster than the above two approaches, but the
tree operations are relatively expensive.

We propose an algorithm InvertCount for counting supports that use
only native CPU instructions such as “+1” and “mov”.

Figure 6 illustrates that InvertCount employs inverted indices to count
supports. Figure 6a shows the 14 itemsets for counting where the column
len is the number of items in an item-
set. The column sup stores the current
counting results. The column cnt re-
sets to 0 whenever the counting for one
row is done. Figure 6b is the inverted
indices itm2ids that map an item to a
list of itemsets’ identifiers ids.

For a given row i, we can quickly de-
termine the itemsets contained in i and
increase their support by Occ(i). For
example, for the first row of Figure 1a,
i=a1b2c1d1e1, we get the inverted indi-
ces (b2:1, 9), (d1:3, 11), and (e1:5, 9, 10,
11). There is no inverted index for a1
and c1. Then we use the column cnt to
count the occurrence of each id in the
above three indices, e.g., 9 occurring
twice. Finally we determine that
itemsets 1, 3, 5, 9, 11 are contained in i
since their occurrences are equal to the values on column len (itemsets’
lengths). Therefore we increase their support by Occ(i), i.e. 2, as shown
on the column sup.

The algorithm InvertCount (shown in Figure 7) counts the support for
itemsets in C from source tabular data T without any expensive function
calls. Line 1 builds the data structure as shown in Figure 6. For each row
i in T, we first find the itemsets in C that are contained in i and then in-
crease their support by Occ(i). Specifically, Lines 3 and 4 count the oc-
currence of ids in the inverted lists of the items in i. Line 7 increases the
support of an itemset by Occ(i) if the itemset is a subset of i. Line 8
clears the count for item id in FI-table for later use. We return the count-
ing results at Line 9.

Our preliminary experimental results reveal that InvertCount is notably
faster than previous hash tree counting.

Fi
cient com

g. 6. Example of InvertCount for effi-
puting FI supports.

item ids id itemset sup len cnt
b1 0, 7, 8, 13
b2 1, 9
c2 2, 10
d1 3, 11
d2 4, 7, 12, 13
e1 5, 9, 10, 11
e2 6, 8, 12, 13

b. itm2ids

0 b1 4 1
1 b2 4 1 1
2 c2 5 1
3 d1 3 1 1
4 d2 5 1
5 e1 5 1 1
6 e2 3 1
7 b1d2 3 2
8 b1e2 3 2
9 b2e1 4 2 2
10 c2e1 3 2 1
11 d1e1 3 2 2
12 d2e2 3 2
13 b1d2e2 3 3

Example:
Count from row 1:
 a1b2c1d1e1: occ=2
Get inverted index
 b2: 1, 9
 d1: 3, 11
 e1: 5, 9, 10, 11

a. FI-table

10 Qinghua Zou1, Yu Chen1, Wesley W. Chu1, and Xinchun LuP2

InvertCount(table T, C)
1 build FI-table F and itm2ids from C;
2 foreach(row i in T) do
3 foreach(item x in i) do
4 foreach(id in itm2ids[x].ids) do
F.cnt[id]++;
5 foreach(item x in i) do
6 foreach(id in itm2ids[x].ids) do
7 if(F.cnt[id]>=F.len[id])
F.sup[id]+=Occ(i);
8 F.cnt[id]=0;
9 return F.sup;

Fig. 7. The InvertCount Algorithm — using inverted indices to count supports for
the itemsets in C

4 Generating Rule Trees

Using the final support counting results, we are able to generate associa-
tion rules. For example, Figure 6a shows the final counting results in the
column sup. Since we are looking for rules with e1 or e2 as rule head, we
can build a rule for every itemset containing e1 or e2. For instance, for
itemset b1d2e2 containing e2, a rule b1d2 e2 is created. Figure 8 shows the
list of rules created from Figure 6a.

The support and confidence of a rule can be
easily derived from the final counting result. For
example, for the itemset d1e1 in Figure 6a, we cre-
ated a rule d1→e1 whose support is 3 and whose
confidence is the support of d1e1 divided by that of
d1, which is equal to 1.0.

Association rule mining usually generates too
many rules for the user to comprehend, so we
need to organize rules into a hierarchical structure
so that users can study the rules at different levels
with varying degrees of specificity. Trees are built

from the list of rules, where each tree represents rules sharing the same
rule head. The hierarchical relationship on a tree is determined by the
containment relationship among rules’ bodies. A rule r1 is an ancestor of
r2 if and only if the head of r1 is equal to the head of r2 and where the body
of r1 is a subset of the body of r2.

id rule Sup Conf
5 nil e1 5 1.0
6 nil e2 3 1.0
8 b1 e2 3 0.75
9 b2 e1 4 1.0
10 c2 e1 3 0.6
11 d1 e1 3 1.0
12 d2 e2 3 0.6
13 b1d2 e2 3 1.0
Fig. 8. A table of rules

Mining Association Rules from Tabular Data Guided by Maximal Frequent
Itemsets 11

Figure 9 shows the algorithm TreeRule that takes a list of rules R as in-
put, sorted by increasing length, and returns trees with hierarchically or-
ganized rules. Specifically, it builds a tree for each target column value,
as shown in Lines 2 and 3 where rules have empty bodies. For a rule
with a non-empty body, we add it into the tree corresponding with its head,
as shown in Lines 4 to 5.

vector TreeRule(List R)
1 int i=0;
2 for(; R[i].body.len==0; i++) //nil h
3 new Tree(R[i]) tr[R[i].head];
4 for(; i<R.Count; i++)
5 tr[R[i].head].AddRule(R[i]);
6 return tr;

Fig. 9. TreeRule — building a forest of trees from a list of rules

Figure 10 shows a recursive method AddRule that adds a rule r into a
tree. If a more specific rule r has similar support and confidence with the
current rule node referred by this, then we simply add the extra items as
optional items (optItms) without creating a new node as in Lines 1 to 3.

If the rule r is not similar to the current rule node, then we add r into
sub-trees of this whose bodies are subsets of r.body as in Lines 5 and 6.
If no such sub tree exists, we create a new tree and add it into this.subTree
as in Lines 7 to 9. Line 10 returns the updated tree r.

AddRule(rule r)
1 if(r.sup, r.conf)≈(this.sup, this.conf);
2 this.optItms += r.body-this.body;
3 return;
4 r.body -= this.optItms;
5 foreach(subtree t & t.body is a subset of
r.body)
6 t.AddRule(r);
7 if(no such a subtree)
8 t’=new Tree(r);
9 Add t’ to this.subTrees;
10 return;

Fig. 10. AddRule — recursively adding a rule into a rule tree

12 Qinghua Zou1, Yu Chen1, Wesley W. Chu1, and Xinchun LuP2

Rules Sup Conf Depth Num
 nil e1 5 1.0 0 0
 b2 e1 4 1.0 1 1
 d1 e1 3 1.0 1 2
 c2 e1 3 0.6 1 3
 nil e2 3 1.0 0 4
 b1 e2 3 0.75 1 5
b1d2 e2 3 1.0 2 6
 d2 e2 3 0.6 1 7

 a. Example of rule trees.

b2 e1 (sup=4, conf=1.0)
d1 e1 (sup=3, conf=1.0)
c2 e1 (sup=3, conf=0.6)

b1d2 e2 (sup=3,conf=1.0)
d2 e2 (sup=3, conf=0.6)

b1 e2 (sup=4, conf=1.0)

nil e1 (sup=5, conf=1.0)

nil e2 (sup=3, conf=1.0)

b. Rule trees represented by node
Depth and Number

Fig. 11. Example of rule trees and their tabular representation

For example, Figure 11a shows the rule trees for the rules in Figure 8.
Two rule trees are built: one for e1 with 3 branches, another for e2 with two
levels of children. The second level node b1→e2 is the parent of b1d2→e2
because they both have the same head e2, and b1 is a subset of b1d2. In gen-
eral, a more specific rule gives higher confidence but lower support. Figure
11b represents the tree in table format, in which each node is represented
as a row with its support, confidence, node depth and number information.
To output trees into tabular format, we number nodes in the trees by their
preorders. The node’s number plus its depth can be used to represent the
hierarchical relationship of the specific rules in a rule tree.

5. Hybrid Clustering Technique for Partitioning
Continuous Attributes

The number of cells and the cell size will affect the clustering results and
the data mining outcome, both in support and confidence.

When the sample size is very small and number of attributes is large,
conventional statistical classification techniques such as CART [22] fail to
classify the continuous value of an attribute into cells. Using unsupervised
clustering techniques [5] has the problem of not knowing the optimal
number of cells to represent the variables. Therefore, we developed a hy-
brid technique that combines both statistical and data mining techniques it-
eratively in determining the optimal number of cells as well as the cell
sizes.

The basic idea is to use data mining technique to select a small set of
key attributes, and then use a statistical classification technique such as

Mining Association Rules from Tabular Data Guided by Maximal Frequent
Itemsets 13

CART to determine the cell sizes and number of cells from the training set.
Then we use the partitioning result for data mining. The procedure works
as follows:

Perform the mining on the training set, and select a set of attributes with
high confidence and support for statistical classification.

Perform statistical classification based on the training set for the se-
lected attributes set from step (1). Since the attribute set is greatly re-
duced, statistical classification techniques such as CART [22] can be used
to determine the optimal number of cells and their corresponding cell sizes
for attribute.

Based on the optimal cell sizes for each attribute from step (2), data
mining algorithms can then be used to generate the rules for this set of at-
tributes.

With this hybrid clustering approach, we are able to generate optimal
partitioning for the set of continuous attributes. Our experimental results
reveal that deriving rules based on such partitioning yield better mining re-
sults than conventional unsupervised clustering techniques [5].

6. Performance Comparisons

SmartRule was implemented using Microsoft .Net C# and the Office XP
primary interop assemblies so that our program could directly read from
and write to Excel workbooks. Experimental results have shown that
SmartMiner is close to one order of magnitude faster than Mafia and
Genmax in generating MFI from transaction dataset [21]. Note Smart-
Miner, Mafia and GenMax do not keep column constraints during generat-
ing MFIs. By taking advantage of column constraints in tabular data for-
mat, TmaxMiner achieves performance gains over SmartMiner as shown
in Fig. 12. Further, we note that the gain increases as the support de-
creases. The dataset Mushroom used for performance comparison is in
tabular format and was downloaded from the UCI machine learning re-
pository [23].

To evaluate the performance of InvertCount, we used the Mushroom
dataset and selected the MFIs containing the class attributes (edible or poi-
sonous) to generate counting itemsets. Before testing, we build a hash
tree and inverted indices for these itemsets. Then we compared the
counting time of InvertCount and HashTree in the source Mushroom table.

14 Qinghua Zou1, Yu Chen1, Wesley W. Chu1, and Xinchun LuP2

Figure 13 shows the relative time of Hash Tree and InvertCount for the

tests at varying minimal supports. When minimal support is 10%, they
have similar performances because of the small number of counting item-
sets. As the minimal support decreases, MFIs become longer, which re-
sults in an increase in the number of counting itemsets. In such a case, In-
vertCount is notably faster than HashTree.

7 An Application Example

We have applied SmartRule to mine a set of clinical data that was col-
lected from urology surgeries during 1995 to 2002 at the UCLA Pediatric
Urology Clinic. The dataset contains 130 rows (each row represents a pa-
tient) and 28 columns, which describe patient pre-operative conditions,
type of surgery performed, post-op complications and final outcome of the
surgeries. The pre-operative conditions include patient ambulatory status
(A), catheterizing skills (CS), amount of creatinine in the blood (Se-
rumCrPre), leak point pressure (LPP), and urodynamics, such as minimum
volume infused into bladder when pressure reached 20 cm of water
(20%min). The data mining goal is to derive a set of rules from the clinical
data set (training set) that summarize the outcome based on patients’ pre-
op data. This knowledge base can then be used to examine a given pa-
tient pre-op profile and decide which operation should be performed to
achieve the best outcome.

This set of clinical data represents four types of surgery operations as
shown in Table 1. We separate the patients into four groups based on the
type of surgery they were treated with. For a given surgery type, we parti-
tioned the continuous value attributes, e.g., patient urodynamics data, into
discrete intervals or cells. To achieve best mining results, an attribute may
partition into different cell sizes for different types of operations, as shown
in Table 2. Since our sample size is very small, especially after subgroup-
ing the dataset into different operations, we used the hybrid technique that

Fig. 12. Comparison of TMaxMiner
with SmartMiner

Fig. 13. Comparison of InvertCount
with Hashtree

0
0.5

1.5
2

2.5
3

10 5 1 0.5 0.1
0

0.5

1

1.5

10 5 1 0.5 0.1

Sm artMiner HashTree

1

TMaxMiner
Ti

m
e

(s
ec

)

Minimal Support (%)

InvertCount

R
el

at
iv

e
tim

e

Minimal Support (%)

Mining Association Rules from Tabular Data Guided by Maximal Frequent
Itemsets 15

combines both statistical and data mining techniques iteratively in deter-
mining the optimal number of cells as well as the cell sizes.

For the training set, we are able to generate optimal partitioning for the
set of continuous attributes from each operation type as shown in Table 2.
Sets of rules are generated based on the discretized variables for each type
of operation, which can be viewed as the knowledge base for this type of
operation. Our experimental results reveal that deriving rules based on
such partitioning yield better mining results than conventional unsuper-
vised clustering techniques [5].

For a given patient with a specific set of pre-op conditions, the gener-
ated rules from the training set can be used to predict success or failure
rate for a specific operation.

To provide the user with a family of rules, SmartRule can organize
matched rules into rule trees from general to specific rules. The rules
closer to the root are more general, contain fewer constraints and yield
higher support; the rules closer to the leaves are more specific, which con-
tain more constraints and yield lower support. In case of multiple match
rules, the quality of the rules in terms of confidence and support may be
used in rule selection.

Given patient Matt’s pre-op conditions as shown in Table 3(a), since the
attributes in the rules are represented in discrete values, the continuous
pre-op conditions are transformed into discrete values (Table 3(b)) based
on the partitioning done on the attributes of operation types as shown in
Table 2. Based on these attributes values of a given patient such as “Am-
bulatory Status=4” and “CathSkills=1”, we can search for rules from the
knowledge base that were generated from the training set to match Matt’s
pre-op profile as shown in Table 4.

Table 1. Four types of surgeries

Operation
Type Operation Description

Op-1 Bladder Neck Reconstruction with Augmentation
Op-2 Bladder Neck Reconstruction without Augmentation
Op-3 Bladder Neck Closure without Augmentation
Op-4 Bladder Neck Closure with Augmentation

16 Qinghua Zou1, Yu Chen1, Wesley W. Chu1, and Xinchun LuP2

Table 2. Partition of continuous variables into optimal number of discrete
intervals (cells) and cell sizes for four types of operations. Each table presents the
partitioning for a specific operation type. The optimal number of cells for an
attribute is represented by the number of rows in each table. The size for each cell
is represented in the column. Since different attributes have different optimal
number of cells, certain attributes may contain no values in certain rows, and we
use n/a to designate such a undefined cell sizes.

(a) Operation Type 1

Cell# LPP SerumCrPre
1 [0, 19] [0, 0.75]
2 (19, 33.5] [0.75, 2.2]
3 (33.5,40] n/a
4 normal n/a

(b) Operation Type 2

Cell# 20%min 20%mean 30%min 30%mean LPP SerumCrPre
1 [80, 118] [50, 77] [100, 170] [51, 51] [12, 20] [0, 0.5]
2 [145, 178] [88, 104] [206, 241] [94, 113] [24, 36] [0.7, 1.4]
3 [221, 264] [135, 135] n/a [135, 135] normal n/a

(c) Operation Type 3

Cell# 20%min 20%mean 30%min 30%mean LPP SerumCrPre
1 [103,130] [57, 75] [129, 157] [86, 93] [6, 29] [0.3, 0.7]
2 [156,225] [92, 105] [188, 223] [100,121] [30,40] [1.0, 1.5]

 (d) Operation Type 4

Cell# LPP 20% mean
1 [0, 19] [0, 33.37]
2 (19, 69] (33.37, 37.5]
3 normal (37.5, 52]
4 n/a (52, 110]

Table 3. (a) Patient Matt’s pre-operative conditions

Ambulatory
Status (A)

Cath
Skills (CS)

Serum 20% 20% 30% 30%
CrPre min mean(M) min mean LPP UPP

4 1 0.5 31 20 50 33 27 unkown

Mining Association Rules from Tabular Data Guided by Maximal Frequent
Itemsets 17

Table 3. (b) Discretized pre-operative conditions of patient Matt’s pre-op
conditions. The attributes not used in rule generation are denoted as n/a.

 Ambulatory
Status (A)

Cath Serum 20% 20% 30% 30%
mean LPP Skills (CS) CrPre min mean(M) min

Op-1 4 1 1 n/a n/a n/a n/a 2
Op-2 4 1 1 <1 <1 <1 <1 2
Op-3 4 1 1 <1 <1 <1 <1 1
Op-4 4 1 n/a n/a 1 n/a n/a 2

Table 4. Rule trees selected from the knowledge base (derived form the training
set) that match patient Matt’s pre-op profile

Surgery Conditions Outcome Support Support(%) Confi-
dence

CS=1 Success 10 41.67 0.77 Op-1 CS=1 and LPP=2 Success 3 12.5 0.75
CS=1 and LPP=2 Fail 2 16.67 0.67 Op-2 20%min=1 and LPP=2 Fail 2 16.67 0.67
CS=1 and SerumCrPre=1 Success 5 50 0.83 Op-3 CS=1, SerumCrPre=1 and LPP=1 Success 2 20 1
A=4 Success 14 32.55 0.78
A=4 and CS=1 Success 11 25.58 0.79
A=4, CS=1 and LPP=2 Success 8 18.6 0.8
A=4, CS=1 and M=1 Success 6 13.95 1

Op-4

A=4, CS=1, M=1 and LPP=2 Success 6 13.95 1

A4CS1Lpp2 Success

A4CS1M1Lpp2 Success

sup=32.55%,conf=0.78

sup=13.95%,conf=1

sup=18.6%,conf=0.8

sup=13.95%,conf=1

sup=25.58%,conf=0.79
A4 Success

A4CS1M1 Success

A4CS1 Success

(a) Represent rule trees for Op-4 by spreadsheet (b) Rule tree for
Op-4

Fig. 14. Representing rules in a hierarchical structure for the example

Based on the rule tree, we note that Operations 3 and 4 both match pa-
tient Matt’s pre-op conditions. However, Operation 4 matches more at-
tributes in Matt’s pre-op conditions than Operation 3. Thus, Operation 4 is

18 Qinghua Zou1, Yu Chen1, Wesley W. Chu1, and Xinchun LuP2

more desirable for patient Matt. A screen shot of the corresponding
spreadsheet user interface is shown in Fig 14a and the corresponding rule
tree representation is shown in Fig 14b. We have received favorable user
feedback in using the spreadsheet interface because of its ease in rule
searching and sorting.

8 Conclusion

In this chapter, we have proposed a method to derive association rules di-
rectly from tabular data with a large number of dependent variables. The
SmartRule algorithm is able to use table structures to reduce the search
space and the counting time for mining maximal frequent itemsets (MFI).
Our experimental results reveal that using tabular data rather than trans-
forming to transaction-type data can significantly improve the performance
of mining MFIs. Using simple data structures and native CPU instructions,
the proposed InvertCount is faster than hash tree for support counting. Fi-
nally, SmartRule organizes rules into hierarchical rule trees and uses
spreadsheet as a user interface to sort, filter and select rules so that users
can browse only a small number of interesting rules that they wish to
study. We have successfully applied SmartRule to a set of medical clinical
data and have derived useful rules for recommending the type of surgical
operation for patients based on their pre-operative conditions and demog-
raphy information.

Acknowledgements

The authors wish to thank Dr. B. Churchill and Dr. Andy Chen for provid-
ing the clinical data as well as collaborating in formulating the data mining
model, and Professor James W. Sayre for his stimulating discussion in de-
veloping the statistical and data mining approach in determining the cell
size. This research is supported by the NIH PPG Grant #4442511-33780
and the NSF IIS Grant #97438.

References

1. R. Agrawal and R. Srikant: Fast algorithms for mining association rules. In
Proceedings of the 20th VLDB Conference, Santiago, Chile, 1994.

Mining Association Rules from Tabular Data Guided by Maximal Frequent
Itemsets 19

2. R. Agarwal, C. Aggarwal, and V. Prasad: A tree projection algorithm for gen-
eration of frequent itemsets. Journal of Parallel and Distributed Computing,
2001.

3. D. Burdick, M. Calimlim, and J. Gehrke: MAFIA: a maximal frequent itemset
algorithm for transactional databases. In Intl. Conf. on Data Engineering, Apr.
2001.

4. R. Bayardo: Efficiently mining long patterns from databases. In ACM
SIGMOD Conference, 1998.

5. W.W. Chu, K. Chiang, C. Hsu, H. Yau: An Error-based Conceptual Clustering
Method for Providing Approximate Query Answers Communications of ACM.
1996.

6. K. Gouda and M.J. Zaki: Efficiently Mining Maximal Frequent Itemsets.
Proc. of the IEEE Int. Conference on Data Mining, San Jose, 2001.

7. H. Mannila, H. Toivonen, and A.I. Verkamo: Efficient algorithms for discover-
ing association rules. In KDD-94: AAAI Workshop on Knowledge Discovery
in Databases, pages 181-192, Seattle, Washington, July 1994.

8. J. Han, J. Pei, and Y. Yin: Mining Frequent Patterns without Candidate Genera-
tion, Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data
(SIGMOD'00), Dallas, TX, May 2000.

9. J. Han and Y. Fu: Discovery of Multiple-Level Association Rules from Large
Databases. In Proc. of the 21th Int. Conf. on Very Large Databases, Zurich,
Swizerland, 1995.

10. B. Liu, W. Hsu, and Y. Ma: Pruning and summarizing the discovered associa-
tions. In Proc. of the Fifth Int'l Conference on Knowledge Discovery and Data
Mining, pages 125 134, San Diego, CA, August 1999.

11. B. Liu, M. Hu, and W. Hsu: Multi-level organization and summarization of the
discovered rules. Proc. ACM SIGKDD, 208-217, 2000.

12. J.S. Park, M. Chen, and P.S. Yu: An effective hash based algorithm for mining
association rules. In Proc. ACM SIGMOD Intl. Conf. Management of Data,
May 1995.

13. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal: Discovering frequent closed
itemsets for association rules. In 7th Intl. Conf. on Database Theory, January
1999.

14. B. Lent, A.N.Swami, and J. Widom: Clustering association rules. In Proceed-
ings of International Conference on Data Engineering, 1997.

15. P. Tan, V. Kumar, and J. Srivastava: Selecting the Right Interestingness Meas-
ure for Association Patterns (2002). Proc of the Eighth ACM SIGKDD Int'l
Conf. on Knowledge Discovery and Data Mining (KDD-2002).

16. Hannu Toivonen. Sampling large databases for association rules. In Proc. of
the VLDB Conference, Bombay, India, September 1996.

17. A. Tuzhilin and B. Liu: Querying multiple sets of discovered rules. Proceed-
ings of the ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, Edmonton, Canada, July 23-26, 2002.

20 Qinghua Zou1, Yu Chen1, Wesley W. Chu1, and Xinchun LuP2

18. X. Wu and S. Zhang, Synthesizing High-Frequency Rules from Different Data
Sources, IEEE Transactions on Knowledge and Data Engineering, Vol. 15, No.
2, March/April 2003, 353-367.

19. M.J. Zaki and C. Hsiao: Charm: An efficient algorithm for closed association
rule mining. In Technical Report 99-10, Computer Science, Rensselaer Poly-
technic Institute, 1999.

20. Q. Zou, W. Chu, D. Johnson, and H. Chiu: Pattern Decomposition Algorithm
for Data Mining of Frequent Patterns. Journal of Knowledge and Information
System, 2002.

21. Q. Zou, W. Chu, B. Lu: SmartMiner: A Depth First Algorithm Guided by
Tail Information for Mining Maximal Frequent Itemsets. Proc. of the IEEE Int.
Conference on Data Mining, Japan, 2002.

22. http://www.salford-systems.com/products-cart.html
23. http://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.salford-systems.com/products-cart.html
http://www.ics.uci.edu/%7Emlearn/MLRepository.html

